Homework set # 5

Due on 2/20

- 0. The following problems from Artin "Algebra" edition 2: 15.8.1; 16.1.1 parts a,b,c
- 1. (1) Let $\phi: F \to F'$ be an isomorphism of fields. Let $f(x) \in F[x]$ be a polynomial and let $f'(x) = \phi(f(x))$ (here we are just applying ϕ to the coefficients of f(x)). Let E be a splitting field for f(x) over F and let E' be a splitting field for f'(x) over F'. Prove that the isomorphism ϕ extends to an isomorphism $\sigma: E \to E'$ (so in other words that σ restricted to F is just ϕ). (Hint: first consider what happens when you adjoin one root of f(x) to F and one root of f'(x) to F', it might also be helpful to think of adjoining one root as a quotient of the polynomial ring).
 - (2) Using the first part, prove that any two splitting fields of a polynomial $f(x) \in F[x]$ over a field F are isomorphic.
- 2. (1) For every non constant monic polynomial $f \in F[x]$ where F is a field, let x_f denote a new variable in the polynomial ring $R_f = F[\ldots, x_f, \ldots]$ (i.e. there will be infinitely many variables in this new polynomial ring). Now let I be the ideal in R_f generated by the polynomials $f(x_f)$. Prove that I is a proper ideal (i.e. that $I \neq R_f$). (Hint: If it were proper then $1 \in I$ meaning that there would be a relation $g_1f_1(x_{f_1}) + \cdots + g_nf_n(x_{f_n}) = 1$ among finitely many of the $f(x_f)$'s. Now what would happen to this relation if you set each x_{f_i} equal to a root of f_i in some extension field of F and set the remaining variables showing up in the g_i 's to 0?).
 - (2) Observe that if I is not equal to R_f then I is contained in some maximal ideal M of R_f . Prove that the field R_f/M contains a root of every non constant monic polynomial $f \in F[x]$.
 - (3) Using the above work, prove that for any field F there exists an algebraically closed field K containing F. (Hint: It might be useful to use the fact that a union of fields is a field (even a countable union)).