Homework set \# 5

Due on $2 / 20$

0. The following problems from Artin "Algebra" edition 2: 15.8.1; 16.1.1 parts a,b,c
1. (1) Let $\phi: F \rightarrow F^{\prime}$ be an isomorphism of fields. Let $f(x) \in F[x]$ be a polynomial and let $f^{\prime}(x)=\phi(f(x))$ (here we are just applying ϕ to the coefficients of $f(x)$). Let E be a splitting field for $f(x)$ over F and let E^{\prime} be a splitting field for $f^{\prime}(x)$ over F^{\prime}. Prove that the isomorphism ϕ extends to an isomorphism $\sigma: E \rightarrow E^{\prime}$ (so in other words that σ restricted to F is just ϕ). (Hint: first consider what happens when you adjoin one root of $f(x)$ to F and one root of $f^{\prime}(x)$ to F^{\prime}, it might also be helpful to think of adjoining one root as a quotient of the polynomial ring).
(2) Using the first part, prove that any two splitting fields of a polynomial $f(x) \in F[x]$ over a field F are isomorphic.
2. (1) For every non constant monic polynomial $f \in F[x]$ where F is a field, let x_{f} denote a new variable in the polynomial ring $R_{f}=F\left[\ldots, x_{f}, \ldots\right]$ (i.e. there will be infinitely many variables in this new polynomial ring). Now let I be the ideal in R_{f} generated by the polynomials $f\left(x_{f}\right)$. Prove that I is a proper ideal (i.e. that $I \neq R_{f}$). (Hint: If it were proper then $1 \in I$ meaning that there would be a relation $g_{1} f_{1}\left(x_{f_{1}}\right)+$ $\cdots g_{n} f_{n}\left(x_{f_{n}}\right)=1$ among finitely many of the $f\left(x_{f}\right)$'s. Now what would happen to this relation if you set each $x_{f_{i}}$ equal to a root of f_{i} in some extension field of F and set the remaining variables showing up in the g_{i} 's to 0 ?).
(2) Observe that if I is not equal to R_{f} then I is contained in some maximal ideal M of R_{f}. Prove that the field R_{f} / M contains a root of every non constant monic polynomial $f \in F[x]$.
(3) Using the above work, prove that for any field F there exists an algebraically closed field K containing F. (Hint: It might be useful to use the fact that a union of fields is a field (even a countable union)).
