Homework set \# 4

Due on 2/13

0. The following problems from Artin "Algebra" edition 2: 15.4.2; 15.7.5; 15.7.8
1. Determine the splitting field and its degree over \mathbb{Q} for $x^{4}-2$.
2. For any prime p and any nonzero $a \in \mathbb{F}_{p}$ prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}. Recall that a polynomial is separable over a field if it has no multiple roots over the given field. (Hint: For irreducibility you can either first prove that if α is a root then $\alpha+1$ is also a root. Or you could suppose that it is irreducible and compute derivatives.)
3. Prove that

$$
x^{p^{n}-1}-1=\prod_{\alpha \in \mathbb{F}_{p^{n}}}(x-\alpha) .
$$

Conclude that (i.e. give an argument for why)

$$
\prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} \alpha=(-1)^{p^{n}}
$$

so the product of nonzero elements of a finite field is 1 if $p=2$ and -1 if p is odd.

