Homework set \# 3

Due on $2 / 6$
0. The following problems from Artin "Algebra" edition 2: 15.3.9, 15.3.10

1. (a) Let K be an extension of F of degree n. For any $\alpha \in K$ prove that α acting by left multiplication on K is an F-linear transformation of K.
(b) Show that if the matrix of the linear transformation "multipication by α " is the matrix A then α is a root of the characteristic polynomial for A.
(c) Use the procedure in part (b) to find the monic polynomials of degree 3 satisfied by $\sqrt[3]{2}$ and by $1+\sqrt[3]{2}+\sqrt[3]{4}$
(d) The polynomials found in part (c) are in fact the irreducible polynomials for these elements (Why?). Give an example (of a K, F, and an α) where the procedure in part (b) does not produce the irreducible polynomial of α over F.
2. Use the fact that $\alpha=2 \cos (2 \pi / 7)$ satisfies the equation $x^{3}+x^{2}-2 x-1=0$ to prove that the regular 7 -gon is not constructible by straightedge and compass.
3. Use the fact that $\alpha=2 \cos (2 \pi / 5)$ satisfies the equation $x^{2}+x-1=0$ to conclude that the regular 5 - gon is constructible by straightedge and compass.
