Homework set \# 2

Due on 1/30

0. The following problems from Artin "Algebra" edition 2: 12.4.3; 15.2.1; 15.3.1; 15.3.2
1. Prove that a polynomial of degree 2 or 3 over a field F (i.e. in $F[x]$) is reducible if and only if it has a root in F. (Hint: First show that $p(x) \in F[x]$ has a factor of degree 1 in $F[x]$ if and only if $p(x)$ has a root in F.)
2. Show that the polynomial $(x-1)(x-2) \cdots(x-n)-1$ is irreducible over \mathbb{Z} for all integers $n \geq 1$. (Hint: consider the values of the polynomial at $1,2, \ldots, n$)
3. Let K be an extension field of F. Suppose the degree of K over F is a prime p. Show that any subfield E of K containing F is either K or F.
4. Prove that if $[F(\alpha): F]$ is odd then $F(\alpha)=F\left(\alpha^{2}\right)$.
