## Homework set \# 1

## Due on 1/23

1. Prove that if $R$ with size function $\sigma$ is a Euclidean domain and $a \in R$ is a non unit with least $\sigma$-value among all non-units then the quotient ring $R /(a)$ is represented by 0 and units.
2. Let $\sigma: \mathbb{Z}[\sqrt{-n}] \rightarrow \mathbb{Z}_{\geq 0}$ (where $n \in \mathbb{N}$ ) be the function that takes $a+b \sqrt{-n}$ to the integer $a^{2}+n b^{2}$.
(1) Show that $\sigma(\alpha \beta)=\sigma(\alpha) \sigma(\beta)$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-n}]$.
(2) Observe (using high school geometry and the number line) that for any rational number $x$ that you can find an integer $X$ such that the distance between $x$ and $X$ is less than or equal to $\frac{1}{2}$.
(3) Now fix $n=2$. One can extend $\sigma$ to be a map defined on $\mathbb{Q}[\sqrt{-2}] \rightarrow \mathbb{Q} \geq 0$. Show that if $\frac{\alpha}{\beta}=a+b \sqrt{-2}$ for $a, b \in \mathbb{Q}$ and $\gamma \in \mathbb{Z}[\sqrt{-2}]$ then $\sigma\left(\frac{\alpha}{\beta}-\gamma\right)<1$.
(4) Using the previous part, show that if $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ then there exists a $\gamma, \delta \in \mathbb{Z}[\sqrt{-2}]$ such that $\alpha=\gamma \beta+\delta$ where $\sigma(\delta)<\sigma(\beta)$ or $\delta=0$. (In other words show that with this $\sigma$ that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.)
(5) Prove that $\mathbb{Z}[\sqrt{-2}]$ is a UFD (note this step is trivial given earlier parts).
3. Does the proof in number 2. not work for $\mathbb{Z}[\sqrt{-3}]$ ? (Quick test, try to see if $\mathbb{Z}[\sqrt{-3}]$ contains an element with a non-unique factorization).
4. In a ring $\mathbb{Z}[\sqrt{-n}]$ for any $n \in \mathbb{N}$ let $\sigma$ be the function $\sigma(a+b \sqrt{n})=a^{2}+n b^{2}$ (as in problem 2.). Prove that the units of $\mathbb{Z}[\sqrt{n}]$ are the elements $\alpha$ where $\sigma(\alpha)=1$ (i.e. $\alpha \in \mathbb{Z}[\sqrt{-n}]$ is a unit if and only if $\sigma(\alpha)=1$ ). Conclude that in $\mathbb{Z}[\sqrt{-2}]$ the only units are $1,-1$ and that in $\mathbb{Z}[\sqrt{-1}]$ the units are $1,-1, i,-i$.
