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Fig. S1. Phylogenetic distribution of snake lineages that prey on tetrodotoxin (TTX)-bearing amphibians (colored branches and taxa) and also posses derived
amino acid replacements at sites critical to TTX ligation in the pore-forming loops (P-loops) of the skeletal muscle sodium channel (Nav1.4). The New World
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natricines Thamnophis sirtalis (red), Thamnophis atratus (light blue), and Thamnophis couchii (green) prey on Taricha newts (1–4); the Old World natricines
Rhabdophis tigrinus (bright blue) preys on the tree frog Polypedates leucomystax (5) and Amphiesma pryeri (purple) preys on the newt Cynops ensicauda (6, 7);
the neotropical dipsadine Liophis epinephelus (orange) consumes several Atelopus toads (8, 9). Phylogeny of colubroid snakes and relatives is based on re-
lationships presented in refs. 10–18. Snakes that prey on TTX-laden frogs or salamanders show derived variation in the P-loops domains DIII and DIV (colored
circles); P-loops in other domains (and other taxa) lack adaptive variation (black circles). In a few cases we were unable to obtain P-loop sequences (white
circles). Numbers of individuals sequenced (GE) and assayed for TTX resistance (PE) alongside measures of TTX resistance [50% mass-adjusted mouse units
MAMU)]. Direct measures of whole-animal resistance for this study were augmented with some of our previous data (19–21). We inferred elevated levels of
TTX resistance (↑) for A. pryeri, R. tigrinus, and L. epinephelus based on measures of TTX recorded in their respective prey: 60−7,000 mouse units (MU) of TTX
for C. ensicauda (22–25); 30−920 MU for Polypedates spp. (26); 10–100 MU for Atelopus spp. (25, 27, 28).
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Table S1. Sodium channel mutational constructs (from the literature) functionally expressed ex vivo and measured
for TTX resistance and/or Na+ conductance or Na+ selectivity

TTX ≥ WT
Conductance

≥ WT
Selectivity

≥ WT
Sodium channel
replacement Citations and notes

1 0 Y401C 1
1 1 W736C 2 (see figure 1D; conductance the same
1 0 D1532A 3 (see figure 3)
1 0 F385N 3 (see figure 2)
1 0 D400A 4 [TTX]; 5 [conductance]
1 0 E755A 4 [TTX]; 5 [conductance]
1 1 K1237A 4 [TTX]; 5 [conductance]
0 0 I757C 6 [TTX]; 7 [conductance]
0 0 M1240C 6 [TTX]; 7 [conductance]
0 0 D1241C 6 [TTX]; 7 [conductance]
1 0 W402C 6 [TTX]; 7 [conductance]
1 0 E403C 6 [TTX]; 7 [conductance]
1 0 E758C 6 [TTX]; 7 [conductance]
1 0 K1237C 6 [TTX]; 7 [conductance]
1 0 W1239C 6 [TTX]; 7 [conductance]
1 0 A1529C 6 [TTX]; 7 [conductance]
1 0 D1532C 6 [TTX]; 7 [conductance]
1 1 G1530C 6 [TTX]; 7 [conductance]
1 1 W1531C 6 [TTX]; 7 [conductance]
0 0 R379Q 8
0 0 D1426Q 8
0 0 D1426K 8
1 0 Q383E 8
1 0 Q383K 8
1 0 D384E 8
1 0 D384N 8
1 0 W386Y 8
1 0 E387Q 8
1 0 E387S 8
1 0 E387Y 8
1 0 N388R 8
1 0 Q391K 8
1 0 W943Y 8
1 0 E945K 8
1 0 K1422E 8
1 0 M1425Q 8
1 0 M1425K 8
1 0 D1426N 8
1 0 A1714E 8
1 0 D1717Q 8
1 0 D1717K 3 (see figure 3), 8
1 0 D1717N* 3 (see figure 3), 8; *here the D1568N

replacement of Th. atratus and Th. sirtalis
1 0 E942Q 8, 9
1 0 E945Q 8, 9
1 0 R395C 10
1 0 R750C 10
1 0 Y401C 1 [TTX]; 11–13 [selectivity]
1 0 Y401A 12
1 0 Y401D 12
1 0 Y401S 13
1 1 W736C 2 (see figure 5C); selectivity mostly the same,

but more sensitive to NH4
+

1 1 E942Q 9; selectivity same but only Li+ tested
1 1 E945Q 9; selectivity same but only Li+ tested
1 1 D949N 9; selectivity same but only Li+ tested
1 0 D400A 4 [TTX]; 5, 14 [selectivity]
1 0 E755A 4 [TTX]; 5, 14 [selectivity]
1 0 K1237A 4 [TTX]; 5, 14 [selectivity]
0 0 W756C 6 [TTX]; 7 (see figure 6B) [selectivity]
1 0 W1239C 6 [TTX]; 7 (see figure 6B), 15 [selectivity]
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Table S1. Cont.

TTX ≥ WT
Conductance

≥ WT
Selectivity

≥ WT
Sodium channel
replacement Citations and notes

0 1 M1240C 6 [TTX]; 7 (see figure 6B), 15 [selectivity];
selectivity mostly the same

1 0 K1237C 6 [TTX]; 7 (see figure 6B), 15, 46 [selectivity]
1 0 A1529C 6 [TTX]; 7 (see figure 6B), 15, 46 [selectivity]
1 0 W1531C 6 [TTX]; 7 (see figure 6B), 15, 46 [selectivity]
1 0 D1532C 6 [TTX]; 7 (see figure 6B), 15, 46 [selectivity]
0 1 I757C 6 [TTX]; 7 (see figure 6B), 16 [selectivity];

selectivity mostly the same
1 0 W402C 6 [TTX]; 7 (see figure 6B), 16 [selectivity]
1 0 G1530C 6 [TTX]; 7 (see figure 6B), 16 [selectivity]
1 0 E403C 6 [TTX]; 11 (see figure 4D), 16 [selectivity]
0 1 D1241C 6 [TTX]; 16 (see figure 4D), 16 [selectivity];

selectivity mostly the same
1 0 E758C 6 [TTX]; 16 (see figure 4D), 16 (see figure 3)[selectivity];

similar but significantly worse for Li+

1 0 R395C 10
1 0 R750C 10
1 1 F745C 10; selectivity mostly the same
1 0 I1532V* 17; *here the I1561V replacement of Th. sirtalis
1 0 IIDG->LVNV* 17; *here the four DIV replacements in Willow

Creek Th. sirtalis (1.4LVNL allele of ref. 18)

Replacement notation follows that of the original study. For the χ2 analyses we tallied a replacement as positive (1) if it produced an
effect as well or better than the wild type on TTX resistance (predictor variable) and either Na+ permeability or Na+ selectivity (response
variables) and as negative (0) if it produced a statistically worse effect than the wild type.
*Only two studies (3, 17) have examined some of the naturally occurring mutations in snakes for Na+ conductance or Na+ selectivity, but
these studies show that TTX-resistant mutations (or alleles) compromise sodium channel function.
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Movie S1. 3D model of the Nav1.4 outer pore showing TTX docked in the pore and adaptive replacements in TTX-resistant snakes. The movie begins with
a top-down view of the four pore loops (DI–DIV) and TTX occluding the outer pore; then the outer pore tilts forward to show angled side views of the outer
pore. Note that both TTX and Na+ enter the pore from the extracellular side of the protein (top). The structural model of the outer pore follows ref. 1.

Movie S1
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