1 Distributed Magnetization

Let us assume that we have a nucleus with a distributed moment described by
a magnetization vector M (r) and magnetic moment p related by
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The vector potential of a point dipole with magnetic moment p:
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is then generalized to
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Let us suppose that M (r) points along the z-axis and that its magnitude de-
pends only on 7. Then, u = p 2 with
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We may rewrite the vector potential as
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This can be conveniently rewritten as
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where the magnetic scalar potential is ®;(r) is defined by
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One easily shows that
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It follows that we may write the vector potential for distributed magnetization
in the form
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1.1 Uniform Distribution

If M(r) is constant inside a sphere of radius R and vanishes outside, then
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From this, it follows that
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A simple prescription to use in this case is to let
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in the point dipole formula!

1.2 Fermi Distribution
Let M (r) be described by a Fermi distribution:
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The total magnetic moment is then given by
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From Maple, we obtain
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so that the first sum becomes
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For the second integral, we obtain
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so the second sum becomes
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Combining, we find
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Making use of the fact that

and defining
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we may rewrite the expression above as
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Now, we may evaluate the factor f(r) in Eq. (5) using Maple
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Similarly, again using Maple, we find
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These expressions may be simplified somewhat to give
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Figure 1: Upper panel: f(r) and 50f(r)/r? are shown for a Fermi distribution
with ¢ = 5.748 fm and ¢t = 2.3 fm. Lower panel: g(r) and 500g(r)/r? are shown
for a Fermi distribution with ¢ = 5.748 fm and ¢t = 2.3 fm.

and

fr,r>c)=1-—

1 ar? r—c a’r r—oc a® r—c

where N is given by by
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In the upper panel of Fig. 1, we plot the magnetic dipole scale factor f(r) and
the function f(r)/r? occurring in hyperfine integrals.

2 Distributed Quadrupole Moment

Now let us suppose that the nuclear quadrupole moment is distributed over
the nucleus according to some radial distribution function p(r). To analyze the



resulting potential, we first consider a point quadrupole. The point quadrupole

potential is given by
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Since the trace of @);; vanishes, we may replace
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in the expression for the potential. It follows that the potential of a quadrupole
distributed symmetrically over the nucleus may be written
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where Q;; p(r) is the distributed quadrupole moment density. The moment is

normalized by requiring
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2.1 Uniform Distribution

Assuming that the distribution function p(r) = pg is constant over the nuclear
volume, we have
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Differentiating and dropping terms proportional to d;;, we find
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where
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2.2 Fermi Distribution

For a spherically symmetric distribution p(x), we may write
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Operating on this term with 0;0; leads to two terms, one proportional to ;z;
and one proportional to J;;. Only the former term is of interest here. We pick
out the coefficient of z;x; using
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It follows that
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The potential for the distributed moment can therefore be written
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The two screening functions f(r) and g(r) are seen to be identical, except for

the second term in Eq. (19)!
Now, let us determine g(r) for a Fermi distribution
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Carrying out the integrations in Eq. (19), we find
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In the above formulas, the normalization constant N is given by
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The functions S, (z), as before, are defined by
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It might be noted that
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For small r, one finds
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while for large r, g(r) — 1. The function g(r) is continuous at the point r = ¢.
Indeed, the two forms are analytic continuations of a single function.

In the lower panel of Fig. 1, we plot the quadrupole scale factor g(r) and the
function g(r)/r® occurring in quadrupole integrals.

The functions f(r) and g(r) for a Fermi distribution are available numerically
in the fortran subroutine nucfac.f.



