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Abstract

A scheme for direct evaluating atomic polarizabilities of atoms with
one valence electron starting from all-order SD wave functions is proposed.

1 Introduction

In this note, we consider a direct approach to evaluating the polarizability of
an atom. A similar approach could be used to determine PNC amplitudes. We
consider a atom in a state ¥,. We assume, for the present, that ¥, is an exact
wave function; later we approximate it by an SD wave function. We introduce
a field &£ directed along the z-axis. The interaction of this field with the atom
is described by the Hamiltonian

N
Heoy = —eSZzi = —eSZ zijalaj, (1)
i=1 ij

where the two forms are appropriate to first- and second-quantization, respec-
tively. The exact ground-state wave function ¥, satisfies the Schrédinger equa-
tion

(HO + V)‘Ilv =E,V,. (2)
The first-order energy shift caused by the perturbation Heyy is

E(V) = (U, |Hey| W) = 0. (3)

The fact that the first-order energy vanishes is a consequence of the odd parity
of z;. The first-order correction to the wave function satisfies the inhomogeneous
equation

(Ho+V = B,)¥) = —Hex 0, (4)



and the second-order energy is given in terms of the first-order wave function
by

Eq(;Z) = <‘I'v|Hext|‘I’1(;1)>
Z <\I/v|Hext|\I/n><\Iln|Hext|\Ilv>
n Ev_En
1
= —5628204. (5)

The above equation serves to define the atomic polarizability . From this
equation, we obtain the general quantum mechanical expression for the atomic
polarizability

In the usual approach, we determine wave functions for excited states ¥,, and
carry out the above sum over states. In the direct approach, we replace Hext —

Z and determine \111(,1) by solving
(Hy+V - E,)o = 20, . (7)
We then find a using
a=—2(T,|Z[T). (®)

There are some tricky angular momentum questions that must be addressed as
well as the unresolved question of scalar and tensor polarizabilities.

2 SD Method

One way to obtain accurate all-order wave functions is the SD method in which
single and double excitations of the Hartree-Fock wave function ®, = aj,|0) are
included to all orders in MBPT.

\Ijv - (1 + mea Gy, Qg + = Z Pmnab ain Labaa

abmn

+ mev Ay, Qy + Z Pmnva aT a]L aaav> D, . (9)

amn

Let us consider the action of the operator Z on the SD wave function ¥,. We
express the resultant wave function as

1
Zx U, = (S a;f) + Zama ajnaaa;f) + 3 Z Omnab ajnailabaaaz

am abmn

—+ E ama + E Omna amanaa

amn



+ E Omnrabe amaL j«aaabac !

abemnr

+ Z Omnrab ainailalaaab> |0) . (10)

abmnr

We find the following expressions for the excitation coefficients:

S = Zzampma (11)

Oma = Zmat Z ZmnPna — Z ZbaPmb
n b
+ Z Zbn [pmnab - pmnba] (12)
nb
Omnab = 2 ZnbPma + Z Zmr [prnab - anb]
r
+ Z Zca [pmnbc - pmncb] (13)
c
Om = Zmov — Z ZavPma + Z ZmnPnv
a n
+ Z Zan [pmn'ua - pnmva] (14)
an
Omna = ZmuvPna — ZmaPnv T Z Zmr [prnva - pnrva]
r
- ZbaPmnvb + 1 Zbv [pmnab - pmnba] (15)
b 2 b
1
Omnrabe — izmapnrcb (16)
Omnrab - izmvpnrba + ZmaPnrub - (17)

Now, we must find the corresponding expressions for (Ho + V — Ev)\Ilq(,l) and

match coefficients on left and right to obtain algebraic equations for the ex-
pansion coefficients. After these are obtained, one must consider the angular
reduction. The (JM) = (10) operator will lead to a state with angular mo-
mentum components |j, — 1| < j < j, + 1 and m = m,. I would assume
that we could drop triple excitations on the left and right of the inhomogeneous
equation.

The form of Eq. (10) dictates the structure of the corresponding expansion
for \115,1). On summing over magnetic substates, it is immediately obvious from

(11) that S = 0, simplifying somewhat the expansion of the perturbed wave
function.



3 Closed-Shell case

Let us consider first the simpler case of a closed-shell atom with no valence
electron. We assume that the unperturbed wave function is given as an SD
expansion:

1

\IIO - (1 + meaalﬂaa + 5 Z Pmnab ajnalabaa> |0> B} (18)
ma abmn

and we expand the perturbed orbital correspondingly as

1
\I/(l) = (Z Tmaajnaa + 5 Z Tmnab ajnaj;abaa> |0> . (19)
ma

abmn

We find

(Ho+V — B)g = {Z [(em = o= AB) 0 + Y Grban ot

ma bn
+ Z gmb'rw’%'rw*ab - Z gbcan%mnbc ainaa
bnr ben
1
+§ Z (em + €n —€q — €p — AE) Tmnab + Z 9edabTmnced
mnab cd
+ Z ImnrsTrsab + (Z ImnrbTra — Z JenabTme + Z gcnrb%mrac>
rs r c re
a+<b
# ()| ahatasa 0 20)
It follows that
(ea —€m + AE)Tma = ngbanTnb
bn
+ Z gmb'rw’%'rw*ab - Z gbcan%mnbc + Oma (21)
bnr ben

(ea + € —€m —€n + AE) Tmnab = Z JedabTmned Z ImnrsTrsab

cd s
- . a<b
+ (Z ImnrbTra — Z JenabTme + Z gcnrbTmrac> + < msn )
T c re
+O0mnab - (22)

Now we must look at the angular structure.



3.1 Angular Decomposition

The perturbed wave function () has angular momentum (1,0). Coupling of
particle-hole states is discussed on page 103 of the classroom notes and we follow
that discussion below.

3.1.1 Single-Excitations
We expect that the single excitation terms af a,|0) will be coupled to (1,0).
Following the notes, we find that combination

m

- IM b aq|0)

a

is a (J, M) angular momentum eigenstate. The extra factor /[J] only affects
the scale and can be dropped since the scale is determined by the inhomogeneous
terms in the equation. We make the ansatz that the coefficients of the single-
excitation terms have the form

Tma = - —2 T(m,a) , (23)
a

where T'(m,a) is independent of magnetic quantum numbers. The resulting
contribution to the wave function Y, Tmaeal,aq|0) will then automatically be
an angular momentum eigenstate.

The inhomogeneous driving term in the singles equation may be written in
the required form as

m

Oma = — — {<mIZIla> +_(mlzln)S(na)de,,

n
a

—_1)ntb ~
—Z(szHa)S’(mb)(SKMM —G—Z%(bﬂdn)&(mnab)} . (24)
b nb

3.1.2 Double Excitations

In a similar way, we can couple the two-particle two-hole state to angular mo-
mentum (JM) using

m n K
S SRR AR

- al al apag|0) . (25)
I

Again, the factor /[J][K][L] can be ignored since it merely affects scale. There



are other possibilities also, but I believe that all other couplings can be re-
duced to this one using recouping coefficients that are independent of magnetic
quantum numbers. We therefore assume that the double-excitation expansion
coefficient may be written in the form

m | JM |n
Tmnab = Z - K — L + TKL (mnab) (26)
KL b
a

If we have a specific expression for 7,,nqeb, then we can find the corresponding
expansion coefficients using the inversion formula:

Ty (mnab) = [K][L][J] > - FEEEd 4w ra (27)
v ,

Symmetry under the transformation 7,,nqb <> Tnmbe implies that
Tk, (mnab) = (—1)E K+ Ty p(nmba)

Let us represent the exchange term 7,5, in the form:

Tmnba = Z S = L + T[za{xf(mnab)’ (28)
KL b
a

then we find,

a K
TES (mnab) = Z(—l)m+”+K+R[K] [L] Z L ) Trs(mnba) . (29)
1

RS

oo 3

The above function has the symmetry property
T (mnab) = (—1)EH KT T (nmba)

Now we turn to the decomposition of o,,nqa5. We write

Omnab = Z LA — L + QKL (mnab) (30)
KL b

Using the inversion formula, we find for the leading term

ZabPma + Zmapas = 1 |Oxc0 Su1y/Tm] (n12]1b) S(ma) b,

+ 0x1 droV/[nl[1] (ml|z]la) S(nd) Ox,m, |- (31)



For the second term in 0,54 We find:

1 B -
5 Z [Zmrprnab + anprmba]

5 . K L 1 -
ey (s {5 E D Gl S man

2
rKL

v el Semi) @2

For the third term, we find:

5 3 Frcapmnes + ZebBumea]
5= Y (e {8 L elsla) Symnan
cKL

+(—1)J+K+”+b[L]{£’ " }l}<c||z||b> SK(nmca)}. (33)

3.1.3 Excited Singles Equation

Combining the above, we find that the singles coefficients satisfy

(60— em + AB)T(ma) = (m] o)
—1)n+b ~
Sl S, ~ Ol S, + 3 L Gl (rna)
n b nb

_1\n+b
Py H] o (mban)T(nb)
bn

Z %{ g 5 711 }ZL(mbnr)TKL(TLTGb)

K Lbnr
B Z (_1)m+n+a+c+L { K L 1
K Lbcn [L] @ m b

} Z1,(bean) Tk 1,(mnbc) . (34)

3.1.4 Excited Doubles Equation

We find the following contributions to doubles equations:

atbtmtn R K H
chdabTmncd_)_ Z (_1) +b+m+n+K+R+H [KHL]{ I p . }X

cd cdRSH
R K H L S H
{ . ¢ m }{ d b n }XH(cdab) Trs(mncd) . (35)

atbtmin R K H
ngnrsTrsab di Z (_1) FotmtntSELAH [K][L]{ L S 1 }X

mn mnRSH



(2 2HE 2 o e

K L 1
3 gmrra = S0P | { Ll }XL<mnrb> T(ra). (37)

K L 1
- chnabTmc — Z a+m+L { ¢ m a }XL(Cnab) T(mc) . (38)

L+7’+c ~
Z1,(enrb) Tk, (mrac) , (39)

Z gchbTmTac - = Z

KLre

where
eXC

Trx 1 (mnab) = Tx . (mnab) — TS (mnab) .
Putting all of this together, we may write

(€a + € — €m — € + AE) Ti,(mnab) =

K0 011 Orpra V [MI[1] (n]|2][b) S(ma)

——Z v {0 L Ll Su(mab)

r m a
v { K L1 -
__Z 1)K+a+ { o m }<c||z||a> S (mmnch)
R K H
_ Z _1 a+b+m+n+K+R+H [KHL]{ }
cdRSH L s 1
R K H L S H
{ e ¢ m }{ d b n }XH(cdab) Trs(mncd)
— Z (_1)a+b+m+n+S+L+H [K][L]{f IS{ Ii[ }

mnRSH

} X (mnrs) Trs(rsab)

—_—— o
S

+ Z(_l)a+m+K [K]{ I: s ;L (mnrd) T(ra)
+ Z( 1)a+m+L [K] { Icf fr; i }XL(cna,b) T(mc)
re m<<n
- Z Dl Zr,(enrb) Txr(mrac) | + (_1)K+L+1[ 0 b
KLrc KoL

(40)



3.2 Dipole Matrix Element

Now, we are faced with the problem of evaluating the dipole matrix element
M = (| Z|T M), We write:

(To|Z| W) = <0

1+ Z p:naa’jzam + Z p:nnabalaza”am‘| x
ma

mnab
Z Zij ajaj lz Tre aiac + Z Trsed aialadacl 0> . (41)
ij rc rscd

We break this up into the sum of seven terms: M = 22:1 M, where

My = ) T (42)
cr
My = Zp:,mzmrTra (43)
amr
Mz = _Zp:nazcaTmc (44)
acm
My = Z P:,mzbn%mnab (45)
abmn
Ms = Z ﬁ:nnabzmaTnb (46)
abmn
1 . N
Mﬁ = 5 Z PmmnabcmrTrnab (47)
abmnr
1 - -
M7 = _5 Z p:nnabZCGTman' (48)
abecmn

Additionally, the wave function ¥y must be normalized. Since the matrix el-
ement depends quadratically on ¥y, the properly normalized matrix element
is

M= LM
(Wo|Wo)
One also finds the following expression for the wave function norm:
* 1 * ~
<‘IIO|\I/0> =1+ meapma + D) Z PmnabPmnab- (49)
ma mnab

3.2.1 Angular Decomposition of Matrix Element

Substituting the previously discussed angular momentum expansions for the
perturbed and unperturbed wave functions into the expressions for the matrix
element given above, we find

My = ﬁszncmrc) (50)

cr



A@:-%Zammwmeww> (51)

My = = 3 8(ma) by, (o) Tl (52)
My = bE: %S(ma)&K,NLM(mz||b>T01(mnab) (53)
Ms = —ﬁZgl(mnab)<m|\z||a>T(nb) (54)
abmn

1 (-)m et K L 1
Mo =3 2 SR 9)
S1.(mnab) (m||z||r) Tk 1.(rnab) (56)

1 (-n)ym-etK (g L 1
M7 N _iach;KL [1][L] { a ¢ m }X (57)
S (mnab) (c||z||a) Tk (mncb). (58)

The angular-momentum decomposition of the wave function norm is also
easily obtained as

<\I/0|\I/0>:1+Z[a]5(ma,)26,€m%+% ) ﬁS’L(mnab)SL(mnab). (59)

mmnabL

3.2.2 Lowest-Order Perturbation Theory

Let us consider the MBPT expansion of M. From the basic equations, it is clear
that in lowest order only the single-excitation contribution to the perturbed wave
function survives. Moreover,

(mlz]|a)

T (ma) = =3 F
a m

(60)

In lowest order, only M; contributes to the matrix element. Therefore,

MO — [_1] ;<r|\z||c> TO(rc) = ﬁ; % ' (o1

It follows that the polarizability is given in lowest order by

2 (rllzlle)?
0) _ = IR lod | /A
@ S;GT—GC—AE’ (62)

which is , aside from the AFE in the denominator, just the HF expression for
the polarizability of a closed-shell atom.
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