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Abstract

A scheme for direct evaluating atomic polarizabilities of atoms with
one valence electron starting from all-order SD wave functions is proposed.

1 Introduction

In this note, we consider a direct approach to evaluating the polarizability of
an atom. A similar approach could be used to determine PNC amplitudes. We
consider a atom in a state Ψv. We assume, for the present, that Ψv is an exact
wave function; later we approximate it by an SD wave function. We introduce
a field E directed along the z-axis. The interaction of this field with the atom
is described by the Hamiltonian

Hext = −eE
N∑
i=1

zi = −eE
∑
ij

zija
†
iaj , (1)

where the two forms are appropriate to first- and second-quantization, respec-
tively. The exact ground-state wave function Ψv satisfies the Schrödinger equa-
tion

(H0 + V )Ψv = EvΨv. (2)

The first-order energy shift caused by the perturbation Hext is

E(1)v = 〈Ψv|Hext|Ψv〉 = 0. (3)

The fact that the first-order energy vanishes is a consequence of the odd parity
of zi. The first-order correction to the wave function satisfies the inhomogeneous
equation

(H0 + V − Ev)Ψ(1)v = −HextΨv, (4)
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and the second-order energy is given in terms of the first-order wave function
by

E(2)v = 〈Ψv|Hext|Ψ(1)v 〉
=

∑
n

〈Ψv|Hext|Ψn〉〈Ψn|Hext|Ψv〉
Ev − En

= −1
2
e2E2α. (5)

The above equation serves to define the atomic polarizability α. From this
equation, we obtain the general quantum mechanical expression for the atomic
polarizability

α = 2
∑
n

〈Ψv|Z|Ψn〉〈Ψn|Z|Ψv〉
En − Ev . (6)

In the usual approach, we determine wave functions for excited states Ψn and
carry out the above sum over states. In the direct approach, we replace Hext →
Z and determine Ψ(1)v by solving

(H0 + V − Ev)Ψ(1)v = −ZΨv . (7)

We then find α using
α = −2〈Ψv|Z|Ψ(1)v 〉 . (8)

There are some tricky angular momentum questions that must be addressed as
well as the unresolved question of scalar and tensor polarizabilities.

2 SD Method

One way to obtain accurate all-order wave functions is the SD method in which
single and double excitations of the Hartree-Fock wave function Φv = a

†
v|0〉 are

included to all orders in MBPT.

Ψv =

(
1 +

∑
am

ρma a
†
maa +

1

2

∑
abmn

ρmnab a
†
ma
†
nabaa

+
∑
m

ρmv a
†
mav +

∑
amn

ρmnva a
†
ma
†
naaav

)
Φv . (9)

Let us consider the action of the operator Z on the SD wave function Ψv. We
express the resultant wave function as

Z ×Ψv =
(
S a†v +

∑
am

σma a
†
maaa

†
v +
1

2

∑
abmn

σmnab a
†
ma
†
nabaaa

†
v

+
∑
m

σm a
†
m +

∑
amn

σmna a
†
ma
†
naa
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+
∑
abcmnr

σmnrabc a
†
ma
†
na
†
raaabaca

†
v

+
∑
abmnr

σmnrab a
†
ma
†
na
†
raaab

)
|0〉 . (10)

We find the following expressions for the excitation coefficients:

S =
∑
am

zamρma (11)

σma = zma +
∑
n

zmnρna −
∑
b

zbaρmb

+
∑
nb

zbn [ρmnab − ρmnba] (12)

σmnab = 2 znbρma +
∑
r

zmr [ρrnab − ρnrab]

+
∑
c

zca [ρmnbc − ρmncb] (13)

σm = zmv −
∑
a

zavρma +
∑
n

zmnρnv

+
∑
an

zan [ρmnva − ρnmva] (14)

σmna = zmvρna − zmaρnv +
∑
r

zmr [ρrnva − ρnrva]

−
∑
b

zbaρmnvb +
1

2

∑
b

zbv [ρmnab − ρmnba] (15)

σmnrabc =
1

2
zmaρnrcb (16)

σmnrab =
1

2
zmvρnrba + zmaρnrvb . (17)

Now, we must find the corresponding expressions for (H0 + V − Ev)Ψ(1)v and
match coefficients on left and right to obtain algebraic equations for the ex-
pansion coefficients. After these are obtained, one must consider the angular
reduction. The (JM) = (10) operator will lead to a state with angular mo-
mentum components |jv − 1| ≤ j ≤ jv + 1 and m = mv. I would assume
that we could drop triple excitations on the left and right of the inhomogeneous
equation.
The form of Eq. (10) dictates the structure of the corresponding expansion

for Ψ
(1)
v . On summing over magnetic substates, it is immediately obvious from

(11) that S = 0, simplifying somewhat the expansion of the perturbed wave
function.
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3 Closed-Shell case

Let us consider first the simpler case of a closed-shell atom with no valence
electron. We assume that the unperturbed wave function is given as an SD
expansion:

Ψ0 =

(
1 +

∑
ma

ρmaa
†
maa +

1

2

∑
abmn

ρmnab a
†
ma
†
nabaa

)
|0〉 , (18)

and we expand the perturbed orbital correspondingly as

Ψ(1) =

(∑
ma

τmaa
†
maa +

1

2

∑
abmn

τmnab a
†
ma
†
nabaa

)
|0〉 . (19)

We find

(H0 + V − E)Ψ(1) =
{∑
ma

[
(εm − εa −∆E)τma +

∑
bn

g̃mbanτnb

+
∑
bnr

gmbnr τ̃nrab −
∑
bcn

gbcanτ̃mnbc

]
a†maa

+
1

2

∑
mnab

[
(εm + εn − εa − εb −∆E) τmnab +

∑
cd

gcdabτmncd

+
∑
rs

gmnrsτrsab +

(∑
r

gmnrbτra −
∑
c

gcnabτmc +
∑
rc

g̃cnrbτ̃mrac

)

+

(
a↔ b
m↔ n

)]
a†ma

†
nabaa

}
|0〉 . (20)

It follows that

(εa − εm +∆E)τma =
∑
bn

g̃mbanτnb

+
∑
bnr

gmbnr τ̃nrab −
∑
bcn

gbcanτ̃mnbc + σma (21)

(εa + εb − εm − εn +∆E) τmnab =
∑
cd

gcdabτmncd +
∑
rs

gmnrsτrsab

+

(∑
r

gmnrbτra −
∑
c

gcnabτmc +
∑
rc

g̃cnrbτ̃mrac

)
+

(
a↔ b
m↔ n

)

+σmnab . (22)

Now we must look at the angular structure.
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3.1 Angular Decomposition

The perturbed wave function Ψ(1) has angular momentum (1,0). Coupling of
particle-hole states is discussed on page 103 of the classroom notes and we follow
that discussion below.

3.1.1 Single-Excitations

We expect that the single excitation terms a†maa|0〉 will be coupled to (1,0).
Following the notes, we find that combination

6− JM

m

a

a†maa|0〉

is a (J,M) angular momentum eigenstate. The extra factor
√
[J ] only affects

the scale and can be dropped since the scale is determined by the inhomogeneous
terms in the equation. We make the ansatz that the coefficients of the single-
excitation terms have the form

τma =
6− JM

m

a

T (m, a) , (23)

where T (m, a) is independent of magnetic quantum numbers. The resulting
contribution to the wave function

∑
ma τmaa

†
maa|0〉 will then automatically be

an angular momentum eigenstate.
The inhomogeneous driving term in the singles equation may be written in

the required form as

σma =
6− 10

m

a

{
〈m‖z‖a〉+

∑
n

〈m‖z‖n〉S(na)δκnκa

−
∑
b

〈b‖z‖a〉S(mb)δκbκm +
∑
nb

(−1)n+b
[1]

〈b‖z‖n〉S̃1(mnab)
}
. (24)

3.1.2 Double Excitations

In a similar way, we can couple the two-particle two-hole state to angular mo-
mentum (JM) using

6− K

m

a

6− L

n

b

?

?
− JM

K

L

a†ma
†
nabaa|0〉 . (25)

Again, the factor
√
[J ][K][L] can be ignored since it merely affects scale. There
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are other possibilities also, but I believe that all other couplings can be re-
duced to this one using recouping coefficients that are independent of magnetic
quantum numbers. We therefore assume that the double-excitation expansion
coefficient may be written in the form

τmnab =
∑
KL

6− K

m

a

�� 6
+

L

n

b

JM

− TKL(mnab) (26)

If we have a specific expression for τmnab, then we can find the corresponding
expansion coefficients using the inversion formula:

TKL(mnab) = [K][L][J ]
∑
mmmn
mamb

6− K

m

a

�� 6
+

L

n

b

JM

− τmnab . (27)

Symmetry under the transformation τmnab ↔ τnmba implies that
TKL(mnab) = (−1)L+K+1 TLK(nmba) .

Let us represent the exchange term τmnba in the form:

τmnba =
∑
KL

6− K

m

a

�� 6
+

L

n

b

JM

− T excKL(mnab), (28)

then we find,

T excKL(mnab) =
∑
RS

(−1)m+n+K+R[K][L]


a m K
n b L
S R 1


TRS(mnba) . (29)

The above function has the symmetry property

T excKL(mnab) = (−1)L+K+1 T excLK(nmba) .
Now we turn to the decomposition of σmnab. We write

σmnab =
∑
KL

6− K

m

a

�� 6
+

L

n

b

JM

− QKL(mnab) (30)

Using the inversion formula, we find for the leading term

znbρma + zmaρnb → δJ1
[
δK0 δL1

√
[m][1] 〈n‖z‖b〉 S(ma) δκmκa

+ δK1 δL0
√
[n][1] 〈m‖z‖a〉 S(nb) δκnκb

]
. (31)
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For the second term in σmnab we find:

1

2

∑
r

[zmrρ̃rnab + znrρ̃rmba]

→ δJ1
2

∑
rKL

[
(−1)L+J+a+m[K]

{
K L 1
r m a

}
〈m||z||r〉 S̃L(rnab)

+ (−1)L+n+b[L]
{
L K 1
r n b

}
〈n||z||r〉 S̃K(rmba)

]
. (32)

For the third term, we find:

−1
2

∑
c

[zcaρ̃mncb + zcbρ̃nmca]

→ −δJ1
2

∑
cKL

[
(−1)K+a+m[K]

{
K L 1
c a m

}
〈c||z||a〉 S̃L(mncb)

+ (−1)J+K+n+b[L]
{
L K 1
c b n

}
〈c||z||b〉 S̃K(nmca)

]
. (33)

3.1.3 Excited Singles Equation

Combining the above, we find that the singles coefficients satisfy

(εa − εm +∆E)T (ma) = 〈m‖z‖a〉
+
∑
n

〈m‖z‖n〉S(na)δκnκa −
∑
b

〈b‖z‖a〉S(mb)δκbκm +
∑
nb

(−1)n+b
[1]

〈b‖z‖n〉S̃1(mnab)

+
∑
bn

(−1)n+b
[1]

Z1(mban)T (nb)

−
∑
KLbnr

(−1)m+r+a+b+K
[L]

{
K L 1
m a n

}
ZL(mbnr)TKL(nrab)

−
∑
KLbcn

(−1)m+n+a+c+L
[L]

{
K L 1
a m b

}
ZL(bcan)TKL(mnbc) . (34)

3.1.4 Excited Doubles Equation

We find the following contributions to doubles equations:∑
cd

gcdabτmncd → −
∑
cdRSH

(−1)a+b+m+n+K+R+H [K][L]
{
R K H
L S 1

}
×

{
R K H
a c m

}{
L S H
d b n

}
XH(cdab) TRS(mncd) . (35)

∑
mn

gmnrsτrsab → −
∑

mnRSH

(−1)a+b+m+n+S+L+H [K][L]
{
R K H
L S 1

}
×
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{
R K H
m r a

}{
L S H
s n b

}
XH(mnrs) TRS(rsab) . (36)

∑
r

gmnrbτra →
∑
r

(−1)a+m+K [K]
{
K L 1
r a m

}
XL(mnrb) T (ra) . (37)

−
∑
c

gcnabτmc →
∑
c

(−1)a+m+L [K]
{
K L 1
c m a

}
XL(cnab) T (mc) . (38)

∑
rc

g̃cnrbτ̃mrac → −
∑
KLrc

(−1)L+r+c
[L]

ZL(cnrb) T̃KL(mrac) , (39)

where
T̃KL(mnab) = TKL(mnab)− T excKL(mnab) .

Putting all of this together, we may write

(εa + εb − εm − εn +∆E) TKL(mnab) =[
δK0 δL1 δκmκa

√
[m][1] 〈n‖z‖b〉 S(ma)

−1
2

∑
r

(−1)L+a+m[K]
{
K L 1
r m a

}
〈m||z||r〉 S̃L(rnab)

−1
2

∑
c

(−1)K+a+m[K]
{
K L 1
c a m

}
〈c||z||a〉 S̃L(mncb)

−
∑
cdRSH

(−1)a+b+m+n+K+R+H [K][L]
{
R K H
L S 1

}
{
R K H
a c m

}{
L S H
d b n

}
XH(cdab) TRS(mncd)

−
∑

mnRSH

(−1)a+b+m+n+S+L+H [K][L]
{
R K H
L S 1

}
{
R K H
m r a

}{
L S H
s n b

}
XH(mnrs) TRS(rsab)

+
∑
r

(−1)a+m+K [K]
{
K L 1
r a m

}
XL(mnrb) T (ra)

+
∑
c

(−1)a+m+L [K]
{
K L 1
c m a

}
XL(cnab) T (mc)

−
∑
KLrc

(−1)L+r+c
[L]

ZL(cnrb) T̃KL(mrac)

]
+ (−1)K+L+1

[
m↔ n
a↔ b
K ↔ L

]
.

(40)
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3.2 Dipole Matrix Element

Now, we are faced with the problem of evaluating the dipole matrix element
M = 〈Ψ0|Z|Ψ(1)〉. We write:

〈Ψ0|Z|Ψ(1)〉 =
〈
0

∣∣∣∣∣
[
1 +

∑
ma

ρ∗maa
†
aam +

∑
mnab

ρ∗mnaba
†
aa
†
banam

]
×

∑
ij

zij a
†
iaj

[∑
rc

τrc a
†
rac +

∑
rscd

τrscd a
†
ra
†
sadac

]∣∣∣∣∣∣ 0
〉
. (41)

We break this up into the sum of seven terms: M =∑7k=1Mk, where

M1 =
∑
cr

zcrτrc (42)

M2 =
∑
amr

ρ∗mazmrτra (43)

M3 = −
∑
acm

ρ∗mazcaτmc (44)

M4 =
∑
abmn

ρ∗mazbnτ̃mnab (45)

M5 =
∑
abmn

ρ̃∗mnabzmaτnb (46)

M6 =
1

2

∑
abmnr

ρ̃∗mnabzmrτ̃rnab (47)

M7 = −1
2

∑
abcmn

ρ̃∗mnabzcaτ̃mncb. (48)

Additionally, the wave function Ψ0 must be normalized. Since the matrix el-
ement depends quadratically on Ψ0, the properly normalized matrix element
is

M =
∑
kMk

〈Ψ0|Ψ0〉 .
One also finds the following expression for the wave function norm:

〈Ψ0|Ψ0〉 = 1 +
∑
ma

ρ∗maρma +
1

2

∑
mnab

ρ∗mnabρ̃mnab. (49)

3.2.1 Angular Decomposition of Matrix Element

Substituting the previously discussed angular momentum expansions for the
perturbed and unperturbed wave functions into the expressions for the matrix
element given above, we find

M1 =
1

[1]

∑
cr

〈r‖z‖c〉T (rc) (50)
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M2 =
1

[1]

∑
amr

S(ma) δκmκa〈r‖z‖m〉T (ra) (51)

M3 = − 1
[1]

∑
acm

S(ma) δκmκa〈a‖z‖c〉T (mc) (52)

M4 =
∑
abmn

√
[m]

[1]3
S(ma) δκmκa〈n‖z‖b〉 T̃01(mnab) (53)

M5 = − 1
[1]2

∑
abmn

S̃1(mnab) 〈m‖z‖a〉T (nb) (54)

M6 =
1

2

∑
abmnrKL

(−1)m−a+L
[1][L]

{
K L 1
m r a

}
× (55)

S̃L(mnab) 〈m‖z‖r〉 T̃KL(rnab) (56)

M7 = −1
2

∑
abcmnKL

(−1)m−a+K
[1][L]

{
K L 1
a c m

}
× (57)

S̃L(mnab) 〈c‖z‖a〉 T̃KL(mncb). (58)

The angular-momentum decomposition of the wave function norm is also
easily obtained as

〈Ψ0|Ψ0〉 = 1 +
∑
ma

[a]S(ma)2δκmκa +
1

2

∑
mnabL

1

[L]
S̃L(mnab)SL(mnab). (59)

3.2.2 Lowest-Order Perturbation Theory

Let us consider the MBPT expansion ofM. From the basic equations, it is clear
that in lowest order only the single-excitation contribution to the perturbed wave
function survives. Moreover,

T (0)(ma) =
〈m‖z‖a〉

εa − εm +∆E . (60)

In lowest order, onlyM1 contributes to the matrix element. Therefore,

M(0) =
1

[1]

∑
cr

〈r‖z‖c〉T (0)(rc) = 1
[1]

∑
cr

〈r‖z‖c〉2
εc − εr +∆E . (61)

It follows that the polarizability is given in lowest order by

α(0) =
2

3

∑
cr

〈r‖z‖c〉2
εr − εc −∆E , (62)

which is , aside from the ∆E in the denominator, just the HF expression for
the polarizability of a closed-shell atom.
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