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Abstract

This is a note on the setup of an electron EDM calculation and Schiff’s
Theorem.

1 Basic Relations

The well-known relativistic interaction of the electron’s anomolous magnetic
moment du with a magnetic field B is given by

H;=—6u 3% - B.

If we now assume that the electron has an electric dipole moment (EDM) d, the
corresponding relativistic interaction with an electric field E is given by

H =-dBX-E.

This term is obviously rotationaly invariant and therefore conserves angular
momentum; however, it violates both parity and time-reversal symmetry. 3 is
even and F is odd under parity; whereas, ¥ is odd and F is even under time
reversal. In an external field E®**, the many-body Hamiltonian for electrons
(charge e and EDM d) is,
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H = Z[ho(i)+vnuc(i)]+;%:;dz;@_zi,E;m
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is the electric field at the ith electron. The terms on the first line of Eq. (1)
give the modified many-electron Hamiltonian in the absence of external fields,



while those on the second line describe the interaction of the atomic electrons
with an external electric field.

For an external electric field of strength E in the z direction, the atom-field
interaction energy of an atom in a state v with projection m,,is
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This equatiom serves to define the atomic dipole moment D. Thus

D= <7}jv Z{ezi—f—dﬁi Zgi] vjv>. (2)
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The first term in this expression vanishes when evaluated with wave functions
of the unperturbed Hamiltonian because of parity conservation. If we expand
the wave function perturbatively, keeping terms of order d, we find that D =
DO 4+ DM with

D(O) = d <1)jv| Z,@Z 2311 |’Ujv > (3)
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In the second term, we replace V; — ip; to find
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In this expression, we may replace V = H — Hy where

Hy :Z[caj-pj—kﬂmcﬂ.
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The part of D™ from H may be evaluated using completeness:
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From this, it follows that the sum D(® —i—DC(Ll) = 0. Therefore, the atomic dipole
moment reduces to
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One can simplify this expression using
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We are thereby led to introduce the effective (one-particle) edm Hamiltonian
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Heqm = —2idc ZIﬁ ﬁj (75)] = Hidm .
J

The expression for the atomic dipole moment then takes the form

UJU|Z|n n|Hedrn ‘/Ujv> <vjv|Hedm |TL> <TL‘Z |Ujv>
D= Z E,—E, +2 E,— E, (7
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where

Since Hoqn, is Hermetian, we may write

(vju|ZIn) (n|Heam |vju)
22 E,—E, :

It is worth mentioning that if we replace 83 by ¥ in Eq. (6), which is per-
missable in nonrelativistic cases, we obtain {E -p, Hy| = 0. Thus, in the

nonrelativistic limit, D = 0. This is a well-known result referred to as Schiff’s
theorem.

2 Lowest Approximation

In the lowest order many-body perturbation theory, one may show that for an
atom with one electron beyond closed shells,

QZ (viv|z|n) (n)hedm|viv) 49 Z {(a]z|n) <n|hedm|a>

n>f Cv = €n a, n>f €a = €n
n#v
where heqm = —2idc 375 p®. Sums over closed subshells n in the second term

vanish. Therefore, only those terms with n in the partially occupied valence
subshell contribute. Summing n over the entire valence subshell and subtracting
the term with n = v leads to
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Since z and heqpm are Hermetian operators, we may re-express the above equation
in the form:

UJ’IJ|Z| |hedm|vjv>
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where i ranges over all possible one-electron states, both core states a and virtual
ststes n.

2.1 Angular Decomposition

We may write
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Table 1: Dirac-Hartree-Fock and RPA calculations of shielding factors D/d for
alkali-metal atoms and Au.

Atom State Z DPHF/q  DRPA/d DRFA, /d
Li 25172 3 0.00297  0.00412  0.00409
Na 3s12 11 0.241 0.327 0.324

K 4sy, 19 2.00 2.82 2.71
Rb  5syp 37  19.6 26.6 25.3
Cs  6syp 55 940 126.6 117.9

Au  6sy12 79 326.7 339.6 256.0

The matrix element of heqp, is therefore
(nmyp|heam|viv) = 2¢d by, —r,Om,j, (1llhekl|v), (9)
with

(n]|heg||v) = 2¢d x
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The expression for the atomic dipole moment is therefore

_ Jv (wl|z[) (illheglv)
D_Q\/<2jv+1>(jv+1) e 13)

In Table 1, we present DHF values of the dipole enhancement factor for
alkali-metal atoms. The forth column contains values DEFA /d with RPA correc-
tions to matrix elements of Aeqm and the fifth column contains values DF 2, /d
that include RPA corrections to matrix elements of both heqm and z.




