Free-Particle Continuum Density

W. R. Johnson

March 5, 2003

1 Bound and Continuum States

Let us suppose that the orbital wave functions for an electron in a potential $V(r)$ are given by

$$
\begin{align*}
\phi_{n l m \sigma}(\vec{r}) & =\frac{1}{r} P_{n l}(r) Y_{l m}(\hat{r}) \chi_{\sigma} & & \text { bound } \tag{1}\\
\phi_{\epsilon l m \sigma}(\vec{r}) & =\frac{1}{r} P_{\epsilon l}(r) Y_{l m}(\hat{r}) \chi_{\sigma} & & \text { continuum } \tag{2}
\end{align*}
$$

where the radial functions are normalized as

$$
\begin{align*}
\int_{0}^{\infty} d r P_{n l}(r) P_{n^{\prime} l}(r) & =\delta_{n n^{\prime}} \tag{3}\\
\int_{0}^{\infty} d r P_{\epsilon l}(r) P_{\epsilon^{\prime} l}(r) & =\delta\left(\epsilon-\epsilon^{\prime}\right) \tag{4}
\end{align*}
$$

For the free-particle case, we may write

$$
\begin{equation*}
P_{\epsilon l}(r)=\sqrt{\frac{2 m}{\pi p}} p r j_{l}(p r) \tag{5}
\end{equation*}
$$

with $p=\sqrt{2 m \epsilon}$.
Now let us consider the density, $\rho(\vec{r})$ assumed to be spherically symmetric $\rho(\vec{r}) \equiv \rho(r)$. The contribution to the density from bound states is

$$
\begin{equation*}
4 \pi r^{2} \rho_{\text {bound }}(r)=\sum_{n l} \frac{2(2 l+1)}{1+e^{\left(\epsilon_{n l}-\mu\right) / k T}} P_{n l}^{2}(r), \tag{6}
\end{equation*}
$$

and similarly, the contribution from continuum states is

$$
\begin{equation*}
4 \pi r^{2} \rho_{\text {contin }}(r)=\sum_{l} \int_{0}^{\infty} d \epsilon \frac{2(2 l+1)}{1+e^{(\epsilon-\mu) / k T}} P_{\epsilon l}^{2}(r) . \tag{7}
\end{equation*}
$$

1.1 Free-Particle Continuum

Assuming that the continuum wave functions are approximated as free-particle states, them we may write

$$
\begin{align*}
4 \pi r^{2} \rho_{\text {contin }}(r) & \approx \sum_{l} \int_{0}^{\infty} d \epsilon \frac{2(2 l+1)}{1+e^{(\epsilon-\mu) / k T}} \frac{2 m(p r)^{2}}{p \pi} j_{l}^{2}(p r) \tag{8}\\
& =\frac{4 m r^{2}}{\pi} \int_{0}^{\infty} p d \epsilon \frac{1}{1+e^{(\epsilon-\mu) / k T}} \sum_{l}(2 l+1) j_{l}^{2}(p r) \tag{9}\\
& =\frac{2 r^{2}(2 m k T)^{3 / 2}}{\pi} \int_{0}^{\infty} y^{1 / 2} d y \frac{1}{1+e^{y-x}} \tag{10}
\end{align*}
$$

where $y=\epsilon / k T$ and $x=\mu / k T$, and where we have used the identity

$$
\begin{equation*}
\sum_{l}(2 l+1) j_{l}^{2}(p r)=1 \tag{11}
\end{equation*}
$$

This corresponds to a constant density

$$
\begin{equation*}
\rho_{\text {contin }}(r)=\frac{(2 m k T)^{3 / 2}}{2 \pi^{2}} I_{1 / 2}(x), \tag{12}
\end{equation*}
$$

with $x=\mu / k T$. The Thomas-Fermi expression for the density is Eq. (12) with

$$
\begin{equation*}
x \rightarrow x(r)=[\mu-V(r)] / k T . \tag{13}
\end{equation*}
$$

Blenski and Ishikawa [2] recommend that one evaluate the continuum contribution as
$\rho_{\text {contin }}=\frac{1}{4 \pi r^{2}} \sum_{l} \int_{0}^{\infty} d \epsilon \frac{2(2 l+1)}{1+e^{(\epsilon-\mu) / k T}}\left[P_{\epsilon l}^{2}(r)-P_{\epsilon l}^{2}\right.$ free $\left.(r)\right]+\frac{(2 m k T)^{3 / 2}}{2 \pi^{2}} I_{1 / 2}(x)$.
They assert that the partial wave sum in the first term in this expression converges rapidly.

1.2 Nonrelativistic Problem

Let's start with the radial Schrödinger equation

$$
\begin{equation*}
\frac{d^{2} P_{l}}{d r^{2}}+2\left(E-V(r)-\frac{l(l+1)}{2 r^{2}}\right) P_{l}=0 \tag{15}
\end{equation*}
$$

In the field-free region, $V=0$, we may rewrite this equation as

$$
\begin{equation*}
\frac{d^{2} P_{l}}{d r^{2}}+\left(p^{2}-\frac{l(l+1)}{r^{2}}\right) P_{l}=0 \tag{16}
\end{equation*}
$$

where we express the energy in terms of momentum through $E=p^{2} / 2$. Two independent solutions to this equation are $P_{l}(r)=p r j_{l}(p r)$ and $P_{l}(r)=p r y_{l}(p r)$,
where j_{l} and y_{l} are spherical Bessel and Hankel functions, respectively [1]. The general solution to the radial equation in the field-free region may be written as a linear combination of the two independent solutions:

$$
\begin{equation*}
P_{l}(r)=\mathcal{N}_{l}\left[p r j_{l}(p r) \cos \delta_{l}-p r y_{l}(p r) \sin \delta_{l}\right] . \tag{17}
\end{equation*}
$$

This solution has the asymptotic limit

$$
\begin{equation*}
\lim _{r \rightarrow \infty} P_{l}(r)=\mathcal{N}_{l} \cos \left(p r+\delta_{l}-(l+1) \frac{\pi}{2}\right) \tag{18}
\end{equation*}
$$

and leads to the interpretation of δ_{l} as the continuum wave phase shift.
We integrate the radial Schrödinger equation outward from the origin to the cavity boundary $r=R$ and match the solution and it's derivative to the corresponding free-particle radial wave function and derivative:

$$
\begin{align*}
P_{l}(R) & =\mathcal{N}_{l}\left[x j_{l}(x) \cos \delta_{l}-x y_{l}(x) \sin \delta_{l}\right] \tag{19}\\
\frac{1}{p} Q_{l}(R) & =\mathcal{N}_{l}\left[\frac{d\left[x j_{l}(x)\right]}{d x} \cos \delta_{l}-\frac{d\left[x y_{l}(x)\right]}{d x} \sin \delta_{l}\right] \tag{20}
\end{align*}
$$

where $x=p R$. Solving, we find

$$
\begin{align*}
\mathcal{N}_{l} \sin \delta_{l} & =\frac{d\left[x j_{l}(x)\right]}{d x} P_{l}(R)-x j_{l}(x) \frac{1}{p} Q_{l}(R) \tag{21}\\
\mathcal{N}_{l} \cos \delta_{l} & =\frac{d\left[x y_{l}(x)\right]}{d x} P_{l}(R)-x y_{l}(x) \frac{1}{p} Q_{l}(R) \tag{22}
\end{align*}
$$

where we have made use of the identity

$$
\begin{equation*}
x j_{n}(x) \frac{d\left[x y_{n}(x)\right]}{d x}-x y_{n}(x) \frac{d\left[x j_{n}(x)\right]}{d x}=1 . \tag{23}
\end{equation*}
$$

If we define

$$
\begin{align*}
S_{l} & =\frac{d\left[x j_{l}(x)\right]}{d x} P_{l}(R)-x j_{l}(x) \frac{1}{p} Q_{l}(R) \\
& =(l+1) j_{l}(x) P_{l}(R)-x\left[j_{l+1}(x) P_{l}(R)+j_{l}(x) \frac{1}{p} Q_{l}(R)\right] \tag{24}\\
C_{l} & =\frac{d\left[x y_{l}(x)\right]}{d x} P_{l}(R)-x y_{l}(x) \frac{1}{p} Q_{l}(R) \\
& =(l+1) y_{l}(x) P_{l}(R)-x\left[y_{l+1}(x) P_{l}(R)+y_{l}(x) \frac{1}{p} Q_{l}(R)\right], \tag{25}
\end{align*}
$$

where we have used the identity

$$
\frac{d\left[x f_{l}(x)\right]}{d x}=(l+1) f_{l}(x)-x f_{l+1}(x)
$$

which holds for both $f_{l}(x)=j_{l}(x)$ and $f_{l}(x)=y_{l}(x)$. We find

$$
\begin{equation*}
\tan \delta_{l}=\frac{S_{l}}{C_{l}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}_{l}=\sqrt{S_{l}^{2}+C_{l}^{2}} \tag{27}
\end{equation*}
$$

The later result can be used to insure that the radial wave function is properly normalized on the energy scale. To do this, we multiply $P_{l}(r)$ and $Q_{l}(r)$ for all r by the factor

$$
A=\frac{1}{\mathcal{N}_{l}} \sqrt{\frac{2}{\pi p}} .
$$

The resulting wave function has the desired asymptotic limit

$$
\begin{equation*}
\lim _{r \rightarrow \infty} P_{l}(r)=\sqrt{\frac{2}{\pi p}} \cos \left(p r+\delta_{l}-(l+1) \frac{\pi}{2}\right) \tag{28}
\end{equation*}
$$

1.3 Relativistic Problem

Let's start with the radial Dirac equations

$$
\begin{align*}
\left(V+m c^{2}\right) G_{\kappa}+c\left(\frac{d}{d r}-\frac{\kappa}{r}\right) F_{\kappa} & =E G_{\kappa} \tag{29}\\
-c\left(\frac{d}{d r}+\frac{\kappa}{r}\right) G_{\kappa}+\left(V-m c^{2}\right) F_{\kappa} & =E F_{\kappa} \tag{30}
\end{align*}
$$

In the field-free region, $V=0$, we may express F_{κ} in terms of G_{κ} through the relation

$$
\begin{equation*}
F_{\kappa}=-\frac{c}{E+m c^{2}}\left(\frac{d}{d r}+\frac{\kappa}{r}\right) G_{\kappa} . \tag{31}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
-\frac{c^{2}}{E+m c^{2}}\left(\frac{d}{d r}-\frac{\kappa}{r}\right)\left(\frac{d}{d r}+\frac{\kappa}{r}\right) G_{\kappa}-\left(E-m c^{2}\right) G_{\kappa}=0, \tag{32}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left(\frac{d^{2}}{d r^{2}}-\frac{\kappa(\kappa+1)}{r^{2}}\right) G_{\kappa}+p^{2} G_{\kappa}=0 . \tag{33}
\end{equation*}
$$

We introduce the independent variable $x=p r$ and note that $\kappa(\kappa+1)=l(l+1)$, where $l=l(\kappa)$. We then write $G_{\kappa}(r)=x f_{l}(x)$. We find that $f_{l}(x)$ satisfies

$$
\begin{equation*}
x^{2} \frac{d^{2} f_{l}}{d x^{2}}+2 x \frac{d f_{l}}{d x}+\left[x^{2}-l(l+1)\right] f_{l}=0 \tag{34}
\end{equation*}
$$

The solutions to this equation are spherical Bessel functions: $j_{l}(x)$ or $y_{l}(x)$. Now, let us look at the small-component of the wave function. We write

$$
\begin{align*}
F_{\kappa}(r) & =-\frac{c p}{E+m c^{2}}\left(\frac{d}{d x}+\frac{\kappa}{x}\right) x f_{l}(x) \tag{35}\\
& =-\sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x\left(\frac{d f_{l}}{d x}+\frac{1+\kappa}{x} f_{l}\right) \tag{36}\\
& =-\sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x\left(\frac{d f_{l}}{d x}+\frac{l+1}{x} f_{l}\right) \quad \text { for } \kappa=l \tag{37}\\
& =-\sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x\left(\frac{d f_{l}}{d x}-\frac{l}{x} f_{l}\right) \quad \text { for } \kappa=-l-1 \tag{38}\\
& =-\sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x f_{l-1}(x) \quad \text { for } \kappa=l \tag{39}\\
& =\sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x f_{l+1}(x) \quad \text { for } \kappa=-l-1 \tag{40}\\
& =-\operatorname{Sgn}(\kappa) \sqrt{\frac{E-m c^{2}}{E+m c^{2}}} x f_{l^{\prime}}(x), \tag{41}
\end{align*}
$$

where $l^{\prime}=l(-\kappa)$.
Generally, in the potential-free region, we may write

$$
\begin{equation*}
G_{\kappa}(r)=\mathcal{N}_{\kappa} p r\left[\cos \delta_{\kappa} j_{l}(p r)-\sin \delta_{\kappa} y_{l}(p r)\right], \tag{42}
\end{equation*}
$$

where \mathcal{N}_{κ} is a suitably chosen normalization and δ_{κ} is a corresponding phase shift. Let us look at the asymptotic form of this function. We have

$$
\begin{align*}
& x j_{l}(x) \rightarrow \cos \left(p r-(l+1) \frac{\pi}{2}\right) \tag{43}\\
& x y_{l}(x) \rightarrow \sin \left(p r-(l+1) \frac{\pi}{2}\right) \tag{44}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
G_{\kappa}(r) \rightarrow \mathcal{N}_{\kappa} \cos \left(p r+\delta_{\kappa}-(l+1) \frac{\pi}{2}\right) \tag{45}
\end{equation*}
$$

The general small-component wave function is

$$
\begin{align*}
F_{\kappa}(r) & =-\operatorname{Sgn}(\kappa) \sqrt{\frac{E-m c^{2}}{E+m c^{2}}} \mathcal{N}_{\kappa} p r\left[\cos \delta_{\kappa} j_{l^{\prime}}(p r)-\sin \delta_{\kappa} y_{l^{\prime}}(p r)\right] \tag{46}\\
& \rightarrow \sqrt{\frac{E-m c^{2}}{E+m c^{2}}} \mathcal{N}_{\kappa} \sin \left(p r+\delta_{\kappa}-(l+1) \frac{\pi}{2}\right) \tag{47}
\end{align*}
$$

On the (relativistic) energy scale, one chooses

$$
\begin{equation*}
\mathcal{N}_{\kappa}=\sqrt{\frac{E+m c^{2}}{2 E}} \sqrt{\frac{2 E}{\pi c^{2} p}} \tag{48}
\end{equation*}
$$

then the wave function in the field free region is

$$
\left[\begin{array}{c}
G_{\kappa}(r) \tag{49}\\
F_{\kappa}(r)
\end{array}\right]=\sqrt{\frac{2 E}{\pi c^{2} p}}\left[\begin{array}{r}
\sqrt{\frac{E+m c^{2}}{2 E}} p r\left(\cos \delta_{\kappa} j_{l}(p r)-\sin \delta_{\kappa} y_{l}(p r)\right) \\
-\operatorname{Sgn}(\kappa) \sqrt{\frac{E-m c^{2}}{2 E}} p r\left(\cos \delta_{\kappa} j_{l^{\prime}}(p r)-\sin \delta_{\kappa} y_{l^{\prime}}(p r)\right)
\end{array}\right]
$$

Asymptotically, this becomes

$$
\left[\begin{array}{c}
G_{\kappa}(r) \tag{50}\\
F_{\kappa}(r)
\end{array}\right] \rightarrow \sqrt{\frac{1}{\pi c^{2} p}}\left[\begin{array}{c}
\sqrt{E+m c^{2}} \cos \left(p r+\delta_{\kappa}-(l+1) \frac{\pi}{2}\right) \\
\sqrt{E-m c^{2}} \sin \left(p r+\delta_{\kappa}-(l+1) \frac{\pi}{2}\right)
\end{array}\right]
$$

We suppose that at the boundary $r=R$ the numerically generated solution to the radial Dirac equation has the form

$$
A\left[\begin{array}{c}
G_{\kappa}(R) \\
F_{\kappa}(R)
\end{array}\right]
$$

where the radial functions $G_{\kappa}(r)$ and $F_{\kappa}(r)$ are the properly normalized free-field functions given in Eq. (49). It follows that

$$
A\left[\begin{array}{c}
G_{\kappa}(R) \tag{51}\\
F_{\kappa}(R)
\end{array}\right]=\left[\begin{array}{r}
\sqrt{\frac{E+m c^{2}}{\pi c^{2} p}} p R\left(\cos \delta_{\kappa} j_{l}(p R)-\sin \delta_{\kappa} y_{l}(p R)\right) \\
-\operatorname{Sgn}(\kappa) \sqrt{\frac{E-m c^{2}}{\pi c^{2} p}} p R\left(\cos \delta_{\kappa} j_{l^{\prime}}(p R)-\sin \delta_{\kappa} y_{l^{\prime}}(p R)\right)
\end{array}\right]
$$

These equations can be solved to give A and $\tan \delta_{\kappa}$:

$$
\begin{align*}
A & =1 / \sqrt{S_{\kappa}^{2}+C_{\kappa}^{2}} \tag{52}\\
\tan \delta_{\kappa} & =S_{\kappa} / C_{\kappa}, \tag{53}
\end{align*}
$$

where

$$
\begin{align*}
S_{\kappa} & =p R\left[\operatorname{Sgn}(\kappa) \sqrt{\frac{\pi c^{2} p}{E+m c^{2}}} G_{\kappa}(R) j_{l^{\prime}}(p R)+\sqrt{\frac{\pi c^{2} p}{E-m c^{2}}} F_{\kappa}(R) j_{l}(p R)\right] \tag{54}\\
C_{\kappa} & =p R\left[\operatorname{Sgn}(\kappa) \sqrt{\frac{\pi c^{2} p}{E+m c^{2}}} G_{\kappa}(R) y_{l^{\prime}}(p R)+\sqrt{\frac{\pi c^{2} p}{E-m c^{2}}} F_{\kappa}(R) y_{l}(p R)\right] \tag{55}
\end{align*}
$$

References

[1] Handbook of Mathematical Functions, Ed. M. Abramowitz and I. A. Stegun, National Bureau of Standards Applied Mathematics Series 55, (USGPO, Washington, 1964), Chap. 10.
[2] T. Blenski and K. Ishikawa, Phys. Rev. E 51, 4869 (1995).

