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1 Bound and Continuum States

Let us suppose that the orbital wave functions for an electron in a potential
V(r) are given by
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Geimo (F) = % 1 (1) Vi (7) Xo continuum (2)

where the radial functions are normalized as
/ drPu(r) Po(r) = Onw (3)
0
/ drP.(r) Poy(r) = 6d(e—¢€). (4)
0

For the free-particle case, we may write

Pa(r) =4/ i—TZijl (pr) (5)
with p = v/2me.

Now let us consider the density, p(7) assumed to be spherically symmetric
p(7) = p(r). The contribution to the density from bound states is
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and similarly, the contribution from continuum states is
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1.1 Free-Particle Continuum

Assuming that the continuum wave functions are approximated as free-particle
states, them we may write
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where y = ¢/kT and x = p/kT, and where we have used the identity
> @+ 1)57(pr) = 1. (11)
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This corresponds to a constant density
2mkT)3/?
pcontin(’r) = %11/2(33)7 (12)
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with = p/kT. The Thomas-Fermi expression for the density is Eq. (12) with

z—x(r) = [p—V(r)] /kT. (13)

Blenski and Ishikawa [2] recommend that one evaluate the continuum contribu-
tion as
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They assert that the partial wave sum in the first term in this expression con-
verges rapidly.
1.2 Nonrelativistic Problem

Let’s start with the radial Schrodinger equation

d?Py I(1+1)
— 4+ 2| E— — P = 1
dr? + < vir) 2r2 > 1 =0 (15)
In the field-free region, V = 0, we may rewrite this equation as
d*P, 5 lI+1)
— P=0 16
ot (r =" r—o, (16)

where we express the energy in terms of momentum through E = p?/2. Two in-
dependent solutions to this equation are P;(r) = pr ji(pr) and P;(r) = pry(pr),



where j; and y; are spherical Bessel and Hankel functions, respectively [1]. The
general solution to the radial equation in the field-free region may be written as
a linear combination of the two independent solutions:

P(r) = N, [prji(pr) cosd; — pry(pr) sin gy . (17)

This solution has the asymptotic limit

lim P;(r) = N cos (p?“-i—él — (l—l—l)z), (18)
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and leads to the interpretation of §; as the continuum wave phase shift.

We integrate the radial Schrodinger equation outward from the origin to
the cavity boundary » = R and match the solution and it’s derivative to the
corresponding free-particle radial wave function and derivative:

P(R) = N [x i) cos & — z () smcsl] (19)
%QI(R) = N {Wcosél—wil@sinél}, (20)
where = = pR. Solving, we find
Nising = L2 gy — o)L um) (21)
Nicoss = B pr) vyl oum), (22)

where we have made use of the identity
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where we have used the identity

W =(+1)filz) — xfiyi(2),



which holds for both f;(z) = ji(x) and fi(x) = y;(x). We find

fan &, = % (26)
l

Ny =1/S?+ CE. (27)

The later result can be used to insure that the radial wave function is properly
normalized on the energy scale. To do this, we multiply P;(r) and @Q;(r) for all

r by the factor
1 2
A= —4]—.
NV 7mp

The resulting wave function has the desired asymptotic limit

Tlingoﬂ(r) = Hﬂip cos (pr +0,— 1+ 1)%) (28)

1.3 Relativistic Problem

and

Let’s start with the radial Dirac equations
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In the field-free region, V = 0, we may express F in terms of G, through the

relation J
c K
F=——° (2418 q,.. 31
E + mc? (dr+r> (31)

This leads to
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or, equivalently,
d_2 _k(k+1)
dr? r2
We introduce the independent variable = pr and note that k(k+1) = [(I+1),
where [ = (k). We then write G (r) = zfi(x). We find that f;(x) satisfies
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The solutions to this equation are spherical Bessel functions: j;(x) or y;(x).
Now, let us look at the small-component of the wave function. We write
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where I = I(—k).
Generally, in the potential-free region, we may write

Gn(r) = Nn pr [COS 6njl (p?“) — sin 5l~tyl (pr)] ) (42)

where N, is a suitably chosen normalization and §, is a corresponding phase
shift. Let us look at the asymptotic form of this function. We have

zji(xr) — cos (pr —(I+ 1)%) (43)
zy(r) — sin (pr -+ 1)%) (44)

Therefore,
Gy (r) — N, cos (pr +6, — (I + 1)%) (45)

The general small-component wave function is
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On the (relativistic) energy scale, one chooses

E +mc? 2F
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then the wave function in the field free region is
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Asymptotically, this becomes

R R R e
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We suppose that at the boundary r = R the numerically generated solution to
the radial Dirac equation has the form

Al G

where the radial functions G, (r) and F(r) are the properly normalized free-field
functions given in Eq. (49). It follows that
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These equations can be solved to give A and tan d,:
A = 1/4/S2+C? (52)
tand, = S./Ck, (53)
where
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