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Thomson scattering from a three-component plasma
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A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and
applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in
the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities,
effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and
free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical
description of bound and continuum electrons. The model is used to obtain parameters needed to determine the
dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from
inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from
inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained
from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are
evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in
which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used
to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with
experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
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I. THREE-COMPONENT PLASMAS

The aim of the present paper is to develop a simple
diagnostic tool to be used in the analysis of x-ray Thomson
scattering from a three-component plasma formed by heating
and compressing a compound composed of two distinct atoms.
In recent years x-ray scattering experiments have been made
on three-component CH [1–5] and LiH [6,7] plasmas and used
to determine temperatures, densities, ionization balance, and
mean ionic charges, together with information on static and
dynamic structure factors. The theory of Thomson scattering
from two-component plasmas consisting of a single ionic
specie and electrons is laid out by Chihara [8]. Here, we follow
the multicomponent extension of Chihara’s analysis given by
Wünch et al. [9] using input parameters from an average-atom
model of the plasma.

In the following paragraphs, we generalize the average-
atom model described in Refs. [10,11] to determine properties
of a three-component plasma formed from ions having nuclear
charges Z1 and Z2, atomic weights A1 and A2, and occupation
numbers N1 and N2. The occupation numbers N1 and N2 are
related to the ionic concentrations in the plasma x1 and x2 by
xi = Ni/(N1 + N2), i = 1, 2.

In the average-atom model for a single ion type, the plasma
is divided into neutral Wigner-Seitz (WS) cells consisting of
a nucleus of charge Z and Z bound and continuum electrons.
The continuum electron density nc(r) inside the WS cell
merges into the uniform free-electron density ne outside the
cell boundary. To maintain neutrality, a uniform positive charge
of density ne is introduced. (One can imagine the smeared out
charge of surrounding ions.) The picture that emerges is of a
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single average atom floating in a neutral sea of free electrons
and positive ions. It is this picture that we want to generalize
to molecules.

In the generalized average-atom model, the plasma is again
divided into neutral WS cells, each consisting of a molecule
and N1Z1 + N2Z2 electrons. The volume of the cell is

V = A

ρNA

, (1)

where NA is Avogadro’s number, A = N1A1 + N2A2 is the
molecular weight and ρ is the plasma density. In the plasma,
bonds are broken and molecules split up into individual ions
and electrons; therefore, in the generalized version of average-
atom model, the molecular WS cell splits into individual ionic
cells. The WS cell for ion i contains a single ion with nuclear
charge Zi and Zi electrons. It follows that

A

ρNA

= N1
A1

ρ1NA

+ N2
A2

ρ2NA

. (2)

The individual atomic densities ρi , i = 1, 2 in Eq. (2) are yet
to be determined. As noted above, the density of continuum
electrons inside each WS cell in the average-atom model
merges smoothly into the free-electron density ne outside
the cell. In the generalization of the average-atom model,
we therefore require that the densities ρ1 and ρ2 be chosen
so that the free-electron density associated with each indi-
vidual ionic cell is the common free-electron density of the
plasma ne:

ne(ρ1) = ne(ρ2) = ne. (3)

Equations (2) and (3) are solved to give the ionic mass densities
ρ1 and ρ2 and the free-electron number density ne.
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The free-electron density is given in terms of the chemical
potential μ by

ne = 2

(2π )3

∫
d3p f (p,μ), (4)

where

f (p,μ) = 1

1 + exp[(p2/2 − μ)/kBT ]
(5)

is the free-electron Fermi distribution function. Equations (3)
and (4) ensure that the plasma has a unique chemical potential.
Note that atomic units (a.u.) in which e = me = � = 1 are
used here, with 1 a.u. in energy equal to 2 Rydbergs equal
to 27.2 eV and 1 a.u. in length equal to 1 Bohr radius equal
to 0.529 Å.

The number of free electrons inside the j th atomic cell is
Z∗

j = neVj , where Vj is the cell volume for the j th ionic type.
The number of free electrons Z∗ per molecular cell (volume
V ) is, correspondingly,

Z∗ = neV = ne(N1V1 + N2V2) = N1Z
∗
1 + N2Z

∗
2 . (6)

The model developed above is applied to a warm dense CH
plasma in Sec. III.

II. X-RAY THOMSON SCATTERING

The cross section for Thomson scattering of a photon with
initial energy and momentum (ω0, k0) to a final state with
photon energy and momentum (ω1, k1) is proportional to the
dynamic structure factor S(k,ω), where ω = ω0 − ω1, and k =
|k0 − k1|.

There are three distinct contributions to S(k,ω): inelastic
scattering by free electrons in the plasma See(k,ω), inelastic
scattering by bound electrons Sb(k,ω), and elastic scattering
by ions Sii(k,ω). In the present calculation, we normalize the
theoretical structure factor to a molecular cell of volume V =
N1V1 + N2V2.

The free-electron contribution to the structure factor asso-
ciated with an ion of type i, which is given by [8]

See[ion i](k,ω)

= − 1

1 − exp(−ω/kBT )

Z∗
i k

2

4π2ne

Im

[
1

ε(k,ω)

]
, (7)

is proportional to the imaginary part of the inverse of the
dielectric function ε(k,ω). The free-electron dielectric function
ε(k,ω) depends only on the chemical potential and temperature
and is otherwise independent of the plasma composition. Here,
we follow Gregori et al. [12] and evaluate ε(k,ω) in the
random-phase approximation (see Ref. [11] for details). The
sum of contributions to See(k,ω) from N1 ions of type 1 and
N2 ions of type 2 is proportional to the total ionic charge of
the molecule:

See(k,ω) = N1See[ion 1] + N2See[ion 2]

= − 1

1 − exp(−ω/kBT )

Z∗k2

4π2ne

Im

[
1

ε(k,ω)

]
. (8)

Since Z∗/ne = V , See is proportional to the molecular WS cell
volume or inversely proportional to the plasma mass density.

The contribution to the dynamic structure factor from bound
electrons, as shown in Ref. [11], is given by

Sb(k,ω) =
∑
nl

Snl(k,ω), (9)

where

Snl(k,ω) = onl

2l + 1

∑
m

∫
p d�p

(2π )3

×
∣∣∣∣
∫

d3r ψ†
p(r) eik·r ψnlm(r)

∣∣∣∣
2

. (10)

In the above equation, ψnlm(r) is the wave function for a bound-
state electron with principal and angular quantum numbers
n, l,m, occupation number onl , and energy εnl , and ψ

†
p(r) is a

continuum wave function normalized to approach a plane wave
of momentum p plus incoming spherical wave asymptotically.
The energies of the bound-state and continuum electrons are
of course related by εp = ω + εnl .

The elastic scattering contribution to the dynamic structure
factor is expressed in terms of the static structure factor S(k),

Sii(k,ω) = S(k) δ(ω). (11)

The static structure factor S(k), in turn, is evaluated with
the aid of a two-component model of the plasma in which
partial contributions Sij (k) from interactions between ions of
types i and j are treated directly and electron-ion interactions
are treated indirectly as screening corrections to the ion-ion
interaction potentials. From Eq. (A7) in Appendix A, we find

S(k) = N [x1|f1(k)|2S11(k) + x2|f2(k)|2S22(k)

+ 2
√

x1x2|f1(k)||f2(k)|S12(k)], (12)

where N = N1 + N2 and xi = N1/N . The functions fi(k)
are Fourier transforms of the (bound + continuum) electron
densities for ions of type i. The partial structure factors Sij (k)
above are evaluated in the hypernetted-chain approximation
with exponentially damped interaction potentials as described
in Appendix B.

It should be noted that the expressions for the individual
contributions to the Thomson scattering cross section written
out in this section differ from those derived in Ref. [9] only
in overall normalization. The structure factor per molecule
(N1 + N2 ions) is considered here, whereas the cross section
per ion is given in [9].

III. APPLICATION TO CH

As a specific example, we consider a dense CH plasma at
temperature T = 10 eV and free-electron density ne = 1.4 ×
1024 /cc. These conditions are chosen for later comparison
with x-ray Thomson scattering measurements on a shock-
compressed CH plasma by Fletcher et al. [5].

The solution to Eqs. (2) and (3) that gives ne = 1.4 ×
1024 /cc at T = 10 eV using input from an average atom
code is obtained by iteration. The resulting value of the
plasma density is ρ = 8.896 gm/cc and the resulting value
of the chemical potential is μ = 43.67 eV. Data for individual
C and H ions obtained in the average-atom calculation are
given in the columns on the left in Table I. The carbon
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TABLE I. Results of average-atom and Thomas-Fermi calcula-
tions for a CH plasma with free-electron density ne = 1.4 × 1024 /cc
at temperature T = 10 eV. The plasma and constituent densities ρ

(gm/cc), cell volumes V (a.u.), ionic charges Z∗, number of bound
electrons/cell Nb and number of continuum electrons/cell Nc are
listed. The plasma chemical potential is 43.67 eV.

Average-atom Thomas-Fermi

CH C H CH C H

ρ 8.896 10.462 3.201 8.000 9.305 2.996
V 16.401 12.864 3.536 18.238 14.463 3.775
Z∗ 3.403 2.669 0.734 3.775 2.996 0.779
Nb 2 2 0
Nc 5 4 1

ion has a filled K-shell and four continuum electrons inside
a WS cell of radius RW = 1.454 a.u. and the hydrogen
ion has a single continuum electron inside a WS sphere of
RW = 0.9451 a.u. The corresponding data obtained using a
temperature-dependent Thomas-Fermi (TF) calculation are
listed in the columns on the right in Table I. The plasma
density predicted by the TF calculation is 11% smaller than that
predicted by the average-atom calculation, while the molecular
Z∗ is 11% larger.

The continuum density inside each sphere nc(r) merges
smoothly into the free-electron density ne outside the respec-
tive spheres. This behavior is illustrated in Fig. 1, where we
plot nc(r) for C and H ions along with the free-electron density
ne. The effective charges per ion Z∗

i are listed in the third row
of Table I. It should be emphasized that the average-atom
model predicts that hydrogen has no bound electrons and that
only K-shell electrons are bound in carbon under the present
conditions of temperature and density.

For applications of average-atom models to Thomson
scattering, it is important to distinguish between Z∗, which
is the number of free electrons per ion, and Nc, which is the
number of continuum electrons per ion inside the WS sphere.
Thus, for carbon, the present average atom model predicts that
there are Nc = 4 continuum electrons inside each WS cell but
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FIG. 1. (Color online) Continuum electron density nc(r) (solid
back lines) and free-electron density ne (dashed red line) for carbon
and hydrogen in units 1024/cc. Note that the densities are plotted
inward from the ionic centers located at the boundaries. Radii of the
Wigner-Seitz cells are designated by RW. The continuum densities
nc(r) merge smoothly into the common free-electron density ne

outside the respective WS cells.

Z∗ = 2.669, while for hydrogen, Nc = 1 but Z∗ = 0.734. The
reason for these differences can be seen in Fig. 1: continuum
electrons inside the WS sphere pile up near the ionic nuclei,
whereas free electrons are distributed uniformly. Indeed, if
we subtract out the free-electron contribution from the charge
density inside the WS sphere, we find from the average-atom
normalization condition [Eq. (10) of Ref. [11]] that

Z − 4π

∫ RW

0
r2 [n(r) − ne] dr = Z − (Z − Z∗) = Z∗.

(13)

From this equation, it follows that Z∗ can also be interpreted
as the ionic charge and therefore as the mean charge of the
smeared out ionic background.

It should be noted that there is still a debate over whether to
use Z∗ (3.403 in this case) or the total number of continuum
electrons Nc (5 in this case) as the multiplier in Eq. (8)
for the See term. However, using Nc does mean that the
electron density is not the same for each ion unless we define
volumes differently. A very complete recent discussion of
mean ionization states in various atom-in-cell plasma models
is given by Murillo et al. [13].

IV. THOMSON SCATTERING FROM CH

In Ref. [5], spectra of 9 keV x rays scattered at angle θ =
135◦ from a shock-compressed CH capsule were measured.
Relative intensities of scattered x rays were obtained in
the interval 8–10 keV. Here, we model the 3.4-ns spectrum
illustrated in Fig. 3 of Ref. [5], for which the temperature
and electron density were determined to be T = 10 eV and
ne = 1.4 × 1024/cc. The dynamic structure factor S(k,ω), for
a fixed scattering angle θ , is only weakly dependent on k and,
in the present paper, is evaluated at the elastic scattering value
k = 2k0 sin(θ/2).

a. Inelastic scattering. The present result for See(k,ω),
which was obtained from Eq. (8) with Z∗/ne replaced by V , is
shown by the dashed red line in the 2. The dielectric function
ε(k,ω), which appears in the expression for See(k,ω), depends
on the plasma chemical potential μ and was evaluated in the
random-phase approximation. The contribution to the inelastic
scattering spectrum from Sb(k,ω), which is entirely from
scattering by the K-shell electrons in carbon, was calculated
from Eq. (10) using the bound and continuum wave functions
from the carbon average atom. The result is shown by the
dot-dashed green line in Fig. 2.

b. Elastic scattering. The static structure factor S(k) is
evaluated using the expression given in Eq. (12) for a
two-component plasma consisting of ions only. The partial
structure factors Sij (k) are obtained by solving the Ornstein-
Zerniky–hypernetted-chain (OZ-HNC) equations, which are
written out in Appendix B. These equations depend on knowl-
edge of the ion-ion interaction potential energy Vij (r). In the
present example, we assume screened Coulomb interactions
between ions,

Vij (r) = Z∗
i Z

∗
j

r
e−κr , (14)
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FIG. 2. (Color online) Dynamic structure factor S(k,ω) for scat-
tering of a 9-keV x ray by a CH plasma at T = 10 eV and
Ne = 1.4 × 1024/cc from the present model are compared with the
experimental 34-ns spectrum from Ref. [5], represented by black
dots and scaled to match the theory at the inelastic peak. Dashed red
line See(k,ω); dot-dashed green line Sb(k,ω); thin blue (solid) line
Sii(k,ω); solid black line, S(k,ω).

where κ is determined by the relation [14]

κ2 = 4

π

∫ ∞

0
dpf (p,μ). (15)

For the case at hand, κ = 1.490 a.u. Plots of the three partial
structure factor Sij (k) for k � 10 a.u. are shown in Fig. 3.
The dot-dashed vertical line is at the elastic scattering value
k = 4.46 a.u. At this value of k, one finds S11(k) = 1.033,
S22(k) = 0.933, and S12(k) = −0.002. Combining the above
numbers in Eq. (12), we obtain S(k) = 1.586. The δ function
in Eq. (11) is represented by a Gaussian with full width at half
maximum of 100 eV. (The Gaussian width was inferred from
the experimental spectrum.) The resulting elastic scattering
contribution to the dynamic structure factor is shown as the
thin blue (solid) curve in Fig. 2.

Experimental data from Fletcher et al. [5], shown by black
dots in Fig. 2, are scaled to match the theoretical calculation
of the total scattering factor S(k,ω), shown by the solid black
curve, at the inelastic scattering peak. To align the theoretical
inelastic peak with the corresponding experimental peak, the
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FIG. 3. (Color online) Partial structure factors Sij for a CH
plasma at temperature T = 10 eV and electron density ne = 1.4 ×
1024/cc. The dot-dashed vertical line is drawn at the experimental
value of k.

value of k used in See(k,ω) was reduced by 10%. Such a
reduction could be accounted for by a 15% reduction in
the value of the scattering angle, which could be due to the
experimental uncertainty in the scattering angle. Moreover, to
achieve a match between theory and experiment, the value of
the elastic scattering structure factor S(k) was increased from
the theoretical value by 20%, leaving us with an inconsistency
between theoretical values of elastic and inelastic contributions
to S(k,ω). Within the framework of the present model, one can
scale the experimental intensity to agree with either inelastic
or elastic components of the theory, but not both. We choose
to scale the experiment to agree with the inelastic scattering
components of the theory and find that the elastic amplitude
S(k) must be increased by 20% to match experiment.

V. SUMMARY AND CONCLUSIONS

A simple and easily implemented model for a three-
component plasma with two ionic species and free electrons
is developed. The model is based on the average-atom picture,
in which all ions of a specific type are assumed to be
identical and confined to identical Wigner-Seitz cells. Given
the plasma density, temperature, and composition, the model
predicts the density, cell volume, and ionic charge of each
ion. Moreover, the model gives wave functions for bound and
continuum states and bound-state energies for each ionic type.
The continuum density inside each WS cell merges into a
cell-independent free-electron density ne outside the cell. The
fact that free-electron density is independent of the ionic type
ensures that the plasma has a unique chemical potential μ.

The model is used to predict the x-ray Thomson scattering
dynamic structure function. Very little information from the
average-atom model is actually required in the Thomson
scattering calculation. The dominant features seen in the
experimental x-ray spectrum shown in Fig. 2 are the elastic
scattering peak at 9000 eV and the broad down-shifted
shoulder from scattering by free electrons. The RPA expression
for the free-electron scattering structure factor See(k,ω), for
given values of k and ω, depends only on ratio μ/T of the
chemical potential to the temperature T . Although the ionic
charges Z∗

i appear in Eq. (8), the total contribution from
both ionic species is independent of Z∗

i and is proportional
to normalization volume V . Indeed, any atom-in-cell model
of the plasma, adjusted to give specific values of ne and
temperature T , is guaranteed to give the same value of μ by
virtue of Eq. (4). Thus, for example, the Thomas-Fermi model
of the CH plasma leads to a value of See(k,ω) that has precisely
the same shape as the average atom value, but has an amplitude
11% larger, reflecting the smaller CH density inferred from the
Thomas-Fermi calculation, as shown in Table I.

The bound-state contribution Sb(k,ω), which is impor-
tant at the low-frequency end of the spectrum, requires
quantum-mechanical calculations of both bound and contin-
uum (distorted-wave) wave functions in order to obtain a
quantitatively accurate understanding of the low-frequency
tail of the spectrum. This need for accurate bound-free
matrix elements for applications to plasma diagnostics was
emphasized recently by Mattern and Seidler [15].

Finally, the static structure factor S(k) depends on input
from the average-atom model in two distinct ways: (1) through
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the form factors of the ions fi(k) defined in Eq. (A1), which
require a knowledge of the bound-state wave functions, and
(2) through effective charges Z∗

i in the interaction potentials
given in Eq. (14). The use of screened Coulomb potentials
in the evaluation of S(k) is the weakest part of the present
analysis and improving the interaction potentials within the
average-atom framework is the goal of ongoing research.
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APPENDIX A: STATIC STRUCTURE FACTOR

The static structure factor for elastic scattering from a single
average-atom is S(k) = |f (k)|2 where

f (k) =
∫

d3r n(r) eik·r , (A1)

with n(r) = nb(r) + nc(r) being the (bound+continuum) elec-
tron density inside the WS sphere. Note that f (k) is real for
a spherically symmetric charge density. The generalization to
a macroscopic system containing N1 identical ions of type 1
and N2 identical ions of type 2 is

S(k) =
[
|f1(k)|2

N1∑
a=1

N1∑
b=1

eik·(R1b−R1a ) + (1 → 2)

]

+
[
f1(k)f ∗

2 (k)
N1∑
a=1

N2∑
b=1

eik·(R2b−R1a ) + (1 ↔ 2)

]
,

(A2)

where, for example, Ria is the coordinate of the ath ion of
type i. For a homogeneous isotropic distribution of particles,
the double sum over type 1 ions can be simplified to

N1∑
a=1

N1∑
b=1

eik·(R1b−R1b) → N1

(
1 + n1

∫
d3r g11(r) eik·r

)
,

(A3)
where n1 is the number density of type 1 ions and g11(r) is
a partial pair distribution function. Generally, gij (r) d3r is the
probability of type i particles being in d3r at a distance r

from a given particle of type j . Note that limr→∞ gij (r) = 1.
Clearly, gij = gji .

The sum over ions of type 2 on the first line of Eq. (A2)
can be similarly rewritten in terms of n2 and g22(r). Following
this pattern, the sum on the third line of (A2) may be written

N1∑
a=1

N2∑
b=1

eik·(R2b−R1a ) → N1n2

∫
d3r g21(r) eik·r , (A4)

and its conjugate as

N2∑
b=1

N1∑
a=1

eik·(R1a−R2b) → N2n1

∫
d3r g12(r) eik·r . (A5)

The coefficients of the above two integrals are equal: N1n2 =
N2n1 = N1N2/V = x1x2Nn, where N = N1 + N2 and n =
n1 + n2.

For numerical purposes, it is necessary to subtract the
asymptotic value of gij in the above integrals. Thus∫

d3r gij (r) eik·r =
∫

d3r [gij (r) − 1] eik·r + (2π )3δ(k).

(A6)

The function δ(k) contributes to S(k) only in the forward
direction and can be safely ignored in our calculations.

With the above relations in mind, we find that the static
structure factor per molecule with N = N1 + N2 ions is

S(k) = N

2∑
i=1

2∑
j=1

√
xixj fi(k) fj (k)Sij (k), (A7)

where

Sij = δij + √
ninj

∫
d3r [gij (r) − 1] eik·r . (A8)

APPENDIX B: OZ-HNC EQUATIONS

From Eq. (A8), it follows that the partial structure factors
for a plasma with two ionic species are

Sij (k) = δij + √
ninj

4π

k

∫ ∞

0
r sin kr hij (r) dr, (B1)

where hij (r) = gij (r) − 1 defines the “total” two-particle
correlation function for particles of types i and j . The
total correlation functions hij (r) are related to the “direct”
correlation functions cij (r) by the Ornstein-Zernike (OZ)
equations [16]:

hij (r) = cij (r) +
∑

l

nl

∫
cil(r − r ′)hlj (r ′)d3r ′. (B2)

The pair distribution functions gij (r) can be determined from
the interaction potentials Vij (r) through the hypernetted-chain
(HNC) closure relation [17, Sec. 10.2]

gij (r) = exp[−βVij (r) + hij (r) − cij (r)], (B3)

where β = 1/(kBT ). Introducing the “indirect” correlation
functions tij (r) = hij (r) − cij (r), one can rewrite the HNC
relation as

cij (r) = exp[−βVij (r) + tij (r)] − tij (r) − 1. (B4)

The Fourier transforms of the (OZ) equations for a
multicomponent plasma may be written∑

l

[δlj − nl ĉil(k)]t̂lj (k) =
∑

l

nl ĉil(k) ĉlj (k), (B5)
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where we have introduced the notation ĉij (k) and t̂ij (k)
to designate the Fourier transforms of cij (r) and tij (r),
respectively. For a plasma with two ionic components, these
equations are rearranged to give t̂ij (k) in terms of ĉkl(k),

t̂11 = [
n2 (1 + n1 ĉ11)ĉ2

12 + n1 (1 − n2 ĉ22)ĉ2
11

]/
d, (B6)

t̂22 = [
n1 (1 + n2 ĉ22)ĉ2

12 + n2 (1 − n1 ĉ11)ĉ2
22

]/
d, (B7)

t̂12 = ĉ12
[
n1 ĉ11 + n2 ĉ22 − n1n2

(
ĉ11ĉ22 − ĉ2

12

)]/
d, (B8)

d = 1 − n1 ĉ11 − n2 ĉ22 + n1n2
(
ĉ11ĉ22 − ĉ2

12

)
. (B9)

Starting with the approximation t̂ij (k) = 0, one evaluates
ĉij (k) from the Fourier transform of Eq. (B4) and continues
the iteration procedure using Eqs. (B6)–(B9). Typically 20
iterations are required to achieve eight-figure accuracy.
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