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Abstract

We study the enumeration problem of self-avoiding walks on the taxi-walk Manhattan lattice,
a two-dimensional oriented lattice. The motivation for examining this lattice stems from the
problem of estimating a certain value of a parameter in a statistical physics model called
the hard-core model. When the parameter attains the very value, this model may transition
between order and disorder.

In particular, we focus on a quantity µt, called the connective constant of the taxi-walk
Manhattan lattice, which governs the rate at which the number of taxi-walks on the lattice
grows as the length of the walks increases, and which is also related to the aforementioned
parameter of the hard-core model. Previously it had been known that 1.5196 ≤ µt ≤ 1.5884.
We improve both the upper and the lower bounds, obtaining 1.5572 ≤ µt ≤ 1.5875.
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1 Introduction

1.1 Self-Avoiding Walks

The topic of self-avoiding walks is elegantly introduced in [1]. A self-avoiding walk is a path
visiting any point at most once on a lattice, a common lattice concerning us being Zd. An
interesting problem to look at is the enumeration of such walks. Denote as an the number
of n-step self-avoiding walks on Zd starting at the origin. We have simple bounds for an:

dn ≤ an ≤ 2d(2d− 1)n−1. (1.1)

The lower bound counts the number of walks in which every step is among the d positive
coordinate directions, while the upper bound is given by the number of walks devoid of
immediate reversals. Let us focus on Z2. Then, (1.1) becomes 2n ≤ an ≤ 4 · 3n−1.

We are interested in the limit
µ = lim

n→∞
an

1
n , (1.2)

which it is easy to prove exists. Since the concatenation of any m-step self-avoiding walk
to any n-step self-avoiding walk produces an (n+m)-step walk that may not necessarily be
self-avoiding, we have

an+m ≤ anam. (1.3)

Taking logarithms on both sides of (1.3) gives us a subadditive sequence {log ai}, where

log an+m ≤ log an + log am. (1.4)

Here it is necessary to introduce the following lemma, also known as Fekete’s Lemma.

Lemma 1.1. For any subadditive sequence {cn}, the limit limn→∞ n
−1cn exists in R and

lim
n→∞

cn
n

= inf
cn
n
.

Hence, the limit limn→∞ n
−1 log an = limn→∞ log a

1/n
n exists and µ, often known as the

connective constant of the lattice, thus exists. The connective constant is helpful in mea-
suring the growth rate of the number of n-step self-avoiding walks with respect to n. By
Lemma 1.1,

log µ = inf
log an
n

,

µ ≤ an
1
n . (1.5)

an
1
n is thus an upper bound for µ.
We now look at a lower bound for the connective constant, for which it is worth intro-

ducing the concept of bridges.
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Definition 1.1. An n-step bridge ω in Z2 is an n-step self-avoiding walk satisfying

ω(0) < ω(i) ≤ ω(n)

for 1 ≤ i ≤ n, if we denote as ω(j) the x-coordinate of the j-th vertex of ω. The number of
n-step bridges starting at the origin is denoted bn. By convention, b0 = 1.

A good way to visualize a bridge is to think of a walk that starts by taking a step to the
right, never returns to the y-axis, and ends at a point which has the maximum x-coordinate
among all the points visited. This final point does not have to be the unique point with
maximum x-coordinate. Figure 1 shows an example of a bridge.
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Figure 1: An example of a 32-step bridge starting at the origin in Z2

Since the concatenation of two bridges always yields a new bridge,

bnbm ≤ bn+m,

− log bn+m ≤ (− log bn) + (− log bm). (1.6)

Therefore, {− log bn} is a subadditive sequence and by Lemma 1.1,

lim
n→∞

− log bn
n

= inf
− log bn

n
,

lim
n→∞

bn
1
n = sup bn

1
n . (1.7)

Since bridges are essentially self-avoiding walks with extra constraints, we have 0 ≤ bn ≤ an,
and

bn
1
n ≤ lim

n→∞
bn

1
n ≤ lim

n→∞
an

1
n = µ. (1.8)

Hence, bn is a lower bound for µ.
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1.2 Manhattan Lattice and Taxi-Walks

This paper focuses on the Manhattan lattice, denoted as
−→
Z 2, which is a directed lattice on

Z2 simulating the Manhattan Island of New York City whose streets alternate directions.

Without loss of generality, we stipulate that in
−→
Z 2, the directions on x = 2k (k ∈ Z) are the

positive direction of the y-axis (north), and those on x = 2k + 1 the negative direction of
the y-axis (south). The directions on y = 2k are the positive direction of the x-axis (east),
and those on y = 2k + 1 the negative direction of the x-axis (west). The configuration can
be visualized in Figure 2.
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Figure 2: The directions of the Manhattan lattice near the origin

Self-avoiding walks on the Manhattan lattice are similarly defined as those on Z2 except
for directional constraints. We also introduce the concept of taxi-walks below.

Definition 1.2. An n-step self-avoiding walk in
−→
Z 2 is a sequence v0, v1, ..., vn of distinct

vertices with an edge of
−→
Z 2 oriented from vi−1 to vi ∀i = 1, ..., n. The walk goes straight at

vi (1 ≤ i ≤ n − 1) if edges vi−1vi and vivi+1 are parallel, and turns if the two consecutive

edges are perpendicular. A taxi-walk is a self-avoiding walk in
−→
Z 2 that does not turn at two

consecutive vertices.

As an illustration, walks a and b in Figure 3 are an example and a nonexample of taxi-
walks starting at the origin, respectively. Walk b is not a valid taxi-walk because it makes
two consecutive turns at (5,−2) and (5,−3).

Self-avoiding walks on the Manhattan lattice have been studied for almost as long as
self-avoiding walks on Z2 (see [2] for example), and the connective constant is known to
be very close to 1.73. The notion of taxi-walks, on the other hand, was introduced fairly
recently in [3].
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Figure 3: An example and a nonexample of taxi-walks on the Manhattan lattice

The incentive for studying taxi-walks originates from the study of the hard-core or in-
dependent set model on Z2. The problem is essentially the following. An independent set
in the two-dimensional grid is a set of pairwise non-adjacent vertices, and it is intended to
model a set of massive particles (as opposed to point-masses) occupying space — the fact
that the particles are massive means that if a particle is occupying a site then there is no
room for any of the sites adjacent to that particle to be occupied simultaneously, hence the
introduction of independent sets.

The model has a “density” parameter λ > 0 that controls the density of a typical config-
uration of particles. Specifically, each possible configuration I of occupied sites occurs with
probability proportional to λ|I|. Given that there are infinitely many legal configurations,
to make this precise it is necessary to use the notion of a Gibbs measure from statistical
physics; a full explanation is thus beyond the scope of this thesis. The intuition we are about
to delineate instead makes sense if we think of the lattice simply as a very large finite box.

The intuition is that if λ is large, then the probability rule favors the selection of inde-
pendent sets that are large. One obvious approach to obtain a large independent set is to
select a subset of one of the two checkerboard (diagonal) subgrids of the grid. This suggests
that when λ is large, a typical configuration from this model is highly structured, consisting
of a subset of one of the diagonal subgrids.

On the other hand, if λ is small, then the probability rule is favoring the selection of
independent sets that are small, and thus are likely to be fairly disordered.

A longstanding conjecture in statistical physics claims that there is a critical value λc
such that if λ < λc then the typical configuration from the model is disordered, but that as
soon as λ > λc the typical configuration becomes very ordered. In other words, there is a
considerably sharp transition between disorder and order, as can be seen in Figure 4. The
description we have given is vague, but it can be made perfectly mathematically precise.
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Figure 4: Disorder and order in the hard-core model (simulations by Justin Hilyard)

Simulations have suggested that this critical value λc is approximately 3.796, but rigorous
results are difficult to prove. In one direction, it is known that if λ < 2.48 then the model
typically selects a disordered set [4]. This is the culmination of a long series of papers.

Very little had been known in the other direction until recently, when in [3] it was shown
that if λ > 5.3646 then the model typically selects an ordered set. Part of the proof worked
by showing that if a configuration is disordered, then it has some clustered parts that are
predominantly consisting of occupied vertices from one of the two diagonal subgrids, as well
as other clustered parts that are predominantly from the other diagonal subgrids. Then
there is some unoccupied “contour” separating these two occupied regions; this is costly
and so unlikely if λ is large. The gist of [3] is to establish a strong connection between
the shape of these “contours” and closed, self-avoiding taxi-walks in the Manhattan lattice.
That connection led to the following theorem.

Theorem 1.2. Let µt be the connective constant for taxi-walks on
−→
Z 2. Then whenever λ

satisfies λ > λ′ = µ4
t−1, the typical configuration from the hard-core model on Z2 is ordered.

This means that any upper bounds we can put on µt immediately translate into lower
bounds on the phase transition point of the hard-core model, or lower bounds on the start of
the interval in which the model is ordered. This theorem is the main reason for our interest
in the Manhattan lattice and taxi-walks.

Without loss of generality, we look at taxi-walks starting at the origin of
−→
Z 2. Walks

starting north and those starting east are symmetric. Denote as ãn the number of taxi-walks

starting east at the origin. Then, the total number of taxi-walks starting at the origin in
−→
Z 2

is 2ãn. The connective constant µ is defined similarly as that in Z2, namely,

µt = lim
n→∞

(2ãn)
1
n = lim

n→∞
(ãn)

1
n , (1.9)
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which has easy upper and lower bounds:

√
2 ≤ µt ≤

1 +
√

5

2
. (1.10)

Since taxi-walks that always take two steps north or two steps east at a time undercounts
the number of n-step taxi-walks, we have 2n/2 ≤ ãn if n is even and 2(n+1)/2 ≤ ãn otherwise.
Hence,

√
2 is a lower bound for µt. The upper bound for ãn is proved below.

Proof. A taxi-walk v0, v1, ..., vn with v0 as the origin can be encoded by a pair (α, σ), where
α ∈ {N,E} and σ a sequence of length n− 1 over the alphabet {s, t}. α = N if v1 = (0, 1)
and α = E if v1 = (1, 0). The i-th entry of σ is s if the walk goes straight and t if the walk
turns at vi, 1 ≤ i ≤ n − 1. Distinct taxi-walks must have distinct encodings. The number
of sequences of length n − 1 over alphabet {s, t} devoid of consecutive occurrences of t is
exactly the (n+1)-st Fibonacci number fn+1 (defined by f0 = 0, f1 = 1, and fn = fn−1+fn−2

for n ≥ 2). These fn+1 sequences encode taxi-walks as well as directional walks that avoid

consecutive turns but may not be self-avoiding, so ãn ≤ fn+1 = O(1+
√

5
2

)n, and µt ≤ 1+
√

5
2

.

2 Objectives

The purpose of this thesis to examine methods that have been applied to estimate the
connective constants for lattices, and to tailor them for approximation of the connective
constant of taxi-walks on the Manhattan lattice.

In Section 3, we study the Goulden-Jackson cluster method, a powerful device for enumer-
ating words over an alphabet that avoid any instance of a specified collection of consecutive
substrings. We discuss Alm’s method in Section 4, which also helps finding an upper bound
but which did not give better results than the Goulden-Jackson method. In Section 5, we
report our results applying this method to taxi-walks to get the upper bound for the con-
nective constant. Then in Section 6, we consider an adaptation of the notion of bridges to
the taxi-walk setting, and also explain an idea of Kesten’s that improves the lower bound of
the connective constant by introducing irreducible bridges. We report our results using this
approach in Section 7. Some future work is then suggested in Section 8. We also provide in
the appendices the pieces of code that we used to implement the Goulden-Jackson method
and Kesten’s method.

3 Goulden-Jackson Cluster Method

3.1 The Theory behind Goulden-Jackson Method

To find a better upper bound for the connective constant of taxi-walks in the Manhattan
lattice, we look at the Goulden-Jackson cluster method. The key of the method is to answer
the question: how many possible sequences over a given alphabet are there that do not
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contain certain any instance of a given list of subsequences? Our treatment of the answer is
based on a description given in a paper by Noonan in [5].

Definition 3.1. For any sequence a, denote the length of a as λ(a) and let wt(a) = sλ(a). If
S is a set of sequences, then wt(S) =

∑
a∈S wt(a). Let W (d) denote the set of all sequences

on alphabet Σ of size |Σ| = d. Let W
(d)
i be the set of all sequences ending with i (i ∈ Σ).

Then W
(d)
i = W (d)i.

Because a sequence is either empty or ends with a letter in the alphabet, we have

W (d) = {[]} ∪
⋃
i∈Σ

W (d)i, (3.1)

and
wt(W (d)) = wt({[]}) +

∑
i∈Σ

wt(W (d)i) = 1 + ds · wt(W (d)). (3.2)

Thus, we have

wt(W (d)) =
1

1− ds
. (3.3)

It is necessary here to clarify the concept of generating functions.

Definition 3.2. A generating function f(s) is a formal power series

f(s) =
∞∑
n=0

pns
n

whose coefficients are the sequence {p0, p1, . . .}.

In this case, (3.3) is thus the generating function of W (d), the set of all sequences on
alphabet of size d. The k-th term of this generating function is the number of sequences of
length k over alphabet of size d. Since 1/(1−ds) = 1+ds+d2s2 +d3s3 + . . . , it follows that
there are dk sequences of length k over alphabet of size d. This is trivial and we could have
calculated this without a generating function. Yet this was just an example to illustrate the
more sophisticated application of the method to which we are about to move on. Now we
will introduce the concept of mistakes.

Definition 3.3. A mistake is a given subsequence of consecutive terms that is to be avoided.

In the context of self-avoiding walks in Z2, if we encode walks as sequences each of whose
letters represents the direction taken at each step, then we could treat as mistakes walks
that begin and end at the same point, otherwise self-avoiding. Mistakes in the context of

taxi-walks in the Manhattan lattice
−→
Z 2 could be a superset of the aforementioned set of

walks while also including walks that have two consecutive turns.
We continue to use the encoding standard for taxi-walks as stated in the proof of (1.10),

but we are making a minor modification. Since our focus is on walks starting east, we will
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from now on ignore the capital letter that indicates the starting direction, regarding {s, t, s, t}
as the same as (E, {s, t, s, t}) for example. Then the walk {t, t} is a mistake because it has
two consecutive turns.

Then {s, t, s, s, t, s, s, t, s, s, t} would be another mistake as it goes back to the origin in
the end, as illustrated in Figure 5. In the ensuing paragraphs, we will keep using these
two examples of mistakes above for demonstration. Since every taxi-walk has a unique
encoding, counting the number of taxi-walks would amount to counting sequences that avoid
a prescribed set of mistakes, which is exactly what the Goulden-Jackson method does.
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Figure 5: Mistake {s, t, s, s, t, s, s, t, s, s, t} on the Manhattan lattice

Before we dive into the details of the Goulden-Jackson cluster method, we need to define
a few concepts.

Definition 3.4. A marked sequence is a sequence in which a subset of its mistakes is marked.

For example, all of the following are marked sequences. m1 also counts because an empty
subset of its mistakes is marked.

m1 = s, t, s, s, t, s, s, t, s, s, t, t, s

m2 = s, t, s, s, t, s, s, t, s, s, t,t, s

m3 = s, t, s, s, t, s, s, t, s, s, t, t,s

m4 = s, t, s, s, t, s, s, t, s, s,t, t,s

Definition 3.5. Let W
(d)

denote the set of all sequences over alphabet of size d with mistakes

marked. So for taxi-walks in For any sequence σ ∈ W
(d)

, let γ(σ) denote the number of
mistakes of σ that are marked. Let wt(σ) = (−1)γ(σ)sλ(σ), λ(σ) still denoting the length of
σ. And for a set of sequences S, let wt(S) =

∑
σ∈S wt(σ).

In our previous examples, γ(m1) = 0, γ(m2) = γ(m3) = 1, and γ(m4) = 2; wt(m2) =
wt(m3) = −s13, and wt(m1) = wt(m4) = s13. Noonan showed in [5] the following lemma.
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Lemma 3.1. The generating function for mistake-avoiding sequences on alphabet of size d

is wt(W
(d)

), which, equivalently, is also the generating function for self-avoiding walks each
of whose steps has d possible moves.

Proof. If a sequence σ ∈ W (d) has no mistakes, then σ only appears once in W
(d)

and

contributes sλ(σ) to wt(W
(d)

).

If σ has k mistakes (k ≥ 1), then σ contributes (−1)r
(
k
r

)
sλ(σ) to wt(W

(d)
) for 0 ≤ r ≤ k,

because in W
(d)

there are
(
k
r

)
marked sequences based on σ each with r of σ’s k mistakes

marked. We know that by the binomial theorem,

k∑
r=0

(−1)r
(
k

r

)
=

k∑
r=0

(
k

r

)
(−1)r1k−r = (−1 + 1)k = 0,

so σ has no contribution to wt(W
(d)

) if it has mistakes.

Hence, wt(W
(d)

) is the generating function of sequences devoid of mistakes. The coefficient of
the l-th term of the generating function is exactly the number of mistake-avoiding sequences
of length l.

It is thus critical to figure out what wt(W
(d)

) is exactly, but before we do that, it is
necessary to introduce the concept of L-clusters.

Definition 3.6. An L-cluster of mistakes is a marked sequence with the following properties:

a) every letter contributes to at least one mistake;

b) its mistakes are fully overlapping.

We denote all L-clusters on alphabet of size d as L(d).

The following are both examples of L-clusters:

l1 = s, t, s, s, t, s,s, t, s, s, t,s, s, t, s, s, t

l2 = s,t,s, s,t,s, s,t,s,s,t, s,s,t, s,s,t

We can see that l1 and l2 are based on the same sequence, but l2 marks out one more mistake
than l1. Noonan mistakenly stated in [5] that an L-cluster must have all its mistakes marked.

He went on to partition W
(d)

, in the spirit of (3.1), into the empty sequence, sequences ending
with a letter that is not part of a marked mistake, and sequences ending with an L-cluster,

since each nonempty marked sequence in W
(d)

either terminates with a marked mistake or
does not. The condition that an L-cluster has to have all its mistakes fully marked is too
stringent, ignoring marked sequences that may end with subsequences such as l1 that are
not fully marked, and is thus false.
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With the partition above in mind, we have

W
(d)

= {[]} ∪
⋃
i∈Σ

W
(d)
i ∪W (d)

L(d), (3.4)

and
wt(W

(d)
) = 1 + dswt(W

(d)
) + wt(W

(d)
)wt(L(d)). (3.5)

Therefore, the generating function for mistake-avoiding sequences on alphabet of size d is

wt(W
(d)

) =
1

1− ds− wt(L(d))
. (3.6)

So if we want to compute the generating function for self-avoiding walks, we need to compute
wt(L(d)). To calculate this, we segregate L(d) into sets with common terminating mistakes.

Definition 3.7. Let S[m] denote the set of all L-clusters which terminate with the marked
mistake m. We have

wt(L(d)) =
∑

mistakes m

wt(S[m]). (3.7)

Before we move on to one of the most important discussions of this paper, we have to
clarify the definitions of the prefix and suffix of a mistake.

Definition 3.8. The prefix of length k of a mistake m is the first k steps of m; the suffix of
length k of m is the last k steps of m.

Suppose C is an L-cluster in S[m], then either C = m or C = Ds such that s is a
suffix of m and D is an L-cluster in S[m′] where m′ and m overlap. Then we have a system
of equations across different mistakes m, by solving which we can obtain the generating
function for mistake-avoiding sequences and equivalently for self-avoiding walks:

wt(S[m]) = wt(m) +
∑

p, p is a prefix of m

( ∑
m′, p is a suffix of m′

(−1)sλ(m)−λ(p)wt(S[m′])

)
. (3.8)

Solving for the wt(S[m]) for each mistake m and summing them according to (3.7) would

allow us to get wt(L(d)), plugging which in (3.6) will give us wt(W
(d)

). The issue is that
the given set of mistakes may be infinite, and this is true for taxi-walks in the Manhattan
lattice. What we can do is to simply use a finite subset of mistakes, and then we would
be overcounting the number of self-avoiding walks, or taxi-walks in this case, because we
would count walks which include mistakes that should have been in our mentioned subset
of mistakes. We will thus be getting an upper bound for µt, the connective constant of the
taxi-walk Manhattan lattice or the growth rate of the number of taxi-walks with respect to
their length.
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3.2 Implementation

Instead of calculating the exact generating function in (3.6), we can calculate the coefficients
of the Taylor expansion of the generating function inductively from lower to higher terms.
Before we describe this inductive relation, bear in mind that the coefficient of the sk term,
as shown in Lemma 3.1, is an exact enumeration of taxi-walks that are self-avoiding up to
the first k steps.

For any wt(S[m]), we iteratively calculate the coefficients of its Taylor expansion from
the lower terms. Denote wt(S[m])k as the coefficient of sk of wt(S[m]) up to sk. Suppose we
have computed wt(S[m])j for every 0 < j < k and for every mistake m. Then,

wt(S[m])k =


0 for k < λ(m)

−1 for k = λ(m)

−
∑

p, p is a prefix of m

(∑
m′, p is a suffix of m′ wt(S[m′])k−λ(m)+λ(p)

)
for k > λ(m)

(3.9)
We modeled after the Maple code provided in [5] and implemented the Goulden-Jackson

method with the Python code shown in A.1, utilizing the above inductive relation. Since the
number of mistakes fed into the Goulden-Jackson method has to be finite, the generating
function of the taxi-walks must be rational. Consequently, the coefficients of the Taylor
expansion of the very generating function are asymptotic to a constant times αn where α
is the smallest positive root of the denominator of the generating function. Thus, the n-th
root of the coefficient converges to α, which is the connective constant. And we will get an
upper bound on the connective constant if we look at a large enough n.

4 Alm’s Method

We also attempted Alm’s method in [6] to obtain a tighter upper bound for the connective
constant of the taxi-walks, but the approach requires unfeasibly large computing power for
matrix construction. The previous best result for the upper bound obtained in [3] using
Alm’s method already tried to construct a 10057 × 10057 matrix, and if we were to make
any incremental improvement, we would have to create a significantly larger matrix and the
computing power we had did not allow us to do that within a limited amount of time, so
eventually we did not go down this path. Nonetheless, we explain the gist of Alm’s method
below as it is a remarkably ingenious mechanism.

Consider a finitely generated lattice such as Z2 or
−→
Z2. Let G(m,n) be the matrix whose

row indices represent all different m-step self-avoiding sub-walks that any n-step self-avoiding
walk may start with, and whose column indices represent all different m-step self-avoiding
sub-walks that any n-step self-avoiding walk may end with, where m < n. Two m-step self-
avoiding walks are considered equivalent if one can be mapped on the other by translation,
rotation, or reflection. Each entry gij(m,n) of the matrix G(m,n) is the number of n-step
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self-avoiding walks that start with the m-step self-avoiding walk i maps to and end with the
m-step self-avoiding walk j maps to. Alm then presented the following theorem.

Theorem 4.1. If µ denotes the connective constant of the lattice and λ1(A) denotes the
largest eigenvalue of any lattice A,

µ ≤ (λ1(G(m,n))
1

n−m

Computing the largest eigenvalue of a matrix is fast. The time-consuming, let alone
space-consuming, part is constructing the very matrix. That is why we did not put our
focus on Alm’s method, even though it is absolutely phenomenal.

5 Results for the Upper Bound

The previous best result for the upper bound was obtained in [3] using Alm’s method with
m = 20, n = 60. The upper bound µt was computed to be 1.5884 and λ = µ4

t − 1 = 5.3656
by Theorem 1.2, which states that the hard-core model exhibits order for all values of λ >
λ′. The Goulden-Jackson cluster method was also attempted in [3], but the upper bound
obtained was not as good as 1.5884. The limitation was that only mistakes of length up to
40 (there are 317,267 of them) were used.

We generated a list of all mistakes of length up to 48 (there are 8,009,145 of them, see
https://drive.google.com/file/d/0B66P3nZV3KpUYXA2TmNpY2ZrTFk/view?usp=sharing)
using the code presented in Section A.2. Running so many mistakes through the Goulden-
Jackson, however, was slow and the best result we obtained ended up using only mistakes
of length up to 44 (there are 1,721,327 of them). We used the Goulden-Jackson method to
get the number of taxi-walks of length 802 that avoided mistakes of length at most 44, and
computed the 802-nd root of that number to get an upper bound on µt of 1.587459, and
λ′ = µ4

t − 1 = 5.350531.

6 Kesten’s Irreducible Bridge Method

6.1 The Theory behind Irreducible Bridges

We now consider lower bounds on the connective constant of taxi-walks. We have already
mentioned in Definition 1.1 the notion of bridges and how it can be deployed to obtain a
lower bound for the connective constant. Here we define and explain a modification that is
suitable for studying the Manhattan lattice — Kesten’s theory of irreducible bridges, which
significantly improves the lower bounds that can be obtained. Kesten’s original treatment
for ordinary self-avoiding walks appears in [7]; our treatment, however, follows Alm and
Parviainen’s presentation in [8]. We begin with defining bridge taxi-walks by modifying
Definition 1.1.

Definition 6.1. An n-step bridge taxi-walk−→ω in
−→
Z 2 is an n-step self-avoiding walk satisfying
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i. −→ω (0) < −→ω (i) ≤ −→ω (n) for 1 ≤ i < n, and

ii. −→ω (n− 1) < −→ω (n).

The number of n-step bridge taxi-walks starting at the origin is denoted
−→
bn . By convention,−→

b0 = 1.

A nice approach to imagine a bridge taxi-walk is to consider a walk that starts by taking
a step to the right, never returns to the y-axis, and ends at a point which has the maximum
x-coordinate among all the points visited, along with the extra constraint that the last step
is a step to the right. The raison d’être of this additional constraint is to avoid consecutive
turns in the concatenation of any two bridges. Also, the final vertex of the walk does not need
to be the unique vertex with maximum x-coordinate. Figure 6 demonstrates an illustration
of a bridge taxi-walk.

−1 0 1 2 3 4 5 6 7

−2

−1

1

2

3

4

x

y

Figure 6: An example of a 29-step bridge taxi-walk in the Manhattan lattice

Let B(x) =
∑

n≥0 bnx
n be the generating function of the bn’s. We have

B(x) = 1 + x+ x2 + x3 + 2x4 + 3x5 + 5x6 + 7x7 + 11x8 + 16x9 + 25x10 + . . . (6.1)

(see http://www3.nd.edu/~dgalvin1/TD/index.html, the computations here due to Blanca
in [3]).

To move on, it is necessary to introduce the concept of irreducible bridges.

Definition 6.2. An irreducible bridge is a bridge taxi-walk −→ω that cannot be decomposed
into two bridge taxi-walks. Specifically, there does not exist 1 ≤ i ≤ n satisfying

i. −→ω (0) < −→ω (j) ≤ −→ω (i) for 1 ≤ j < i,

ii. −→ω (i− 1) < −→ω (i),
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iii. −→ω (i) < −→ω (k) ≤ −→ω (n) for i+ 1 ≤ k < n, and

iv. −→ω (n− 1) < −→ω (n),

Denote by βn the number of irreducible bridges of length n. By convention, β0 = 0.

The taxi-walk shown in Figure 6 is not an irreducible bridge because it can be decomposed
into two bridge taxi-walks at vertex (4, 4), one from the origin to (4, 4) and the other from
(4, 4) to (7,−2). Both of these bridge taxi-walks, however, are irreducible bridges.

Fix n ≥ 1. For each ` ≥ 1, each solution to k1 + . . . + k` = n with each ki ≥ 1, and
each selection of a collection of irreducible bridge p1, . . . , p` with pi of length ki for each
i, there corresponds a bridge of length n obtained by concatenating the pi’s (with suitable
translations and reflections where necessary). Moreover, each bridge of length n is obtained
exactly once in this process. It follows that

bn =
∑
`≥1

∑
k1+...+k`=n

∏̀
i=1

βi. (6.2)

and, using the general theory of generating function (see Rule 4, Section 2.2 of [9]),

B(x) =
1

1− i(x)

where i(x) =
∑

n≥0 βnx
n. Therefore, i(x) = 1− (1/B(x)). For any N ≥ 1, the coefficients

of the power series of 1/B(x) up to the coefficient of xN are determined by the coefficients of
the power series of B(x) up to xN , and so the coefficients of i(x) up to xN are determined
by the coefficients of B(x) up to xN . We know the coefficients of B(x) up to x60 from
(6.1), so we also know the coefficients of i(x) up to x60. A Mathematica computation yields
i(x) = x + x4 + x6 + x8 + x10 + x12 + x13 + x14 + 3x15 + 3x16 + 6x17 + 8x18 + 12x19 +
17x20 + 27x21 + 33x22 + 63x23 + 67x24 + 144x25 + 145x26 + 321x27 + 326x28 + 706x29 +
728x30 + 1581x31 + 1614x32 + 3598x33 + 3610x34 + 8224x35 + 8194x36 + 18814x37 + 18730x38 +
43062x39+42947x40+98875x41+98558x42+228098x43+226872x44+528070x45+524588x46+
1225338x47+1217757x48+2849693x49+2834637x50+6641524x51+6613633x52+15514432x53+
15464004x54 + 36317487x55 + 36238612x56 + 85173845x57 + 85103200x58 + 200093253x59 +
200232649x60 + . . . .

We used the code in A.3 to verify the above equation up to x48 and it was a perfect
match.

Notice that i(x) = 1 has a unique positive root rpos < 1. Let r be any upper bound on
rpos. Knowing (6.3), the standard theory of generating functions (see Section 2.4 of [9]) tells
us that rpos is an upper bound on the radius of convergence of B(x), and so is r. We then
have

lim sup
n→∞

b1/n
n ≥ 1/r.
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But we also know that bn ≤ ãn where ãn is the number of taxi-walks of length n (only
considering the ones starting east), so

lim sup
n→∞

b1/n
n ≤ lim sup

n→∞
ã1/n
n = µt

where µt is the taxi-walk connective constant. Hence µt ≥ 1/r.
Henceforth, to get lower bounds on µt, we want to get upper bounds on rpos, the unique

positive solution to i(x) = 1.
Consider a sequence {β′n}∞n=1 with 0 ≤ β′n ≤ βn for each n. Set i′(x) =

∑∞
n=1 β

′
nx

n. As
is the case with i(x), the equation i(x) = 1 has a unique positive solution. If this solution
is r, then we have r ≥ rpos. So our conclusion is the following.

Theorem 6.1. Suppose βn be the number of irreducible bridges of length n in the taxi walk
Manhattan lattice. If 0 ≤ β′n ≤ βn for all n, and if

∑∞
n=1 β

′
nx, then µt ≥ 1/r.

This is why it is of value to seek lower bounds on βn. In the ensuing subsection, we are
describing an approach that we used to construct certain subsets of irreducible bridges, thus
getting lower bounds.

6.2 “Mountain Ranges” Construction of Irreducible Bridges

Suppose that p is a lattice path, that starts at the origin, takes steps in increments of (1, 1)
and (1,−1), ends at the point (m,w) (so takes a total of m steps, and has a net height
change of w). Suppose further that p reaches the line y = w at some intermediate point
(before the last step), that it returns to the x-axis at some point after the point at which it
has reached the line y = w, and that it never goes below the x-axis or above the line y = w.
Assume w ≥ 1. Let t be the number of vertices at which p turns. Call p an (m,w, t) path.
Let the vertices of p be (v1, . . . , vm+1); note that v1 = (0, 0), v2 = (1, 1), vm = (m− 1, w− 1)
and vm+1 = (m,w), and that exactly t of the vi, p turns.

For each integer ` ≥ 0, and for each weak composition c1 + . . .+ cm = ` of ` into m parts,
consider the following walk in the Manhattan lattice.

• Start at (0, 0) and step right.

• Take 2c1 steps down, then step right twice.

• If v2 is not a vertex where p turns, take 2c2 steps down, then take a step to the right
twice. If v2 is a vertex where p turns, take 3 + 2c2 steps down, then take a step to the
left twice.

• If v3 is not a vertex where p turns, take 2c3 steps down, then take a step to the right
twice (if p is moving up as it passes through v3) or a step to the left twice (if p is moving
down as it passes through v3). If v3 is a vertex where p turns, take 3 + 2c2 steps down,
then take a step to the left twice (if p is moving down after it passes through v3) or a
step to the right twice (if p is moving up after it passes through v3).
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• Repeat for all vertices of p, up to vm.

The end result is an irreducible bridge of length

2m+ 1 + 2`+ 3t.

In fact, there are
(
m+`−1
m−1

)
such irreducible taxi-walk bridge of this length, one for each weak

composition of ` into m parts.
Note that t must always be even, so 2m+ 1 + 2`+ 3t must always be odd.
By this scheme, we can get a lower bound on βn, the number of irreducible bridges of

length n (for odd n). Say that an (m,w, t) path p is n-good if 2m + 1 + 3t ≤ n and if
n − (2m + 1 + 3t) is even (this second condition is redundant, since n must be odd and t
even). There is a unique choice of ` ≥ 0, namely (n− (2m+ 1 + 3t))/2, for which the process
described above produces irreducible bridges of length n, and it produces(

m+ (n− (2m+ 1 + 3t))/2− 1

m− 1

)
=

(
n/2− 3t/2− 3/2

m− 1

)
=

(
(n− 3t− 3)/2

m− 1

)
such. So we get

βn ≥
∑

n-good paths

(
(n− 3t− 3)/2

m− 1

)
.

Here is a scheme for producing n-good paths: consider the path that goes straight from
the y-axis up to the line y = w, straight back to the x-axis, and then straight back to the
line y = w. This path has m = 3w and t = 2, so it can be thought of as a (3w,w, 2) path.
This path will be n-good for 6w + 7 ≤ n. It follows that for each odd n ≥ 13, we get

βn ≥
∑

1≤w≤(n−7)/6

(
(n− 9)/2

3w − 1

)
.

For example, for n = 59 this gives βn ≥ 11184810, around 5.6% of the true value of
200093253.

Here is a generalization of this idea: consider the path that goes straight from the y-axis
up to the line y = w, straight back to the x-axis, and straight back to the line y = w,
and repeats this zig-zagging until it returns to the line y = w for the kth time, for some
parameter k ≥ 2 (k = 2 is the case we have just considered). This path has m = (2k − 1)w
and t = 2k − 2, so it can be thought of as a ((2k − 1)w,w, 2k − 2) path. This path will be
n-good for (4k − 2)w + 6k − 5 ≤ n. It follows that for each odd n ≥ 10k − 7, we get

βn ≥
∑

1≤w≤(n−6k+5)/(4k−2)

(
(n− 6k + 3)/2

(2k − 1)w − 1

)
,

and so, aggregating over choices of k, for n ≥ 13

βn ≥
∑

2≤k≤(n+7)/10

∑
1≤w≤(n−6k+5)/(4k−2)

(
(n− 6k + 3)/2

(2k − 1)w − 1

)
.
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For example this gives β59 ≥ 12078275, around 6% of the true value.
We may improve things more. For example, at each of the (2k − 1)(w − 1) places where

our basic ((2k − 1)w,w, 2k − 2) path does not turn, we may insert any number of “vees”:
either a down step followed by an up step if the path is going up, or an up step followed by
a down step if it is going down. Suppose we insert a such vees; the number of ways to do
so is the number of weak compositions of a into (2k − 1)(w − 1) parts, or

(
(2k−1)(w−1)+a−1

a

)
.

Each such mode of insertion leads to a ((2k− 1)w+ 2a, w, 2k− 2 + 2a) path. This path will
be n-good for (4k − 2)w + 6k − 5 + 10a ≤ n. This leads to

βn ≥
∑
a

∑
k

∑
w

(
(2k − 1)(w − 1) + a− 1

a

)(
(n− 6k + 3− 6a)/2

(2k − 1)w + 2a− 1

)
.

Where a ∈ [0, (n− 13)/10], k ∈ [2, (n+ 7− 10a)/10] and w ∈ [1, (n− 6k+ 5− 10a)/(4k− 2)]
in the sums above.

This improves a59 to ≥ 13798649, around 6.89% of the true value.

7 Results for the Lower Bound

Using the “Mountain Ranges” approach and setting β′n = βn for n ≤ 60, and βn = 0
otherwise, we get µt ≥ 1.557012397 (µ4

t − 1 ≥ 4.87717). Using instead

β′n =
∑
a

∑
k

∑
w

(
(2k − 1)(w − 1) + a− 1

a

)(
(n− 6k + 3− 6a)/2

(2k − 1)w + 2a− 1

)
(where a ∈ [0, (n− 13)/10], k ∈ [2, (n+ 7− 10a)/10] and w ∈ [1, (n− 6k+ 5− 10a)/(4k− 2)]
in the sums above) for 61 ≤ n′ ≤ 901, n′ odd, improves this to µt ≥ 1.557118239 (µ4

t − 1 ≥
4.8787).

8 Future Work

There is possibility for further improvement. If we have ample computing power, we can
compute the exact number of irreducible bridges of lengths 61 and greater.

Another observation is that it seems very clear from the data up to n = 60 that βn ≥
2βn−2 for all large enough n (this has certainly settled down into a clear pattern by n = 60).
Incorporating this empirical lower bound leads to a jump in connective constant lower bound
from 1.557118 to 1.559322. But this would require a strict proof of this inequality.

We may also make use of the following lemma, although there seems to be little improve-
ment on the lower bound. If we can prove βn+k ≥ βn for a much smaller k, the improvement
would be much greater.

Lemma 8.1. βn+17 ≥ βn for all n ≥ 1.
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Proof. For any irreducible bridge starting with a straight, flip the irreducible bridge upside-
down, prepend it with a 17-step walk as shown in Figure 7, and still get an irreducible bridge.
Otherwise, the irreducible bridge starts with a turn, and we can flip the irreducible bridge
upside-down and prepend it with another 17-step walk as shown in Figure 8, and still get
an irreducible bridge.
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A

A.1 Goulden-Jackson Cluster Method Python Code

import decimal

import math

import sys

if len(sys.argv) != 5 and len(sys.argv) != 4:

sys.exit("usage: ./gjseries_v2.py <alphabet_size> <input_file> <num_steps> (<

output_file>)")

a_size = int(sys.argv[1])

f = open(sys.argv[2], "r")

lines = f.readlines()

first = True

lis = []

# get suffices and maximal mistake length

suffi = set()

maxlen = 0

mistakes = []

for i in xrange(len(lines)):

line = lines[i]

mistake = eval(line.rstrip()[:-1])

mistakes.append(mistake)

if len(mistake) > maxlen:

maxlen = len(mistake)

for ind in xrange(1, len(mistake)):

suffi.add(’’.join([str(code) for code in mistake[ind:]]))

efes = [0 for i in xrange(maxlen - 1)]

nuterms = int(sys.argv[3])

lt = {}

c = []

curr_mu = None

for i1 in xrange(nuterms + 1):

tot = 0

x = {}

for i in xrange(len(mistakes)):

mistake = mistakes[i]
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gu = 0

if len(mistake) == i1:

gu = -1

for r in xrange(1, len(mistake)):

pref = mistake[:(len(mistake) - r)]

pref = ’’.join([str(k) for k in pref])

if pref in suffi:

if not pref in lt:

lt[pref] = efes

gu = gu - lt[pref][maxlen - 1 - r]

for j in xrange(1, len(mistake)):

suf = mistake[j:]

suf = ’’.join([str(k) for k in suf])

if suf not in x:

x[suf] = 0

x[suf] += gu

tot += gu

lis.append(tot)

if i1 == 0:

c_k = 1 / (1 - tot)

c.append(c_k)

else:

c_k = 0

for i in xrange(i1):

b = -lis[i1 - i]

if i == i1 - 1:

b = -a_size - lis[1]

c_k += b * c[i]

c_k = -c_k/(1-lis[0])

c.append(c_k)

if i1 > 1:

curr_mu = decimal.Decimal(str(c_k)) ** decimal.Decimal(str(1.0/i1))

print i1, curr_mu

ouf = open(sys.argv[4], "w")

ouf.write(str(i1) + " " + str(curr_mu))

ouf.close()

for suff in suffi:

suf = ’’.join([str(k) for k in suff])
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if suf not in lt:

lt[suf] = efes

resh = lt[suf]

if suf not in x:

x[suf] = 0

if len(resh) < 2:

lt[suf] = [x[suf]]

else:

lt[suf] = resh[1:]

lt[suf].append(x[suf])

A.2 Mistake Generating Code

import sys

def is_polygon(arr):

coords = [(0,0),(0,1)]

curr_dir = ’y’

for i in xrange(len(arr)):

num = arr[i]

last = coords[-1]

if num == 1:

if curr_dir == ’y’:

new_coord = (last[0], last[1] + 1 - 2 * (last[0] % 2))

else:

new_coord = (last[0] + 1 - 2 * (last[1] % 2), last[1])

else:

if curr_dir == ’y’:

curr_dir = ’x’

new_coord = (last[0] + 1 - 2 * (last[1] % 2), last[1])

else:

curr_dir = ’y’

new_coord = (last[0], last[1] + 1 - 2 * (last[0] % 2))

if new_coord in coords:

return i == len(arr) - 1 and coords[0] == new_coord

coords.append(new_coord)

return False

def dfs(arr, curr_depth, end_depth, extra_stuff):

if curr_depth > end_depth:

if is_polygon(arr):

ouf = extra_stuff[0]

ouf.write(str(arr) + ",\n")

print "\r" + ’’.join([str(i) for i in arr]),

return
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for i in xrange(1,3):

if len(arr) > 0 and arr[-1] == 2 and i == 2:

break

dfs(arr + [i], curr_depth + 1, end_depth, extra_stuff)

if len(sys.argv) != 3:

sys.exit("usage: ./mistakes_v1.py <mistake_length> <output_file>")

mist_len = int(sys.argv[1])

ouf = open(sys.argv[2], "w")

dfs([], 1, mist_len, [ouf])

ouf.close()

A.3 Irreducible Bridge Enumerating Code

import numpy

import sys

def is_irred_bridge(arr):

last = (1,0)

existing_coords = {(0,0):True, (1,0):True}

coords = [(0,0), (1,0)]

curr_dir = ’x’

for i in xrange(len(arr)):

num = arr[i]

if num == 1:

if curr_dir == ’y’:

new_coord = (last[0], last[1] + 1 - 2 * (last[0] % 2))

else:

new_coord = (last[0] + 1 - 2 * (last[1] % 2), last[1])

else:

if curr_dir == ’y’:

curr_dir = ’x’

new_coord = (last[0] + 1 - 2 * (last[1] % 2), last[1])

else:

curr_dir = ’y’

new_coord = (last[0], last[1] + 1 - 2 * (last[0] % 2))

if new_coord[0] <= 0 or new_coord in existing_coords:

return False

last = new_coord

existing_coords[last] = True

coords.append(new_coord)

if curr_dir != ’x’ or last[0] < max([x[0] for x in coords]):

return False

for i in xrange(1, len(coords) - 1):

xx = coords[i][0]
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if coords[i - 1][1] != coords[i][1] or coords[i + 1][1] != coords[i][1]:

continue

if max([x[0] for x in coords[:i]]) <= xx and xx < min([x[0] for x in coords[i

+1:]]):

return False

return True

def dfs(arr, curr_depth, end_depth):

global count, mu

if curr_depth > end_depth:

if is_irred_bridge(arr):

count += 1

print "Lower bound:", "{0:.6f}".format(round(mu,6)), "; step", end_depth,

’’.join([str(x) for x in arr]), "\r",

return

for i in xrange(1,3):

if len(arr) > 0 and arr[-1] == 2 and i == 2:

break

dfs(arr + [i], curr_depth + 1, end_depth)

if len(sys.argv) != 3:

sys.exit("usage: ./irred_bridges_v1.py <bridge_num_file> <lower_bound_file>")

coeff = [-1]

mu = 0

for i in xrange(100):

ouf1 = open(sys.argv[1], "a")

ouf2 = open(sys.argv[2], "w")

count = 0

dfs([], 1, i)

ouf1.write(str(i + 1) + " " + str(count) + "\n")

coeff = [count] + coeff

r = numpy.roots(coeff)

r = r[numpy.isreal(r)]

mu = 1/r[r>0][0].real

ouf2.write(str(mu) + "\n")

ouf1.close()

ouf2.close()
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Figure 7: Prepend a 17-step walk to a 13-step irreducible bridge starting with a straight
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Figure 8: Prepend a 17-step walk to a 4-step irreducible bridge starting with a turn
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