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Abstract. In the numerical treatment of solution sets of polynomial systems, meth-
ods for sampling and tracking a path on a solution component are fundamental. For
example, in the numerical irreducible decomposition of a solution set for a polynomial
system, one first obtains a “witness point set” containing generic points on all the irre-
ducible components and then these points are grouped via numerical exploration of the
components by path tracking from these points. A numerical difficulty arises when a
component has multiplicity greater than one, because then all points on the component
are singular. This paper overcomes this difficulty using an embedding of the polynomial
system in a family of systems such that in the neighborhood of the original system each
point on a higher multiplicity solution component is approached by a cluster of nonsin-
gular points. In the case of the numerical irreducible decomposition, this embedding can
be the same embedding that one uses to generate the witness point set. In handling
the case of higher multiplicities, this paper, in concert with the methods we previously
proposed to decompose reduced solution components, provides a complete algorithm for
the numerical irreducible decomposition. The method is applicable to tracking singular
paths in other contexts as well.
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1. Introduction

Our main motivation for developing a method to track singular paths is to com-
plete our numerical algorithms for computing the irreducible decomposition of
the solution set of a polynomial system of equations. Conventional path tracking
methods are limited to nonsingular paths; they are sufficient for handling solution
components of multiplicity one, but cannot cope with components having multi-
plicity greater than one. With the addition of a path tracking algorithm applicable
to these components, they can be treated in all other respects in the same manner
as the components of multiplicity one. Moreover, the new path tracker can be ap-
plied in other similar contexts as well, even those in which the path to be followed
is defined by functions that are merely analytic rather than polynomial.

Since it is our main motivation, we begin with a brief description of the irre-
ducible decomposition problem. Let

f(x) :=




f1(x1, . . . , xN )
...

fn(x1, . . . , xN )


 , (1)

be a system of polynomial equations in CN , where for simplicity we assume that
not all of the fi are identically zero. For this system, the solution set, Z = V(f) :=
{x ∈ C

N |f(x) = 0}, can be written as the union

Z :=
N−1⋃
i=0

Zi :=
N−1⋃
i=0

⋃
j∈Ii

Zij (2)

where Zi is the union of all i-dimensional irreducible components Zij of Z, and
the index sets Ii are finite and possibly empty. Note that Z is the reduction of
the possibly nonreduced algebraic set f−1(0) defined by the equations f1, . . . , fn.
The irreducible decomposition problem is to determine all of the irreducible com-
ponents, Zij , meaning, at a minimum, to enumerate the components and provide
a set membership test for each of them.

In [16], we presented algorithms to numerically describe and manipulate the
irreducible decomposition. In that article we gave an implementation of the al-
gorithm for the components Zij of V(f), which occur with multiplicity one as
components of f−1(0). In this article we present an implementation for the re-
maining components of V (f) that have multiplicity at least two as components of
f−1(0).

Components of multiplicity at least two specialize in the classical case of a
one variable polynomial to roots of multiplicity at least two. Beyond the difficul-
ties present in the classical case, there are a number of non-classical difficulties.
For example, perturbations of the system can in some situations cause the whole
component to disappear, or to change dimension.

One consequence of our new algorithm, is the first implemented homotopy
method of finding exactly the isolated solutions of a polynomial system of n poly-
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nomials in n variables. All previous implementations deliver a finite set of solu-
tions containing the isolated solutions, but also possibly containing non-isolated
solutions. Though previous implementations picked out the nonsingular isolated
solutions from this set, they gave little or no information about whether a singular
solution was isolated or not.

Computing a numerical irreducible decomposition depends on an algorithm for
continuing from a generic point on a solution component to nearby points on the
component. In [16] and the related papers [17, 18, 19, 20], widely spaced points
on a component are found by tracking paths along linear slices of the component.
As we shall describe further below, the numerical exploration of a component by
path tracking allows one to classify witness points on each component, thereby
determining the degree of the component and creating an efficient membership
test for the component.

The essential difficulty, which this paper overcomes, is that standard predictor-
corrector path tracking fails on components of multiplicity greater than one. This
is because every point on such a set is singular: the Jacobian matrix of the polyno-
mial system evaluated at a point on the set has rank smaller than the co-dimension
of the set. In other words, the null space of the Jacobian includes directions that
are not in the tangent space of the set. Indeed, in extreme cases the Jacobian
matrix can become identically zero, thus yielding no information about the tan-
gent space of the underlying set. To predict a new point along the path, standard
path trackers use the Jacobian to compute a tangent vector along the path, so
they cannot handle singular sets. These trackers also use the Jacobian to compute
corrections to the prediction via Newton’s method. Here the ill-conditioning of the
Jacobian in the vicinity of the singular solution set slows convergence and limits
the final accuracy.

Besides the numerical irreducible decomposition, other problems can create the
need to track singular paths. For example, as in [7, 9], suppose we have a family
of polynomial systems, f(x,q) = 0, that depend analytically on some parameters
q ∈ C

M . For some generic parameters q0, we may use continuation to find a set
of solution points that contains the generically isolated solutions of f(x,q0) = 0,
some of which may be multiple roots. One may obtain such a set for another set of
parameters q1 by tracking solution paths in the homotopy f(x, tq0+(1−t)q1) = 0.
With standard path tracking, one could only apply this technique to the generically
nonsingular solutions. The approach of this paper removes this restriction.

Although the above discussion has posed the problem in terms of polynomial
systems, the method applies more generally to systems of analytic equations. We
make no essential use of the polynomial nature of the equations. As prediction
and correction both act locally, only the analytic properties of functions of several
complex variables are germane.

The method we propose is related to previous work [10, 11, 12] in computing
singular solutions of polynomial and analytic systems of equations. For polynomial
systems, related recent work on dealing with components of solutions of multiplic-
ity at least two is described in [3] and in [5, 6]. A semi-numerical approach to
restore the quadratic convergence of Newton’s method by deflation can be found



4

in [13] and [14]. The main purpose of this paper is outline algorithms that com-
plement our numerical decomposition method in [16]. In section 5, we present a
numerical experiment to illustrate feasibility on a small example.
Acknowledgments. We gratefully acknowledge the support of this work by
Volkswagen-Stiftung (RiP-program at Oberwolfach). The first author thanks the
Duncan Chair of the University of Notre Dame and National Science Foundation
(DMS-0105653) for their support. The second author thanks the Department of
Mathematics of the University of Illinois at Chicago and National Science Foun-
dation (DMS-0105739) for their support. The third author thanks the General
Motors Research Laboratories for their support.

2. Singular Path Tracking

In this section we present a general statement of the singular path-tracking prob-
lem, and explain our solution to the problem. In section 3, we explain in more
detail how this technique is used as part of a larger algorithm for computing a
numerical irreducible decomposition.

Our approach is to meld together the approach we used for path-tracking on
a reduced component of the solution set of f(x) = 0 with the classical homotopy
continuation approach to isolated singular points of polynomial systems.

2.1. Path Tracking on Components

First we recall the bare bones framework for path-tracking on reduced components.
We assume we have a solution x0 of f(x) = 0 which is a general point of some
reduced k-dimensional component Zkj of f−1(0). Indeed, the inductive procedures
of [16, 17, 18, 19] lead to such points. Moreover those approaches lead to a new
system of equations

F (x) :=




F1(x1, . . . , xN )
...

FN−k(x1, . . . , xN )
L1(x1, . . . , xN )

...
Lk(x1, . . . , xN )




, (3)

where

1. Zkj is a reduced component of the solution set of the equations F1 = 0, . . . ,
FN−k = 0; and
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2. the Li are generic linear functions whose set of common zeroes is a generic
k-dimensional linear space L transverse to Zkj and containing x0.

An appropriate homotopy of the Lis, chosen so that L varies within a (k + 1)-
dimensional linear space L′ gives a smooth path on the irreducible reduced curve
L′ ∩ Zkj .

In the situation where we have a nonreduced k-dimensional component, we
again have the same sort of system F , plus the generic linear spaces L and L′,
except that the k-dimensional irreducible component Zkj and the irreducible curve
L′ ∩ Zkj are not reduced.

2.2. Singular Isolated Solutions

Next recall how an isolated solution x0 of multiplicity at least two of a system
f(x) = 0 is handled classically. We assume the system is square, i.e., n = N , since
we usually reduce to such systems at the cost of possibly increasing the multiplicity
ν of x0 when ν > 1. The system is embedded in a larger system f(x, t) = 0 of
N equations in N + 1 unknowns such that f(x) = f(x, 0). In this case it follows
from the upper semicontinuity of the dimension of fibers of an analytic map, that
the zero set of f(x, t) = 0 is a one-dimensional analytic set C in a neighborhood
of (x0, 0). The system f(x, t) = 0 is chosen so that the projection map of C
down to the C under the projection from CN × C under to the second factor is
ν-sheeted from a neighborhood of (x0, 0) down to a neighborhood of 0. This setup
gives smooth maps x1(t), . . . ,xν(t) from (0, t0] to C for some real positive t0 such
that the xi(t) are a cluster of distinct smooth isolated solutions of f(x, t) = 0
and limt→0 xi(t) → x0. It is a useful fact [11] that the centroid of the cluster,
(x1(t) + · · · + xν(t))/ν is holomorphic.

2.3. Singular Paths

Now let us explain how we meld these two setups together. As noted at the start of
this section, we will explain in more detail in section 3 how this technique is used
as part of a larger algorithm for computing a numerical irreducible decomposition.
Let

g(v, s, t) :=




g1(v1, . . . , vN , s, t)
...

gN(v1, . . . , vN , s, t)


 , (4)

be a system of N functions analytic in C
N+2. We call v the variables and (s, t) the

parameters, and we are interested in solutions of the equations g(v, s, t) = 0 for
the variables given the values of the parameters. Note that in contrast to (1), this
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system is assumed to be square: it has the same number of functions as variables.
We call a point (v, s, t) singular if the N×N Jacobian matrix of partial derivatives
with respect to v is less than full rank at the point. In practice

1. we are interested in the irreducible components of g(v, 0, 0) = 0;

2. the analytic set g(v, s, 0) = 0 contains a curve, which would let us do the
our continuation if it was reduced; and

3. the variable t plays the same role as in the classical procedure sketched for
the isolated solution.

Let us make this precise by listing conditions under which our path tracking
algorithm applies. First,

1. the solution set of g(v, s, 0) = 0 is an irreducible one-dimensional curve C
in a neighborhood of v0, whose reduction is isomorphic to a neighborhood
of 0 ∈ C under the projection CN × {0} × C → C given by (v, s, t) → s.

This in particular implies that v0 is an isolated solution of the system g(v, 0, 0) =
0. We denote by v0(s) the point corresponding to s under the above projection.

Next we assume that

2. the multiplicity ν of C in the analytic set defined by g(v, s, 0) = 0 is the
same as the multiplicity ν of v0 as an isolated solution of g(v, 0, 0) = 0.

Using the above conditions, we know by semicontinuity of dimension of fibers
of analytic maps that the solution set of g(v, s, t) = 0 is a pure dimensional two-
dimensional analytic set S in a neighborhood of (v0, 0, 0). We further assume
that,

3. for any fixed s in a neighborhood of [0, 1], the projection (v, s, t) → t gives
a proper ν-sheeted finite mapping of a neighborhood of (v0, s, 0) in the re-
duction of Cs := S ∩ (

CN × {s} × C
)

to a neighborhood of 0 ∈ C.

In the situation of section 3, we know this for s = 0, and by genericity of construc-
tion, for a Zariski open set of s ∈ C, which by again using the genericity of the
construction can be assumed to contain [0, 1].

By the above condition there must exist a real positive t0 such that

4. for all s ∈ [0, 1], we have smooth maps v1(s, t), . . . ,vν(s, t) from {s}× (0, t0]
to Cs such that the vi(s, t) are a cluster of distinct smooth isolated solutions
of g(v, s, t) = 0 and limt→0 vi(s, t) → v0(s).

We emphasize some consequences of the above for the cluster C = {v1, . . . ,vν}
of ν distinct starting points that satisfy g(v, 0, t0) = 0 for a positive real t0 < δ
for a sufficiently small δ. For a sufficiently small δ

5. the centroid of the cluster, (v1(s, t)+ · · ·+vν(s, t))/ν, is an analytic function
of (s, t) in some neighborhood of [0, 1]× [0, δ]; and
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6. for fixed (s, t) in this neighborhood and with t 6= 0, the cluster points vi(s, t)
are nonsingular isolated solutions of g(v, s, t) = 0.

Item 1 in this list simply asserts that for t = 0, we have a well-defined solution
path parameterized by s. We wish to track this path as s goes from zero to one on
the reals and accurately compute the endpoint of this path. However, for ν > 1,
this solution path is a multiple solution and is therefore singular. Fortunately, for t
in the vicinity of zero, item 4 asserts that the solution component of g(v, s, 0) = 0
containing v0 is part of a solution component of g(v, s, t) = 0, which is smooth
for s ∈ [0, 1] and t ∈ (0, t0] for some small positive t0. It may not be apparent
how such an embedding g(v, s, t) of a given system g(v, 0, 0) is constructed, but
we can often arrange it as a consequence of the homotopies we use in solving
systems of polynomial equations. It is important to note that the choice of a v0

on a given component for which this procedure works will depend on the given
construction of the system g(v, s, t) = 0. A particular instance, the numerical
irreducible decomposition problem, is discussed in the next section.

3. Numerical Irreducible Decomposition

In this section, we review the algorithm from [16] and explain how it can lead to
a kind of singular path tracking problem. Improvements to the algorithm given in
[17, 18, 19] also depend on path tracking and hence require singular path tracking
to handle components of multiplicity greater than one. After a quick overview of
these algorithms, we show how the particular systems arising in this context can
be reformulated as in the foregoing section 2.

3.1. Overview of Decomposition Algorithms

Let Ŵ = { Ŵi | i = 0, . . . , N − 1 } denote the witness point superset produced
by the routine WitnessGenerate of [16]. We refer the reader to [16] for the
construction of Ŵi, but note that geometrically Ŵi is a subset of the intersection of
Z with a generic linear space LN−i of dimension N − i, which contains Zi ∩LN−i.
As explained in detail in [16, 21], we model generic objects, e.g., coefficients of
linear equations, by using random number generators. Each Ŵi contains generic
points on each i-dimensional component, plus additional junk points which will
be filtered out, i.e., points lying on irreducible components of dimension greater
than i. In particular, we showed in [16] how to do a breakup of each Ŵi of Ŵ as
Ŵi := (∪j∈IiWij) ∪ Ji, where

1. Wij consists of deg Zij generic points of Zij each occurring νij times, where
νij is a positive integer. Moreover, νij ≥ µij , where µij is the multiplicity of
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Zij in the possibly nonreduced algebraic set f−1(0), and νij = 1 if and only
if µij = 1; and

2. Ji ⊂ ∪k>iZk.

In [16, 17], this classification is accomplished by the construction of filtering
polynomials

{ pij | 0 ≤ i ≤ N − 1 ; j ∈ Ii }. (5)

The construction involves the operation of sampling the component containing a
given generic point. The samples are used to interpolate and construct a filtering
polynomial. The structure of the underlying set of a component of multiplic-
ity at least two does not differ from the corresponding set for a multiplicity one
component. If the component of multiplicity at least two could be sampled, the
interpolation and further steps of the algorithm of [16] can be dealt with the same
routines with no change. To have a stable interpolation method, it is necessary to
sample the irreducible component at widely separated points. In [16] we showed
how to implement this sampling for multiplicity one components using homotopy
continuation. The difficulty is that for a component of multiplicity at least two,
this would amount to tracking paths singular at every point.

In [18], the classification of the witness points into components is effected by
finding points that are connected by monodromy loops. These loops must be nu-
merically tracked, and any witness points that appear with multiplicity greater
than one will require a singular path tracking algorithm. The monodromy method
does not stand alone: in many instances an additional check is necessary to con-
firm that the monodromy classification is correct. In [19], it is shown that the
computation of the linear trace is sufficient. As above, this is computed by in-
terpolating points found by path tracking. Path tracking is fundamental to all
these operations, and if we can succeed to accurately and reliably track paths on
components of higher multiplicity, then these components can be treated exactly
as the multiplicity-one components.

3.2. Witness Point Generation

In [15], witness points are generated using a cascade of homotopies, one dimension
at a time. In case the number of equations n differs from the number of variables N ,
we add N −n random hyperplanes to an underdetermined system, or n−N extra
“slack” variables to an overdetermined system. In the notation below we thus can
take N as the maximum of N and n. The witness point set for dimension i is
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constructed with the homotopy

H(x, z, λ, t) :=




f1(x1, . . . , xN ) + γ1,1z1 + · · · + γ1,i+1zi+1

...
fN (x1, . . . , xN ) + γN,1z1 + · · · + γN,i+1zi+1

z1 + λ1,0 + λ1,1x1 + · · · + λ1,NxN

...
zi + λi,0 + λi,1x1 + · · · + λi,NxN

zi+1 + t (α0 + α1x1 + · · · + αNxN )




. (6)

The arguments in H are as follows:

1. x ∈ C
N are the original variables from the system f(x) = 0, x = (x1, x2, . . . , xN );

2. z ∈ Ci+1 are auxiliary variables in the embedding of the component, z =
(z1, z2, . . . , zi+1);

3. t ∈ (0, 1] is the continuation parameter, going from one to zero;

4. λ ∈ C(i)×(N+1) is a matrix of generic coefficients for i hyperplanes.

In addition, both γ ∈ CN×(i+1) and α ∈ CN+1 are generic parameters. The
hyperplanes defined by λ slice any i-dimensional components down to isolated
points; these are the witness points for the components. The hyperplanes also
meet components of dimension greater than i, so some endpoints of the homotopy
may lie on these sets. If so, these are the “junk” points Ji mentioned above.

In this homotopy we have smooth paths, indexed by k, of the form (xk(t), zk(t)) :
(0, 1] → CN × Ci+1, defined by H(xk(t), zk(t), λ, t) = 0. The witness point su-
perset (which consists of both the proper witness points and the junk points) for
dimension i is given by the endpoints of those paths that have all slack variables
equal to zero; that is, those which are of the form

lim
t→0

(xk(t), zk(t)) = (wk,0).

Since the slack variables are zero, one sees from (6) that wk is both a solution
point of f = 0 and lies on the linear slice defined by λ.

3.3. Sampling Components

In the homotopy above, the matrix λ defines a linear slice that cuts out the witness
points. To classify the witness points and otherwise explore the components, one
may move λ in a secondary homotopy and track the movements of the witness
points. A common example is a linear homotopy going from s = 0 to s = 1
between the original slice λ(1) and a new slice λ(2) as

H(w,0, (1 − s)λ(1) + sλ(2), 0) = 0, (7)
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where H is as defined in (6). For nonsingular components, this can be tracked by
conventional methods to give a new sample on the component. These methods
fail, however, when w is on a multiple component, because of the singularity of
the Jacobian matrix for all points on the component.

This leads us back to the singular path tracking problem as defined in §2. We
must begin with the cluster of ν points that approach w as t → 0 and use the
doubly parameterized homotopy

H(x, z, (1 − s)λ(1) + sλ(2), t) = 0. (8)

This is of the same form as (4), with variables v = (x, z). The witness point
generator tracks all solution paths, so we are assured that the cluster is complete.
The existence of a one-dimensional path to track, is known to be true by the
method of constructing of the witness point set, and because the slicing coefficients,
λ(1) and λ(2) are chosen generically.

4. The Algorithm

Before presenting the new algorithm for tracking singular paths, it is useful to
sketch out existing predictor-corrector algorithms for tracking nonsingular paths.
Our singular path tracker builds on the same framework, but we replace both the
predictor and the corrector with new routines that work for singular paths.

4.1. Nonsingular Tracking Algorithm

A generic path-tracking algorithm proceeds as follows [2], (see also [1, 8]). In our
homotopies, we may assume that the path parameter, s, is strictly increasing, that
is, the path has no turning points.

• Given: System of full-rank equations, g(v, s) = 0, initial point v0 at s0 = 0
such that g(v0, 0) ≈ 0, and initial step length h.

• Find: Sequence of points (vi, si), i = 1, 2, . . . , along the path such that
g(vi, si) ≈ 0, si+1 > si, terminating with sn = 1. Return a high-accuracy
estimate of vn.

• Procedure:

– Loop: For i = 1, 2, . . .

1. Predict: Predict solution (u, s′) such that ||(u, s′)−(vi−1, si−1)|| ≈
h with s′ > si+1.

2. Correct: In the vicinity of (u, s′), attempt to find a corrected
solution (w, s′′) such that g(w, s′′) ≈ 0.
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3. Update: If correction step was successful, update (vi, si) = (w, s′′).
Increment i.

4. Adjust: Adjust the step length h.

– Terminate: Terminate when si = 1.

– Refine endpoint: At si = 1, correct Ci to high accuracy.

There are many possible choices for the implementation of each step. Some
useful choices are as follows.

• The simplest predictor is just u = vi−1, but it is much better to use a
prediction along the tangent direction as u = vi−α(∂g/∂v)−1(∂g/∂s), where
α is calculated to give the desired step length. Higher-order predictions can
also be used.

• The step length can be measured as a weighted two-norm or simply as s′ −
si−1, in which case s′ = si−1 + h.

• A common corrector strategy is to hold s constant, that is, s′′ = s′, and
compute w by Newton’s method, allowing a fixed number of iterations. The
correction is deemed successful if Newton’s method converges within a pre-
specified path-tracking tolerance within the allowed number of iterations.

• A good step length adjustment strategy is to cut the step length in half on
failure of the corrector and to double it if several successive corrections at
the current step size have been successful.

• Near the end of the path-tracking interval, the step length is adjusted to
land exactly on s = 1.

By keeping the number of iterations in the corrector small (no larger than three)
and the path tracking tight, all intermediate points are kept close to the exact
path, minimizing any chance that a solution will jump tracks. However, to save
computation time, the path tracking tolerance is generally looser than that used
in the final refinement at s = 1.

4.2. Singular Tracking Algorithm

When the path to be tracked is singular, Newton’s method cannot be used effec-
tively for correction. In the formulation of §2, this can be overcome by considering
the cluster of nonsingular points that approach the singular path as t → 0.

For our new corrector, we turn to methods that have been proposed for the
accurate estimation of a singular endpoint, known as the “endgame.” The simplest
approach is to detect a cluster of paths approaching each other as the paths are
tracked as close as possible to t = 0. In [10], it was shown that the centroid of such
a cluster is an analytic function of t, which can be extrapolated to t = 0 to get an
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accurate approximation of the solution. More advanced “endgames” are proposed
in [4, 11, 12, 22]. All of these depend, directly or indirectly, on a breakup of the
ν roots into subsets of cardinality c1, . . . , ck with c1 + · · · + ck = ν, each subset
forming a cycle (see [12]). For each cycle, there exists a fractional power series

v(t) = v0 + a1t
1/ci + a2t

2/ci + . . . (9)

which can be used for accurate estimation of v(0).
In [12], the notion of an “endgame operating range” was introduced. This sim-

ply recognizes that on the one hand, the fractional power series (9), is convergent
only inside a certain radius, ρ1, while on the other hand, ill-conditioning prevents
accurate numerical accuracy inside a second radius, ρ0, dependent on the precision
of arithmetic used. If the precision is sufficient so that ρ0 < ρ1, the solution can
be sampled in the annular region ρ0 < |t| < ρ1 to estimate the endpoint as the
constant term in the power series.

In the singular path tracking problem, the endgame operating range changes as
s advances along the path. Our algorithm attempts to move the cluster of points
C(s, t) forward in s, adjusting t at every step to stay within the endgame operating
range. For intermediate values of s, the endgame can use loose tolerances—just
enough to verify that t is within range. Upon reaching s = 1, the endgame is
applied a final time with tight tolerance to compute an accurate endpoint.

We begin by specifying the singular path tracker at a high level, similar to
above, and then describe the basic options for implementing the predictor and
corrector steps for the singular case. For a cluster of points C = {v1, . . . ,vn}, let
g(C, s, t) = 0 be an abbreviation for g(vi, s, t) = 0, i = 1, . . . , n. For simplicity,
the algorithm to follow assumes that step length is measured by the change in s
rather than by some more general notion of arc length.

• Given: System of equations, g(v, s, t) = 0, initial cluster C0, such that
g(C0, 0, t0) ≈ 0, meeting conditions (1,2,3) in §2. Also, initial step length h.

• Find: Sequence of clusters (Ci, si, ti), i = 1, 2, . . . , along the path such
that g(Ci, si, ti) ≈ 0 meeting the same cluster conditions, with si+1 > si,
terminating with sn = 1. Return the final cluster and a high-accuracy
estimate of the path point at s = 1.

• Procedure:

– Loop: For i = 1, 2, . . .

1. Predict: Predict cluster (U , s′, t′) with s′ = si−1 +h and t′ = ti−1.
2. Correct: In the vicinity of U , attempt to find a corrected cluster

W such that g(W , s′, t′) ≈ 0.
3. Recondition: If correction is successful, play a singular endgame

in t′ to verify the cluster conditions and compute an approximation
to the point limt′→0 W(s′, t′), where g(W(s′, t′), s′, t′) = 0. If the
endgame is successful, then
∗ Adjust t: Pick a new ti in the endgame operating zone.
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∗ Update: Set si = s′ and generate the corresponding cluster
Ci. Increment i.

4. Adjust h: Adjust the step length h.

– Terminate: Terminate when si = 1.

– Refine endpoint: Play the endgame at s = 1 to compute the final
path point to high accuracy.

Note that this algorithm assumes that the initial cluster has already been properly
reconditioned. If not, the main loop should be preceded by an initial recondition-
ing.

In contrast to the nonsingular path tracker, this time the correction step does
not attempt to compute a point on the path. Instead, it serves to compute the
nonsingular cluster of points for a nonzero t = t′ after a step forward in s. The
endgame in the reconditioning step now plays the role formerly played by the
corrector: it computes the path point. In doing so successfully, it verifies that the
path is being followed to sufficient precision. It also builds a local model of the
solution cluster’s dependence on t, so that ti can be safely placed in the endgame
operating range.

Since the paths of the cluster points are all nonsingular for small enough
nonzero t, prediction and correction can proceed as in the nonsingular path tracker.
In particular, we may use a first-order predictor and Newton’s method for correc-
tion. For added protection against path crossing in the predictor-corrector step,
one could check that the distances between the corrected cluster points W is
greater than their Newton residuals. Adjustment of the step length proceeds as
in the nonsingular tracker, except that a step is now successful only if both the
corrector and the reconditioner succeed.

A simple version of reconditioning is to monitor the condition number while
tracking the cluster paths versus t with s held constant. Along these paths, de-
termine when the maximal condition number of the points in the cluster hits a
predetermined value. The condition number can be estimated either from the
Jacobian matrix of partial derivatives or as the inverse of the distance between
nearest points in the cluster. Note that if the initial condition number is already
past the mark, t must be increased. If it is far too high, the correction step may
fail, and the step length will then be decreased.

A more sophisticated version of reconditioning is to use a fit to the fractional
power series (9), to estimate the path point. By monitoring the estimate as t
is decreased, one may verify that the sequence is converging accurately. This is
safer than the condition number criterion, which can fail if the specified condition
number lower than that encountered at the outer edge of the endgame operating
range (the radius of convergence of the power series). Furthermore, detection of
convergence at larger t, where the condition number is smaller, will allow the
procedure to advance more quickly.

The final refinement may also take advantage of the fractional power series to
compute a high-order estimate of the path point. A simple version, though, is to
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track t towards zero until the cluster radius is smaller than a specified tolerance,
then take the centroid of the cluster as the estimate.

These comments notwithstanding, our current level of implementation is very
basic. In the numerical experiments to follow, we use the condition number crite-
rion for reconditioning. We also only recondition at the end (s = 1) to prepare the
cluster for further tracking. We used 105 as a practical value for double-precision
arithmetic, as it still leaves about 8 digits of accuracy in the cluster points.

5. A Numerical Experiment

The algorithms outlined above have been implemented with the aid of the path
following routines in PHCpack [23]. Recently the package has been upgraded with
a module (see [20] for an overview) to numerically decompose solution sets of
polynomial systems into irreducible components.

We tested the implementation on a rational normal curve of degree four, of
multiplicity two: 


x2

1 − x2 = 0
x2

2 − x3 = 0
(x3 − x4)2 = 0

(10)

We can read off the solution set: (x1, x
2
1, x

4
1, x

4
1), for any x1 ∈ C. The system

is underdetermined: three equations in four unknowns. We use the following
embedding of the system in (10):



x2
1 − x2 + γ1,1z1 = 0

x2
2 − x3 + γ2,1z1 = 0

(x3 − x4)2 + γ3,1z1 = 0
z1 − t = 0

z1 + λ1,0 + λ1,1x1 + λ1,2x2 + λ1,3x3 + λ1,4x4 = 0

(11)

where the γ and λ constants are randomly generated complex numbers. The
variable z1 is an added “slack” variable. Clearly, for z1 = 0 and t = 0, we obtain
generic points on the curve. In particular, we have four clusters of two points
each. The last equation is a generic slice, so that the limits of the solution points
as t → 0 are witness points for the set.

For the purposes of this numerical test, we use the interpolation procedure
of [16] to determine the degree of the space curve. Sampling is accomplished by
a sequence of homotopies to randomly generated slices, λ(1), λ(2), . . . , λ(n), each
homotopy having the form of (8). The samples are projected onto a randomly-
oriented plane, C2, and fit with polynomials ranging in degree from 1 to 4. Extra
samples serve as independent test points to see when the interpolant fits the entire
component.

In final refinement, we use 64 decimal places. With this precision, the magni-
tude of the cluster radius ranges between 10−34 and 10−33. We did not recondition
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except at the endpoints, so t was held constant during each leg of the homotopy.
However, the condition numbers of the paths were monitored: they ranged be-
tween 105 and 106. The calculations are summarized in Table 1. At degree four,
the interpolant fits the test points to full precision.

degree number of magnitude magnitude of
of the sampled of condition residual at

interpolator clusters number test points
1 3 3 –6
2 7 8 –10
3 12 13 –20
4 16 21 –∞

Table 1: Summary of incremental interpolation to determine the degree of a space
curve. For every degree of the interpolator, we list the total number of sampled
clusters, the magnitude of the condition number (3 stands for 103) of the interpo-
lation problem and the magnitude of the residual at some test points.

In Table 1 we observe a steady worsening of the condition of the interpolation
problem as the degree rises. For degrees higher than four, one would need to
sharpen the clusters with more than 64 decimal places as working precision or
implement a more sophisticated endgame. Alternatively, instead of ordinary linear
projections, one can (if the linear span of the component permits) project from
a point on the component. These central projections [17] reduce the degree of
the interpolating polynomial and thus improve the numerical conditioning of the
problem.

Complementary to using central projections is the application of extrapolation
techniques to improve the centroid of the cluster. For this example, extrapolation
is used on the fractional power series (9) with cycle number c = 2 at values 10−20,
10−32, and 10−44 for t in the homotopy (11). The working precision is 64 decimal
places. This second order extrapolator achieves a cluster radius of magnitude in
the range between 10−45 and 10−44. In comparison, if we approximate the centroid
of the cluster just by taking the average of the solution vectors at z1 = 10−72, we
obtain a radius in the range between 10−34 and 10−33.

6. Conclusions

We have proposed a tracking algorithm for singular paths. The system of equations
defining the singular path are embedded in a perturbed system having a cluster of
nearby nonsingular paths. These can be handled effectively with nonsingular path
tracking techniques. A singular endgame can then be applied to the cluster to
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estimate points on the original singular path. A bare-bones version of the tracker
is shown to be effective on a simple, fourth-degree curve having multiplicity two.

Section 4 indicates several possible enhancements to the safety and efficiency
of the algorithm. Chief among these is to use a higher-order singular endgame
instead of just the centroid of the cluster, which is correct only to first order in
t. Higher-order approximations will decrease the error propagation caused by the
multiplicity and thus increase the numerical stability. To get a point on a singular
path having cycle number c accurate up to d decimal places, a rough rule of thumb
is that with first order approximation we need to take t as low as 10−cd, whereas
with extrapolation of order c, we can stop t at 10−d. This behavior is confirmed
in the experiment in Section 5.

This algorithm, although ripe for further improvement, serves to show feasibil-
ity for extending our techniques for irreducible decomposition to components of
multiplicity greater than one. In this sense, the irreducible decomposition algo-
rithm is now complete, although many improvements are still possible.
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