
Regenerative cascade homotopies for solving polynomial

systems

Jonathan D. Hauenstein∗ Andrew J. Sommese† Charles W. Wampler ‡

May 26, 2011

Abstract
A key step in the numerical computation of the irreducible decomposition of a polynomial
system is the computation of a witness superset of the solution set. In many problems in-
volving a solution set of a polynomial system, the witness superset contains all the needed
information. Sommese and Wampler gave the first numerical method to compute witness
supersets, based on dimension-by-dimension slicing of the solution set by generic linear
spaces, followed later by the cascade homotopy of Sommese and Verschelde. Recently, the
authors of this article introduced a new method, regeneration, to compute solution sets
of polynomial systems. Tests showed that combining regeneration with the dimension-by-
dimension algorithm was significantly faster than naively combining it with the cascade
homotopy. However, in this article, we combine an appropriate randomization of the poly-
nomial system with the regeneration technique to construct a new cascade of homotopies for
computing witness supersets. Computational tests give strong evidence that regenerative
cascade is superior in practice to previous methods.
Keywords. witness set, witness superset, generic points, homotopy continuation, cascade
homotopy, irreducible components, multiplicity, numerical algebraic geometry, polynomial
system, numerical irreducible decomposition, primary decomposition, algebraic set, alge-
braic variety
AMS Subject Classification. 65H10, 68W30, 14Q99

Introduction

Numerical algebraic geometry is the computation and manipulation of the solution sets of sys-
tems of polynomials using numerical algorithms (see [19] for a comprehensive development of
the area). Let

f(z) = f(z1, . . . , zN)

 f1(z1, . . . , zN)
...

fn(z1, . . . , zN)

 = 0 (1)

∗Department of Mathematics, Mailcode 3368, Texas A&M University, College Station, TX 77843
(jhauenst@math.tamu.edu, www.math.tamu.edu/~jhauenst). This author was supported by the Fields Institute,
the Duncan Chair of the University of Notre Dame, NSF grant DMS-0712910, and the Mittag-Leffler Institute.
†Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre

Dame, IN 46556 (sommese@nd.edu, www.nd.edu/~sommese). This author was supported by the Duncan Chair of
the University of Notre Dame, NSF grant DMS-0712910, and the Mittag-Leffler Institute.
‡General Motors Research and Development, Mail Code 480-106-224, 30500 Mound Road, Warren, MI 48090

(Charles.W.Wampler@gm.com, www.nd.edu/~cwample1). This author was supported by NSF DMS-0712910 and
the Mittag-Leffler Institute.

1

www.math.tamu.edu/~jhauenst
www.nd.edu/~sommese
www.nd.edu/~cwample1

denote a system of n polynomials with z ∈ CN . The basic data structure to describe an
irreducible component X of the solution set

V (f) :=
{
z ∈ CN | f(z) = 0

}
of this system is a witness set for X. When X is a multiplicity one irreducible component of
V (f), a witness set of X is a triple (f,L, X∩L) consisting of the polynomial system f , a random
affine linear subspace L of CN of dimension complementary to the dimension of X, plus the
points X ∩ L. For a component of multiplicity greater than one, a witness set contains extra
information that is computable from the triple (f,L, X ∩L) [19, §13.3]. In particular, the triple
(f,L, X ∩ L) is the key object to compute, and for practical purposes, may be regarded as the
witness set of the irreducible component X.

Witness sets are a natural data structure to numerically describe the decomposition of a
solution set into irreducible components and to enable the computation of other detailed infor-
mation about algebraic sets, e.g., their intersections [17]. Using homotopy continuation, it is
computationally inexpensive to compute as many random and widely-distributed points on X as
desired, from which, for instance, polynomials cutting out the component X may be computed.

A witness set of X is computed from a witness superset of X. A witness superset of X is a
triple (f,L, S) where f and L are as above and S is a finite set of points with (X ∩ L) ⊂ S ⊂
(V (f) ∩ L). The points in S \X are called junk points and are filtered out to create a witness
set.

The numerical irreducible decomposition of V (f) is a collection, say W, of witness sets for
each irreducible component of V (f). The computation of W proceeds in three steps:

1. computation of a witness superset Ŵ of V (f);

2. computation of a witness set W of V (f) from Ŵ;

3. decomposition of the witness set W into witness sets for the irreducible components
of V (f).

There are two existing algorithms to perform Step 1, namely a dimension-by-dimension
algorithm presented in [18] and a cascade algorithm presented in [16]. While the computational
cost of the two approaches is usually roughly comparable, these methods may differ in the
number of junk points they produce. In this way, the choice of method directly affects the
computational cost of Step 2. In this regard, the cascade algorithm is favored as it generally
computes many fewer junk points than the dimension-by-dimension algorithm.

It should be mentioned that a version of the regeneration algorithm presented in [7] performs
Steps 1 and 2 together in an integrated way. A significant drawback of that version of regenera-
tion is that it may require deflation of intermediate systems that arise. Deflation is a procedure
for replacing a system of polynomials f(z) = 0 on CN and an isolated singular solution x∗

with a new polynomial system F (z, ξ) = 0 on CN × CM and an isolated nonsingular solution
(x∗, ξ∗). It applies to deflate components, i.e., to replace a system of polynomials f(z) = 0
on CN and a nonreduced irreducible component X of the solution set with a new polynomial
system F (z, ξ) = 0 on CN × CM and a generically reduced irreducible component Y of the
solution set such that Y maps generically one-to-one to X under the projection (z, ξ)→ z. See
[6, 11, 12, 14, 15] for more details of deflation applied to isolated points and [19, §13.3.2, §15.2.2]
for deflating components with [7, §4.1] presenting an improvement of deflation directly related
to regeneration. Neither the dimension-by-dimension method nor the cascade method have this
drawback. Like these, the new algorithm presented in this paper also does not require deflation

2

to compute a witness superset. It is based on the version of regeneration from [7] that seeks
only to find isolated solution points. In this article, we limit our computational experiments to
the three methods that never require deflation.

Step 3 is performed using a monodromy algorithm that is certified using a trace test. This
step is independent of Steps 1 and 2, so we shall say nothing further about it here.

For many problems, Step 1 is the most computationally intensive part of finding a numerical
irreducible decomposition. The subject of this article, the regenerative cascade, addresses this
step. We provide evidence that the new approach matches the efficiency of the older cascade
algorithm in regards to the number of junk points it produces while reducing the cost of Step 1
as compared to both of the prior algorithms.

This article is organized as follows. Section 1 provides an overview of regeneration [7].
Section 2 presents the regenerative cascade algorithm; Section 2.3 describes the advantages of
the regenerative cascade algorithm; and Section 3 provides computational results.

1 Regeneration

Before describing the regenerative cascade algorithm in §2, we summarize the regeneration
algorithm presented in [7] for computing the nonsingular isolated solutions of a square polynomial
system using an equation-by-equation approach with a general linear product decomposition.

Let f : CN → Cn be a polynomial system as in Eq. 1 with di = deg fi. For 1 ≤ i ≤ n and
1 ≤ j ≤ di, let Li,j(z) be a general linear function on C[z1, . . . , zn] and, for 0 ≤ m ≤ n, define

Fm(z) = [f1:m(z), Lm+1,1(z), Lm+2:n,1(z)]T and
Gm(z) = [f1:m(z),

∏dm+1
j=1 Lm+1,j(z), Lm+2:n,1(z)]T

where f1:m(z) = [f1(z), . . . , fm(z)] and Lm+2:n,1(z) = [Lm+2,1(z), . . . , Ln,1(z)].
Regeneration starts with the solution of the linear system F0(z) = 0 and computes the

solutions of Fn(z) = f(z) = 0 using a sequence of two types of homotopies. For 0 ≤ m ≤ n− 1
and 1 ≤ a ≤ di, the first type of homotopy is a parameter homotopy that moves from the linear
space Lm,1 = 0 to Lm,a = 0, namely

Hparm
m,a (z, t) =

[
f1:m(z), (1− t)Lm+1,a(z) + tLm+1,1(z), Lm+2:n,1(z)

]T
.

For 0 ≤ m ≤ n − 1, the second type of homotopy is a general linear product homotopy that
moves from the product of linear spaces

∏dm+1
i=1 Lm+1,i = 0 to fm+1 = 0, namely

Hprod
m (z, t) = (1− t)Fm+1(z) + tGm(z)

=
[
f1:m(z), (1− t)fm+1(z) + t

∏dm+1
i=1 Lm+1,i(z), Lm+2:n,1(z)

]T
.

The following algorithm computes the nonsingular isolated points of V (f) using regeneration.

Procedure S = Regenerate(f)

Input A set f = {f1, . . . , fn} of n polynomials on Cn.

Output A set S ⊂ Cn consisting of the nonsingular isolated points of V (f).

Begin 1. Let di = deg fi. For i = 1, . . . , n and j = 1, . . . , di, let Li,j(z) be a random linear
function on C[z1, . . . , zn].

3

2. Use numerical linear algebra to compute the set S0 consisting of the solution of the
linear system F0 = 0.

3. For m = 0, . . . , n− 1, do the following:

(a) Solve for Tm, the set of nonsingular isolated points of V (Gm), using the homo-
topies Hparm

m,j , j = 1, . . . , dm+1, with start points Sm.
(b) Solve for Sm+1, a superset of the nonsingular isolated points of V (Fm+1), using

the homotopy Hprod
m with start points Tm.

(c) Expunge any singular points in Sm+1.

Return S = Sn.

Note 1.1 Hparm
m,1 (z, t) ≡ Fm(z).

2 Regenerative cascade

The regenerative cascade algorithm is applicable to the following basic problem in numerical
algebraic geometry.

Problem 1 (Witness Superset) Given a polynomial system f : CN → Cn find a witness
superset for V (f).

2.1 Regenerative cascade algorithm

Let f : CN → Cn be a polynomial system as in Eq. 1 with d1 ≥ · · · ≥ dn where di = deg fi. Let
r = rank(f) (see [19, §13.4]) and αi,j ∈ C be general for 1 ≤ i ≤ r and i < j ≤ n. Define

A =

1 α1,2 α1,3 · · · · · · · · · α1,n

1 α2,3 · · · · · · · · · α2,n

. . .
. . .

.

.

.
1 αr,r+1 · · · αr,n

 and f̂ = A · f. (2)

The polynomial system f̂ consists of r polynomials in N variables with r ≤ N and deg f̂i = di.
Since dimV (f̂) ≥ N − r, we will append N − r general linear functions onto f̂ . That is, let
Li(z) be a generic linear function on C[z1, . . . , zN] and L = [L1, . . . ,LN−r]T . Define

F =
[
L
f̂

]
. (3)

The following lemma shows how to compute a witness superset for V (f) using a witness superset
for V (F).

In the above, “generic” means that the generality needed to obtain the results we seek holds
for all but a proper algebraic subset of the set of all possible choices of αi,j and the coefficients
defining the linear functions L and Li, i = 1, . . . , N−r. Let us call the complex Euclidean space
of all these parameters the “algorithm parameter space.”

Lemma 2.1 For a Zariski open dense subset of the algorithm parameter space, the following
holds. Let Wi = {F , Li,Xi} be a witness superset for the ith dimensional irreducible components
of V (F). If Xi = {x ∈ Xi | f(x) = 0}, then WN−r+i = {f, {L, Li}, Xi} is a witness superset
for the (N − r + i)-th dimensional irreducible components of V (f).

4

Proof. Altogether {L, Li} are N−r+ i generic linear equations, hence Xi is a witness superset
for the (N − r + i)-dimensional irreducible components of f̂ . By the randomization theorem,
Theorem 13.5.1 of [19], all the (N−r+i)-dimensional irreducible components of f will be among
these, but only points in V (f) can be witness points for components of V (f). 2

For 1 ≤ i ≤ N − r and 1 ≤ j ≤ di, let Li,j(z) be a general linear function on C[z1, . . . , zn].
The following are analogous to Fm, Gm, Hprod

m and Hparm
m,a , defined in §1:

Fm(z) = [L(z), f̂1:m(z), Lm+1,1(z), Lm+2:r,1(z)]T ,
Gm(z) = [L(z), f̂1:m(z),

∏dm+1
j=1 Lm+1,j(z), Lm+2:r,1(z)]T ,

Hparm
m,a (z, t) = [L(z), f̂1:m(z), (1− t)Lm+1,a(z) + tLm+1,1(z), Lm+2:r,1(z)]T ,

and Hprod
m (z, t) = (1− t)Fm+1(z) + tGm(z).

A point x ∈ V (Fm) (or V (Gm)) is a nonsolution with respect to f if f(x) 6= 0. Bertini’s the-
orem and genericity provide that nonsolutions of Fm and Gm are nonsingular isolated solutions
of Fm and Gm, respectively. The following lemma shows that regenerating the nonsolutions of
Fm will yield a superset of the isolated solutions of Fm+1.

Lemma 2.2 For a Zariski open dense subset of the algorithm parameter space, the set of solu-
tions of Fm+1 obtained by regenerating the nonsolutions of Fm contains the isolated solutions
of Fm+1.

Proof. According to the theory underlying the regeneration algorithm (§1), the isolated
solutions of Fm+1 are contained in the set of endpoints of Hprod

m using the isolated solutions of
Gm as start points, which themselves are obtained by the homotopies Hparm

m,j , j = 1, . . . , dm+1

using the isolated solutions of Fm as start points. If, for m < r, x is an isolated solution of
Fm with f(x) = 0, then it lies on a component of V (f) of dimension at least m. The paths
from such a point must remain on this component during the homotopies Hprod

m and Hparm
m,j ,

j = 1, . . . , dm+1. and hence cannot lead to nonsingular solutions to Fm+1. Thus, the paths
originating from the nonsolutions of Fm suffice to find all isolated solutions of Fm+1. 2

Procedure S = RegenerativeCascade(f)

Inputs A set f = {f1, . . . , fn} of n polynomials on CN .

Output A witness superset S for V (f).

Begin 1. Rename f so that di ≥ · · · ≥ dn where di = deg fi and compute r = rank(f).

2. For 1 ≤ i ≤ r and i < j ≤ n, let αi,j ∈ C be random. Construct A and f̂ as in Eq. 2.

3. Let L(z) be a set of N − r random linear functions on C[z1, . . . , zN] and construct F
as in Eq. 3.

4. For i = 1, . . . , r and j = 1, . . . , di, let Li,j(z) be a random linear function on
C[z1, . . . , zN].

5. Use numerical linear algebra to compute the set X0 consisting of the solution of the
linear system F0 = 0.

6. For m = 0, . . . , r − 1, do the following:

5

(a) Solve for Tm, the set of nonsolutions with respect of f in V (Gm), using the
homotopies Hparm

m,j , j = 1, . . . , dm+1, with start points Xm.
(b) Solve for Um+1, a set containing the nonsolutions with respect to f and the

isolated points in V (Fm+1), using the homotopy Hprod
m with start points Tm.

(c) LetXm+1 ⊂ Um+1 be the nonsolutions of f and Sm+1 = {f, {L, Lm+2,1, . . . , Lr,1},
Um+1 \Xm+1}.

Return S = {S1, . . . , Sr}.

The following theorem justifies the regenerative cascade algorithm RegenerativeCascade.

Theorem 2.3 For a Zariski open dense subset of the algorithm parameter space, the Regen-
erativeCascade solves Problem 1.

Proof. This is a straightforward consequence of Lemmas 2.1 and 2.2. 2

2.2 Extrinsic vs. intrinsic slicing

Similar to [7, §6.3], the homotopies Hparm and Hprod are called extrinsic regenerative cascade
homotopies due to the presence of extrinsic linear slicing functions. Since the linear functions
L, Lm+2,1, . . . , Lr,1 do not change during the path tracking for these homotopies, we may use
an intrinsic formulation that is more efficient when m � N . Numerical linear algebra can be
used to compute B ∈ CN×(m+1), b ∈ CN such that rank B = m + 1 and for all u ∈ Cm+1,
Bu + b ∈ V (L, Lm+2,1, . . . , Lr,1). The homotopies Hparm and Hprod can then be replaced with
ones of the form Ĥ(u, t) = H(Bu+ b, t). Since the linear functions are always zero and can be
dropped, these new homotopies consist of m+ 1 functions and variables, instead of N .

For efficiency, the polynomials should be evaluated in a straight-line manner rather than
expanded in the new variables. When the intrinsic formulation is heuristically advantageous,
Bertini [3] automatically uses it.

2.3 Advantages of the regenerative cascade algorithm

The regenerative cascade algorithm presented in §2 has several advantages over the dimension-
by-dimension algorithm of [18] and the cascade algorithm of [16]. For a polynomial system
f : Cn → Cn of rank n with d1 ≥ · · · ≥ dn, where di = deg fi, this section describes the
theoretical advantages with computational evidence presented in §3.

The first advantage is that the regenerative cascade is amenable to intrinsic slicing. This
reduces the number of variables for tracking the paths, which can reduce the computational
costs associated with linear algebra. While the dimension-by-dimension algorithm can also use
intrinsic slicing, the original cascade cannot. It uses a homotopy in n variables at every stage.

A second advantage is that the regenerative cascade often tracks fewer paths than either
of the other two algorithms. In the case of the original cascade algorithm, it is the first stage
of the cascade that is expensive to solve. If one uses a total degree homotopy for this stage,
the total degree number of paths, namely d1 · · · dn, must be tracked. One could instead use a
polyhedral homotopy [8, 13] to possibly reduce the number of paths to track, but this comes at
the cost of constructing the polyhedral homotopy, which can be a significant cost to bear, e.g.
[7, §9]. In the case of the dimension-by-dimension algorithm, the last stage is the one that must
track the total degree number of paths or use a polyhedral homotopy. Due to the structure
of the regenerative cascade algorithm, in which endpoints on higher-dimensional components

6

paths tracked (slices moved) number of junk points
Dimension-by- Regenerative Dimension-by- Regenerative

n Cascade dimension cascade Cascade dimension cascade
3 56 30 26 (12) 6 10 6
4 295 126 96 (47) 30 60 30
5 1,380 510 340 (169) 125 295 125
6 6,050 2,046 1,190 (594) 486 1,342 486
7 25,465 8,190 4,150 (2,074) 1,813 5,853 1,813
8 104,247 32,766 14,456 (7,227) 6,600 24,910 6,600
9 418,289 131,070 50,336 (25,167) 23,665 104,399 23,665
10 1,653,320 524,286 175,246 (87,622) 84,028 433,068 84,028

Table 1: Comparison for computing a witness superset for P2,3,n using various algorithms

(including ones at infinity) do not initiate paths at the next stage, the total number of paths
that need to be tracked can be less than the total degree.

Finally, the termination of further tracking on all but the nonsolutions generally leads to a
witness superset that contains fewer junk points. The regenerative cascade and original cascade
algorithms share this advantage. In contrast, the dimension-by-dimension algorithm handles
each dimension independently, and so has no mechanism for results obtained at a higher dimen-
sion to affect the computation at a lower dimension. This generally leads to a witness superset
containing more junk points.

3 Computational results

The regenerative cascade algorithm RegenerativeCascade is implemented in Bertini [3], but
the algorithm, in principle, could also use other path trackers such as PHC [21] or POLSYS GLP
[20]. The examples presented below using RegenerativeCascade were run using Bertini v1.2
with adaptive precision path tracking [1, 2, 4]. The examples using polyhedral methods were
run using HOM4PS-2.0 [10] and PHC v2.3.62 [21]. The serial processing timings result from
the computations being performed on a 2.4 GHz Opteron 250 processor with 64-bit Linux. The
parallel processing timings result from the computations being performed on a cluster consisting
of a manager that uses one core of a Xeon 5410 processor and 8 computing nodes each containing
two 2.33 GHz quad-core Xeon 5410 processors running 64-bit Linux, i.e., one manager and 64
workers.

3.1 A collection of high-dimensional examples

Consider computing a witness superset for the polynomial system, denoted P2,3,n constructed
by taking the 2× 2 adjacent permanents of a 3× n matrix with indeterminant entries [9]. The
polynomial system P2,3,n consists of 2(n− 1) polynomials in 3n variables. Since the irreducible
components of V (P2,3,n) are known and exist in multiple dimensions for n ≥ 3, we used this
collection of examples to compare the algorithms.

Table 1 compares the number of paths tracked and the number of junk points in the witness
superset for the cascade algorithm, dimension-by-dimension algorithm, and the regenerative
cascade algorithm. Table 2 lists the time needed for computing a witness superset for P2,3,n,
3 ≤ n ≤ 9, using a single processor. Table 3 lists the time needed for computing a witness
superset for P2,3,n, 8 ≤ n ≤ 10, using parallel processing. In Tables 2 and 3, the columns
labeled ratio present the ratio of the running time of the algorithm to the running time of the

7

Dimension-by- Regenerative
Cascade dimension cascade

n time ratio time ratio time ratio
3 0.26s 1.4 0.22s 1.2 0.19s 1
4 2.46s 1.6 2.20s 1.4 1.52s 1
5 18.8s 1.9 17.7s 1.8 9.92s 1
6 2m13s 1.9 2m12s 1.9 1m9s 1
7 13m58s 2.1 217m25s 2.7 6m33s 1
8 1h22m16s 2.3 1h51m8s 3.0 36m30s 1
9 7h30m1s 2.5 10h57m17s 3.7 2h56m46s 1

Table 2: Computing a witness superset for P2,3,n using various algorithms

Dimension-by- Regenerative
Cascade dimension cascade

n time ratio time ratio time ratio
8 2m16s 2.6 1m52s 2.2 51.4s 1
9 10m12s 2.8 10m50s 3.0 3m38s 1
10 54m3s 3.3 60m37s 3.7 16m27s 1

Table 3: Computing a witness superset for P2,3,n using various algorithms in parallel

regenerative cascade. One may see that the regenerative cascade consistently tracks fewer paths
and uses less computation time than the alternatives. For example, when n = 8, the cascade
and dimension-by-dimension algorithms take 2.5 and 3.7 times longer, respectively, than the
regenerative cascade algorithm using serial processing. Moreover, the two cascade algorithms
are equal in the number of junk points generated, beating the dimension-by-dimension method
in this regard. Fewer junk points means less work in the next stage of computing a witness set,
which is the removal of junk points from the witness superset.

As mentioned in Section 2.3, we note that we could have used a polyhedral homotopy to solve
the first stage of the cascade algorithm or each stage of the dimension-by-dimension algorithm.
Since each irreducible component of V (P2,3,n) has dimension at least 3n− 2(n− 1) = n+ 2, the
above computations were actually performed intrinsically on a general n+2-codimensional linear
space. The resulting polynomial system then consists of 2(n − 1) dense quadratic polynomials
in 2(n−1) variables. In this case, all of the polyhedral root counts are equal to the total degree.

If we work extrinsically on a general n+2-codimensional linear space, many of the polyhedral
root counts are less than the total degree, but the computation is at the expense of using
3n variables. To explicitly demonstrate this expense, consider P2,3,8, i.e., n = 8. Working
intrinsically, solving the first stage of the cascade algorithm using intrinsic slicing required
tracking 214 = 16,384 paths using 14 variables. As presented in Table 2, running the complete
cascade algorithm using Bertini on a single processor took approximately 1.4 hours. Working
extrinsically, the polynomial system consists of 24 variables with the polyhedral root count for
the first stage of the cascade algorithm being 7,229. This computation took approximately 6.5
hours using HOM4PS-2.0 [10] and approximately 29 hours using PHC v2.3.62 [21].

3.2 An example related to a secant variety

In [5], Bates and Oeding computed a numerical irreducible decomposition for a polynomial
system, denotedM6, consisting on ten homogeneous degree 6 polynomials in 36 variables which
are contained in the ideal of the secant variety σ4(P2×P2×P3). The polynomials are listed in the
ancillary file deg 6 salmon.txt at [5]. They provide computational evidence in Computation 4.1

8

codim paths tracked witness points junk points slices moved
1 6 0 0 30
2 36 0 0 180
3 216 0 0 1080
4 1296 345 0 4755
5 5706 0 2844 14,310
6 17,172 84 11,790 26,490
7 31,788 0 26,460 26,640
8 31,968 0 29,196 13,860
9 16,632 0 16,120 2560
10 3072 0 3072

total 107,892 429 89,482 89,905

Table 4: Solving M6

that V (M6) consists of two irreducible components, one of codimension 4 of degree 345 and the
other of codimension 6 of degree 84.

Since M6 consists of only 10 polynomials, each irreducible component of V (M6) ⊂ C36 has
dimension at least 26. We used intrinsic slicing to construct a polynomial system consisting of 10
polynomials in 10 variables. We note that the resulting polynomial system is completely dense
and that standard Gaussian elimination would require on the order of 3.63 ≈ 46 times more
operations if we used extrinsic slicing, which would be needed to possibly yield a system having
a polyhedral root counts less than its total degree. Based on the results of the computation using
polyhedral methods with extrinsic slicing in Section 3.1 and the fact that both the cascade and
dimension-by-dimension algorithms implemented in Bertini would need to track at least the total
degree (610 ≈ 6 · 107) many paths, we only performed this computation using the regenerative
cascade with intrinsic slicing.

As discussed in Section 2.2, we used a straight-line format for the intrinsic slices. Addition-
ally, we reduced the number of operations needed to evaluate the polynomials via a multivariate
Horner scheme. Using parallel processing, this computation took approximately 20 hours and
verified Computation 4.1 of [5]. Table 4 summarizes the number of paths tracked by the regen-
erative cascade algorithm and the number of witness points and junk points obtained at each
codimension.

4 Summary

The regenerative cascade algorithm RegenerativeCascade combines the advantages of the cas-
cade, dimension-by-dimension, and regeneration algorithms for computing a witness superset.
It uses randomization to avoid the disadvantage of the version of regeneration that sometimes
needs to deflate systems during the algorithm. Computational evidence suggests that it com-
putes a witness superset with a similar number of junk points as the cascade algorithm, which
is generally less than the number of junk points generated by the dimension-by-dimension algo-
rithm. Moreover, in our tests, the regenerative cascade tracks the fewest number of paths, which
coupled with the additional advantage of being amenable to intrinsic path tracking, makes it
currently the most efficient general method for generating a witness superset.

9

References

[1] D.J. Bates, J.D. Hauenstein, and A.J. Sommese. Efficient path tracking methods. To appear
in Numer. Algorithms.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Adaptive multiprecision
path tracking. SIAM J. Numer. Anal., 46(2), 722–746, 2008.

[3] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Bertini: Software for
Numerical Algebraic Geometry. Available at www.nd.edu/~sommese/bertini.

[4] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Stepsize control for
adpative multiprecision path tracking. Contemp. Math., 496, 21–31, 2009.

[5] D.J. Bates and L. Oeding. Toward a salmon conjecture. Available at arxiv.org/abs/
1009.6181.

[6] B.H. Dayton and Z. Zeng. Computing the multiplicity structure in solving polynomial
systems. In ISSAC’05, 116–123 (electronic), ACM, New York, 2005.

[7] J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Regeneration homotopies for solving
systems of polynomials. Math. Comp. 80, 345–377, 2011.

[8] B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems.
Math. Comp. 64, 1541–1555, 1995.

[9] R.C. Laubenbacher and I. Swanson. Permanental ideals. J. Symbolic Comput. 30, 195–205,
2000.

[10] T.-L. Lee, T.Y. Li, and C.-H. Tsai. HOM4PS-2.0, Solving Polynomial Systems by the
Polyhedral Homotopy Method. Available at www.math.msu.edu/~li.

[11] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems with
isolated singular solutions. In IMA Volume 146: Algorithms in Algebraic Geometry, edited
by A. Dickenstein, F.-O. Schreyer, and A.J. Sommese, Springer, 79–97, 2008.

[12] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated singu-
larities of polynomial systems. Theor. Comp. Sci. 359, 111–122, 2006.

[13] T.Y. Li. Numerical solution of polynomial system by homotopy continuation methods. In
Handbook of Numerical Analysis, Vol. XI, 209–304. North-Holland, Amsterdam, 2003.

[14] T. Ojika. Modified deflation algorithm for the solution of singular problems. I. A system of
nonlinear algebraic equations, J. Math. Anal. Appl. 123, 199–221, 1987.

[15] T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple roots of a
system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479, 1983.

[16] A.J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on
positive dimensional algebraic sets. J. Complexity 16, 572–602, 2000.

[17] A.J. Sommese, J. Verschelde, and C.W. Wampler. Homotopies for intersecting solution
components of polynomial systems. SIAM J. Numer. Anal. 42, 1552–1571, 2004.

10

www.nd.edu/~sommese/bertini
arxiv.org/abs/1009.6181
arxiv.org/abs/1009.6181
www.math.msu.edu/~li

[18] A.J. Sommese and C.W. Wampler. Numerical algebraic geometry. in The Mathematics
of Numerical Analysis, J. Renegar, M. Shub, and S. Smale, eds., volume 32 of Lectures in
Applied Mathematics, 1996, 749–763. Proceedings of the AMS-SIAM Summer Seminar in
Applied Mathematics, Park City, Utah, July 17-August 11, 1995, Park City, Utah.

[19] A.J. Sommese and C.W. Wampler. The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific, Singapore, 2005.

[20] H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson. Algorithm 857: POLSYS GLP:
A parallel general linear product homotopy code for solving polynomial systems of equa-
tions, ACM Trans. Math. Softw. 32(4), 561–579, 2006.

[21] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276, 1999. Available at
www.math.uic.edu/~jan.

11

www.math.uic.edu/~jan

	Introduction
	Regeneration
	Regenerative cascade
	Regenerative cascade algorithm
	Extrinsic vs. intrinsic slicing
	Advantages of the regenerative cascade algorithm

	Computational results
	A collection of high-dimensional examples
	An example related to a secant variety

	Summary

