
Stepsize control for adaptive multiprecision path

tracking

Daniel J. Bates∗ Jonathan D. Hauenstein †

Andrew J. Sommese ‡ Charles W. Wampler II §

Abstract

Numerical difficulties encountered when following paths using methods
such as homotopy continuation may be overcome by combining adaptive
stepsize and adaptive multiprecision. In the paper Adaptive multipreci-
sion path tracking [1], precision and stepsize are adapted separately. This
can lead to suboptimal performance and even failure in certain circum-
stances. This paper presents a strategy for adjusting precision and stepsize
together to eliminate path failures while minimizing the computational ef-
fort expended per unit advance along the path.

This paper concerns path tracking algorithms for tracing out a one dimen-
sional path defined implicitly by n equations in n + 1 unknowns. In particular,
we consider such algorithms when multiprecision calculations are available, that
is, when the precision of the computations can be changed during the compu-
tation. We treat a common type of path tracker that uses an Euler predictor
to step ahead along the tangent to the path and a Newton corrector to bring
the predicted point closer to the path. Our objective is to adjust precision and
stepsize together to minimize the computational cost of tracking the path while
maintaining high reliability.

∗Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins,
CO 80528 (bates@math.colostate.edu, http://www.math.colostate.edu/∼bates). This author
was supported by Colorado State University and the Institute for Mathematics and Its Ap-
plications (IMA).

†Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(jhauenst@nd.edu, http://www.nd.edu/∼jhauenst). This author was supported by the Dun-
can Chair of the University of Notre Dame; the University of Notre Dame Center for Applied
Mathematics; and NSF grants DMS-0410047 and NSF DMS-0712910.

‡Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(sommese@nd.edu, http://www.nd.edu/∼sommese). This author was supported by the Dun-
can Chair of the University of Notre Dame; and NSF grants DMS-0410047 and NSF DMS-
0712910.

§General Motors Research and Development, Mail Code 480-106-359, 30500 Mound Road,
Warren, MI 48090 (Charles.W.Wampler@gm.com, www.nd.edu/∼cwample1) This author was
supported by NSF grant DMS-0410047 and NSF DMS-0712910.

1

In fixed precision tracking, a trial-and-error approach to setting the stepsize
is effective: shorten the step upon failure, and lengthen it upon repeated suc-
cesses. If the level of precision is not adequate, the step may fail no matter how
small the step is made, so the trial-and-error approach repeatedly shortens the
stepsize until failure is declared due to lack of progress.

In the multiprecision setting, one has the flexibility of either changing the
stepsize or changing the precision. In [1], the precision is set first, according
to rules designed so that corrector steps computed by Newton’s method have
enough digits of accuracy to ensure convergence, assuming the initial guess is
within the convergence zone. If the initial guess is not good enough, the corrector
fails, and the algorithm responds by shortening the stepsize to try again. For a
small enough step and a high enough precision, the prediction/correction cycle
must succeed and the tracker advances along the path. One would hope that the
only mode of failure is when the combination of high precision and small steps
is so severe that one gives up due to the excessive burden on computational
resources. However, in testing that algorithm, another mode of failure was
discovered: for too large a stepsize, the predicted point can be far enough from
the path that the rules set the precision too high that the algorithm fails before
a decrease in stepsize is considered. In particular, this was observed in tracking
paths defined by polynomials of high degree and occurred on the first step when
the initial stepsize given by the user was too large.

One might fix this problem by trapping the precision overflow condition and
responding with a decrease in the stepsize. While such an approach may work,
we present a more effective alternative here.

Success of a step depends on having sufficient precision and a small enough
stepsize, but increasing precision and decreasing the stepsize both inflate the
computational cost. With exact arithmetic, the stepsize is limited by the re-
quirement for the predicted point to stay within the convergence zone of the
corrector. For each stepsize below this limit, there is some minimum precision
necessary to converge within the allowed number of correction steps. This nec-
essary level of precision monotonically decreases with stepsize, approaching in
the limit the precision that just barely ensures that the final error given by
Newton’s method equals the desired accuracy. Somewhere between these two
limits, there must be an optimal combination of stepsize and precision that
minimizes the computational effort per unit advance along the path. However,
spending too much computation to find this optimum is itself counterproduc-
tive. Accordingly, in this paper, we develop some approximate rules for finding
a near optimum. At the same time, we eliminate the mode of failure previously
mentioned. These new rules have been implemented in our software package,
Bertini [2].

2

1 The Main Idea

As in [1], the Euler predictor and the Newton corrector can be summed up in
a single relation, obtained by retaining only the linear terms in a Taylor series
expansion about (zi, ti):

Hz(zi, ti)∆z = − (H(zi, ti) + Ht(zi, ti)∆t) , (1)
(zi+1, ti+1) = (zi, ti) + (∆z, ∆t). (2)

where Hz = ∂H
∂z and Ht = ∂H

∂t . This formula gives the Euler prediction along the
tangent when (zi, ti) is on the path, i.e., when H(zi, ti) = 0. After predicting
with a given ∆t, we may set ∆t = 0, upon which Eq. 1 becomes Newton’s
method.

We may view this another way. Let the stepsize be s, let (z0, t0) be the
current point approximately on the path, and let T = t0 + s be the target for t
for the next point on the path. Then the desired next point is the solution of
the augmented system

f(z, t) =
(

H(z, t)
t− T

)
= 0. (3)

Applying Newton’s method to f(z, t), we produce a new guess (zi+1, ti+1) by
solving

[
Hz(zi, ti) Ht(zi, ti)

0 1

] [
∆z
∆t

]
= −

[
H(zi, ti)
t− T

]
, (4)

(zi+1, ti+1) = (zi, ti) + (∆z, ∆t). (5)

It is easy to confirm that the sequence of iterates produced in this way are
exactly the same as before: the first iterate is just the Euler prediction and
subsequent ones are Newton corrections at t = T .

This observation is useful, because the analysis of Newton’s method in [1]
now applies to the prediction step whereas it applies only to the corrector steps
in that paper. The only difference is that the Jacobian matrix, J , appearing in
those derivations is now the augmented Jacobian appearing on the left side of
Eq. 4.

2 New Rules for Stepsize

The method of [1] consists of several rules, each of which indicate when precision
should be changed. Recall that rule B of [1] for setting the precision P is

P > σ1 + log10

[‖J−1‖ ((2 + E)‖J‖+ EΦ) + 1
]
+ (τ + log10 ‖d‖)/(N − i). (B)

For brevity, let D = log10

[‖J−1‖(2 + E)(‖J‖+ EΦ) + 1
]
, where J is the Jaco-

bian matrix, E is the error in adding the differential d to the current approxima-
tion of the solution, and Φu is a bound on the error when evaluating J . Then

3

we may write
P > σ1 + D + (τ + log10 ‖d‖)/(N − i). (7)

Roughly speaking, D is the number of digits lost to numerical error in com-
puting corrections. The first term, σ1 is the number of safety digits, and
(τ + log10 ‖d‖)/(N − i) is the number of additional digits we need to correct in
our approximate solution so as to meet the final tolerance 10−τ within (N − i)
remaining iterations. In [1], this rule only applies to the corrector steps, not the
predictor step.

We may apply this rule to the augmented system, where the Euler prediction
step is now just the initial Newton iteration. We allow the number of iterations,
N , to be one greater than before, since it now includes the prediction step.
However, we have a new parameter that we can vary besides the precision P ,
namely, the stepsize s. In Eq. 7, ‖d‖ = ‖(∆z ∆t)‖, which on the first iteration
is directly proportional to s, say ‖d‖ = a |s|. Accordingly, we may rewrite the
equation for the first step, i = 0, as

P − log10 |s|/N > σ1 + D + (τ + log10 a)/N, (8)

or, letting |s| = 10−ξ, as

P + ξ/N > σ1 + D + (τ + log10 a)/N. (9)

Thus, there are two ways to satisfy this inequality: raise precision P or decrease
the stepsize by raising ξ.

Suppose that C(P) is the cost of computing N iterations in precision P .
Then the cost per unit advance along the path is C(P)/|s|. We wish to minimize
C(P)/|s| subject to Eq. 8. Since Bertini uses MPFR for multiprecision arith-
metic, precision is available at discrete packets of 32 bits. Thus it is straightfor-
ward to step using the current level of P , evaluate C(P), set |s| to just satisfy
Eq. 8, and thereby identify the minimum of C(P)/|s|.

We must remember that this rule assumes that we are within the convergence
zone of Newton’s method. If not, additional precision will not be effective and we
must cut the stepsize. Therefore, we must retain the previous algorithmic step
of cutting the stepsize when convergence is not obtained within N iterations.

Remark 1: An alternative is to compute another bound that guarantees
that we stay within the convergence zone. From the analysis in [1], we have the
new distance from a solution ∆̄ is bounded in terms of the previous distance ∆
as

∆̄ ≤K‖J−1‖(1 + u)2(α + β)∆2+(
K‖J−1‖[(2 + E + u) (u‖J‖+ φ)] + u

)
∆ + K‖J−1‖(1 + u)ψ + u‖v∗‖.

(10)

Here α and β are constants bounding the error in the linear approximations to
the function whose zero we are seeking. They can be approximated by finding

4

the second derivatives of the function. All the other quantities are at least
approximately known as functions of the precision u = 10−P , so that we may
rewrite (10) as

∆̄ ≤ e(u)∆2 + f(u)∆ + g(u), (11)

with functions e(u), f(u), g(u) known. We want ∆̄ < ∆ for convergence. As
above, the first step has magnitude ∆ = a|s|. Moreover, for small u, e(u) is
approximately constant, say e(u) ≈ ê and f(u) and g(u) are proportional to u,
say f(u) ≈ f̂u, g(u) ≈ ĝu. Consequently, if we have

ê∆2 + f̂u∆ + ĝu < a, (12)

then convergence is assured. For small enough u and ∆, this inequality can
always be satisfied. If we add this constraint to the minimization of C(P)/|s|,
we have a minimization problem whose solution guarantees progress at approx-
imately minimum cost.

The constants α and β may be hard to evaluate for a multivariate system.
However, when the original problem to be solved involves just one variable,
z ∈ C, these could be computed. However, since the idea seems unattractive for
multivariate systems, our main interest, we have not implemented it in Bertini.

Remark 2: The analysis given in Section 2 can be extended to all Runge-
Kutta methods using a block diagonal matrix in which each diagonal block
corresponds to a function evaluation for the Runge-Kutta method. Similar
to the case of Euler prediction as treated above, when Newton’s method is
applied to the extended system, the first iteration produces the Runge-Kutta
prediction step and subsequent Newton iterations on the extended system give
the same sequence of corrections as Newton’s method applied to the original
system. In this way, step length optimization can be extended to Runge-Kutta
prediction followed by Newton correction. Other higher-order predictors could
be accommodated in a similar manner.

3 Implementation Details and Computational Ex-
periments

Adaptive multiprecision tracking with stepsize control is implemented in the
software package Bertini [2]. All the examples discussed here were run on an
Opteron 250 processor running 64-bit Linux.

3.1 Implementation Details

In the examples below, the number of safety digits was set to 1. To avoid
constantly changing precision and stepsize upon success, we required 5 successful
steps before attempting to increase the stepsize and 10 successful steps before
attempting to decrease the precision. Failures always cause the stepsize and
precision to be changed according to the rules provided.

5

minimum fixed precision method of [1] new method
96 bits 185.94 39.84 34.65

Table 1: Comparison for average time of 10 runs of the IPP system, in seconds.

To obtain a minimization of cost per unit advance, C(P)/|s|, an approxima-
tion of C(P) was found using an average cost of computation in MPFR with
different precisions compared with IEEE double precision. At various precisions,
we computed the time of common operations used in homotopy continuation,
e.g. straight-line program evaluation, matrix multiplication and linear solving.
Based on this data, the cost function that we used in the following examples,
with P in bits of precision, was

C(P) =
{

1, if P corresponds to double precision;
10.35 + 0.04P, otherwise.

As new versions of MPFR are released, this cost function will be recomputed.

3.2 Comparing the methods

In Section 5.5 of [1], a polynomial system arising from the inverse kinematics
problem for a general six-revolute serial-link robot [3] is considered. Utilizing
the power series endgame with the same settings as in [1], Table 1 indicates the
average time required to solve that system with fixed precision, the method of
[1], and the new method of this paper.

The proactive method described in this paper causes paths to be tracked
using double precision longer than the method of [1]. The key difference is that
this new method allows the stepsize to be decreased rather than automatically
relying on the power (and cost) of higher precision when numerical difficulties
are encountered. This resulted in a 13% improvement in speed for this example
since double precision computation is so much less costly than multiple precision
computation.

3.3 Near singular conditions

For the homotopies utilized, with probability one, the paths do not pass directly
through a singularity on (0, 1]. Even though the Jacobian is still nonsingular,
higher precision may be needed to reveal this. It is not known, a priori, how
many paths travel near a singularity for a given homotopy.

To demonstrate that near singularity conditions do exist, consider the for-
mulation of the nine-point path synthesis problem for four-bar linkages in [4].
Utilizing a 2-homogeneous structure and the two-fold symmetry, the homotopy
consists of 143, 360 paths of which 4326 lead to nondegenerate solutions. The
precision points were selected at random and the homotopy was created using
random numbers. During the tracking, 1184 of the total 143, 360 paths (0.83%)

6

needed to use precision higher than double to track past a near singularity before
returning back to double precision. Moreover, 680 paths (0.47% of the total)
needed to use at least 96 bits of precision to track past a near singularity before
returning to double precision.

Figure 1 is a graph of the log of the condition number, precision and stepsize
in relation to tracking parameter t for a typical path having a near singularity
and requiring the use of at least 96 bits of precision before returning to double
precision.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Graph of the log of the condition number, precision and stepsize
against the tracking parameter t

References

[1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Adpative
multiprecision path tracking, SIAM Journal on Numerical Analysis, 46(2):
722-746, 2008.

7

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler,
Bertini: Software for Numerical Algebraic Geometry. Available at
www.nd.edu/∼sommese/bertini.

[3] A.P. Morgan and A.J. Sommese. Computing all solutions to polynomial
systems using homotopy continuation. Appl. Math. Comput., 24(2):115–
138, 1987. Errata: Appl. Math. Comput., 51:209, 1992.

[4] C.W. Wampler, A. Morgan, and A.J. Sommese, Complete solution of the
nine-point path synthesis problem for four-bar linkages, ASME Journal of
Mechanical Design 114(1):153–159, 1992.

8

