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Abstract

Precision-point synthesis problems for design of four-bar linkages have typi-
cally been formulated using two approaches. The exclusive use of path-points
is known as “path synthesis”, whereas the use of poses, i.e. path-points with
orientation, is called “rigid-body guidance” or the “Burmester problem”. We
consider the family of “Alt-Burmester” synthesis problems, in which some com-
bination of path-points and poses are specified, with the extreme cases corre-
sponding to the classical problems.

The Alt-Burmester problems that have, in general, a finite number of solu-
tions include Burmester’s original five-pose problem and also Alt’s problem for
nine path-points. The elimination of one path-point increases the dimension
of the solution set by one, while the elimination of a pose increases it by two.
Using techniques from numerical algebraic geometry, we tabulate the dimen-
sion and degree of all problems in this Alt-Burmester family, and provide more
details concerning all the zero- and one-dimensional cases.

1 Introduction

In linkage design, dimensional synthesis consists of determining the dimensions of
a prespecified type of linkage such that the designed mechanism performs a desired
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task [1, 2]. Traditionally, the task specification falls into one of three categories:
function generation, path-point generation, and motion generation. Function gen-
eration, which we do not treat in this paper, seeks to coordinate the rotations of
two or more joint angles. Path-point generation seeks to move a reference point on
one of the links along a prescribed path, i.e., for planar linkages, the task is to move
along a curve in R2. Motion generation, also known as rigid-body guidance, seeks
to move one of the links along a prescribed trajectory of position and orientation,
i.e., for planar linkages, the task is a motion along a curve in SE(2). We will use
“pose” to mean a point in SE(2).

Since a linkage has only a finite number of kinematic parameters that can be
adjusted, such as link lengths, exactly matching an arbitrary continuous task curve
is not possible. One alternative is to consider a dimensional synthesis problem that
prescribes a finite number of precision points along the task curve. Solutions of the
problem are linkages that interpolate the precision points. For each type of linkage
and task, there is a maximum number of precision points that can be arbitrarily
prescribed. If fewer than this number are prescribed, the dimension of the solution
set increases allowing freedom of choice that the designer may use to satisfy other
criteria. Solutions of the precision-point problem must be further examined for their
suitability, such as checking for acceptable motion between the precision points,
detecting branch and circuit defects, evaluating transmission characteristics, and
assessing sensitivity to dimensional variation. (For discussion on such issues, see [1,
3, 4]). Our current focus is the precision-point synthesis phase of the design process.

We specifically consider dimensional synthesis problems for planar four-bar link-
ages. Instead of pure path-point generation or pure motion generation, we treat
tasks specified with a mix of precision path-points and precision poses, as was first
considered in [5]. Whereas Alt [6] was an early proponent of four-bar linkage path
generation while classical motion generation for planar four-bar linkages is often
called a Burmester [7] problem, we call this generalized type of synthesis an “Alt-
Burmester” problem. Varying the number of path-points and poses gives 25 problem
types in all, five of which have isolated solutions and four of which have solution
curves. We give the dimension and degree of the solution set for all cases up to and
including the maximal number of precision points, and give extra details on each
case having a zero- or one-dimensional solution set.1

The remainder of this paper is organized as follows. Section 2 reviews the litera-
ture on precision-point synthesis of four-bar linkages and also on numerical algebraic
geometry, the numerical technique we use to solve the Alt-Burmester problems. Sec-
tion 3 formulates polynomial systems for the problems, while the results of solving
general cases are summarized in Section 4. Section 5 presents several particular
examples in more detail with Section 6 providing a summary of our contribution.

1A “zero-dimensional” set is a set with a finite number of members. In other words, its solutions
are isolated points.
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Figure 1: A planar four-bar linkage, achieving a desired pose consisting of
target point and orientation. The distal links of two RR dyads are rigidly
joined by the coupler.

2 Background

2.1 Precision-Point Synthesis of Four-Bar Linkages

As noted by Burmester [7] in 1886, when only precision poses are specified, the
dimensional synthesis problem for four-bar linkages reduces to the synthesis of a two-
link, planar, revolute-revolute kinematic chain, termed an RR dyad. If we rigidly
connect the distal links of two such dyads, the result is a four-bar linkage. Burmester
showed that there are at most four RR dyads whose distal link reaches five general
precision poses, so by combining any two of these dyads, one obtains at most six
four-bar linkages that solve the five-pose Burmester problem.

Burmester also solved the under-specified four-pose problem. In this case, there
is a one-dimensional set of RR dyads that reach the four poses. One can indepen-
dently pick any two distinct solutions in this set to form a four-bar linkage that
satisfies the specification, yielding a two-dimensional solution set. The problem can
be formulated as finding the two joint centers at the first pose such that the RR
dyad can reach the remaining poses. A pair of RR dyads are depicted in Fig. 1. The
location of the base joint center in the fixed reference frame is called the center point,
and the location of the distal joint center in the moving reference frame is called the
circle point. The solution to the four-pose problem gives a center-point curve and a
circle-point curve. Burmester showed that both these curves are cubics [3, 7, 8].

Path-point generation for a four-bar linkage is more challenging than rigid-body
guidance because the two dyads cannot be found independently. Instead, the com-
plete linkage must be considered all at once. Since the orientation of the coupler
link at precision points is not prescribed, there is greater freedom in the synthesis
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problem. There are two center points and two circle points to be determined at the
initial precision point, for a total of eight unknown coordinates. Hence, including
the initial point in the count the maximum number of precision path-points that
can be generally prescribed is nine, a fact first observed by Alt [6].

When fewer than nine points are given, one may impose additional constraints
on other aspects of the design. Depending on what kind of extra constraints are im-
posed, one may pose a wide variety of synthesis problems such that a finite number of
solutions are expected. Often, the constraints are chosen to most conveniently sim-
plify the problem, and alternatively they might be chosen to meet design constraints,
such as limits on where the base joint can be located. Among the various possible
combinations of design constraints, Freudenstein and Sandor [9] developed a closed
form solution for certain 2, 3 and 4 path-point problems. Suh and Radcliffe [10]
developed a method that leads to a set of simultaneous nonlinear equations, which
can be numerically solved for up to 5 path-points. Morgan and the last author [11]
used continuation methods to develop solutions for the problem of 5 path-points
with the center points prescribed. The full 9 path-point problem was attacked with
heuristic continuation approaches in [12] and [13] to produce partial solution lists,
while the first complete solution was reported in [14] using a rigorous continuation
formulation. That work showed that for 9 generic path-points there are a total of
4326 distinct four-bar linkages, which appear as 1442 triplets of Roberts cognates.

In this article, we consider “Alt-Burmester” synthesis problems in which a mix-
ture of M precision poses and N precision points are given. We shall refer to any
one of these as an “M pose N point problem” or simply the “(M,N) problem”.
Problems of this type were first posed in [5] along with some preliminary numerical
results obtained using polynomial continuation. The work reported here gives a
more complete treatment of this family of problems.

2.2 Numerical Algebraic Geometry

One approach that has a long record of solving problems in kinematics is poly-
nomial continuation. Some highlights in this history are Tsai and Morgan’s early
demonstration that the inverse kinematics problem for general six-revolute robots
has 16 solutions [15], Raghavan’s demonstration that the forward kinematics of
general Stewart-Gough platforms has 40 solutions [16], and, most relevant to the
current discussion, the first complete solution of the nine-precision-point problem
for four-bar linkage synthesis [14].

All of the examples just cited are problems where a finite number of solutions
are expected. Subsequently, polynomial continuation has been extended to include
methods for dealing with polynomial systems that may have higher dimensional
solution sets, such as curves, surfaces, and so on. The term numerical algebraic
geometry has been adopted to more accurately describe the current capabilities.
Papers discussing these methods as a general approach to kinematics include [17, 18]
with in-depth mathematical exposition in [19]. The book [20] describes in detail
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how to use the software package called Bertini that we used for the calculations
in this paper. Curve decompositions are computed using the numerical cellular
decomposition algorithm [21] in the Bertini real software package [22].

The foundational idea in numerical algebraic geometry is that an algebraic curve
in N -dimensional complex Euclidean space, CN , intersects a general hyperplane
in a finite set of points, which are equal in number to the degree of the curve.
More generally, in CN , an irreducible algebraic set, say X, of dimension m and
degree d and a general linear space, say L, of dimension N − m intersect in d
distinct points,2 say W = X ∩ L. A witness set for X is the triplet {f(x), L,W},
where f(x) is a polynomial system for which X is an irreducible solution component.
After computing the witness point set W using polynomial continuation, one has
determined the degree of X by the number of points in W . This is just the beginning
since, with a witness set in hand, one can perform a variety of further operations
on X, such as intersecting it with other algebraic sets using diagonal intersection
or regeneration [20]. Furthermore, when f(x;p) is a family of polynomial systems
with parameters p, one may study the general properties of the family by solving
f(x;p∗) = 0 for random, complex parameters p∗. For the work reported here, p is
the set of precision path-points and poses. Once the solution is in hand for generic
parameters, the solution for a particular problem for given real precision data can
be found by parameter continuation [23].

A “natural projection” of a set, which we will simply call a projection from
hereon, is obtained by just ignoring some coordinates. For example, if (x(t), y(t), z(t))
is a curve in 3-space, parameterized by t, then the projection of the curve onto the
(x, y)-plane is just (x(t), y(t)). Of particular interest in four-bar linkage synthesis
problems is the projection of the solution set onto the coordinates of the joints.
The center-point curve and circle-point curve of a four-pose Burmester problem are
examples of this. Once one has a witness set of an algebraic set X, it is straight-
forward to find pseudo-witness sets for its projections just by re-aligning the linear
space L with various coordinate directions [24]. The re-alignment is done via contin-
uation, tracking the witness point set as this proceeds. The number of continuation
paths whose projections stay finite at the end of this process is the degree of the
projected set, which may be smaller than the degree of the original set. The results
are numerically equivalent to the symbolic elimination of variables.

While the main algorithms of numerical algebraic geometry compute solutions
over the complex numbers, for applications, one is interested primarily in real solu-
tions. For isolated solution points, one merely picks out the solutions with negligible
imaginary parts. (In floating point complex numerical computation, the imaginary
part will rarely be exactly zero even if the true solution it approximates is real.)
For algebraic curves, the situation is more difficult. One can slice the curve with a
real hyperplane and obtain real sample points on the curve, but even slicing many
times, one might miss interesting parts of the curve. There also can be ambiguity

2If the set has multiplicity µ, these points appear also with multiplicity µ.
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in how the points should connect to form the complete curve. A more secure, albeit
more costly, treatment is to form equations for sweeping a real slicing plane parallel
to itself and to solve for all the critical points where the plane touches the curve
tangentially [21], or the curve has a cusp or singularity. These critical points include
all the places where the real curve starts, stops, or crosses itself, and if they exist,
even finds isolated real points on the complex curve. Between these critical points,
the real arcs of the curve can be parametrized nonsingularly with respect to the
sweeping coordinate, so they can be sampled numerically to any desired resolution.

3 Formulation of the (M,N) Alt-Burmester Problem

Each Alt-Burmester problem can be formulated such that the first precision pose is
automatically attained, and eight freedoms remain to satisfy the other task prescrip-
tions. As we shall see shortly, each additional precision pose consumes two freedoms
because both path-point and orientation are specified, while each additional preci-
sion path-point consumes just one. Accordingly, for generic precision poses and
precision points, the dimension D of the solution to the (M,N) problem is

D = 10− 2M −N. (1)

In particular, there are five distinct problems for which D = 0; specifically, there
generically exists a finite number of solutions to problems (5, 0), (4, 2), (3, 4), (2, 6),
and (1, 8). Since the (1, 8) problem has only one one pose and only relative orien-
tation matters, this problem is equivalent to Alt’s nine-path-point problem. Addi-
tionally, there are four synthesis problems for which there generally exists a curve
of real solutions: problems (4, 1), (3, 3), (2, 5), and (1, 7), the last being equivalent
to the eight-path-point problem.

We derive the polynomial system for these problems using isotropic coordi-
nates [18]. Hence, we treat vectors as lying in the complex plane, such that a vec-
tor (vx, vy) in a standard Cartesian formulation becomes (v,v) = (vx+i vy, vx−i vy)
in an isotropic formulation.3 In the equations below, we follow the convention of
[2], in which vectors in the fixed reference frame are capitalized, and vectors in the
moving reference frame of the coupler link are lower case. Vectors encoded as com-
plex numbers are in boldface, as are their complex conjugates that complete the
isotropic coordinate pair.

A pair of planar RR dyads, each consisting of a proximal and distal link are
shown in Fig. 2, with corresponding vector notation. For each of the two dyads,
denoted by the subscripts 1 and 2, the to-be-determined locations of the fixed pivots
are offset relative to an arbitrary fixed frame F by G1 and G2. The to-be-determined
lengths of the proximal links are L1 and L2. The position of the proximal links at

3In interpreting solutions expressed in isotropic coordinates, one should note that vx and vy are
real if and only if v and v are complex conjugates.
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Figure 2: Vector diagram of a four-bar linkage at the jth pose. The yellow
squares and circle indicate precision poses and a path-point, respectively.

the jth pose are represented by L1j and L2j . The location of the moving pivots (also
known as the circle points) relative to a precision point, considered as vectors in the
moving frame of the coupler link, are z1 and z2. The jth pose is described relative
to F by a frame consisting of a location vector Dj and an orientation angle θj .
A precision path-point does not come with an angle. Dimensional synthesis of a
four-bar linkage amounts to determining appropriate values of G1, G2, z1, and z2.

Let the precision data be numbered such that indices j = 1, . . . ,M correspond to
poses and j = M + 1, . . . ,M +N correspond to path-points. For all j, with respect
to a fixed coordinate frame, the position of the coupler point is a vector (Dj ,Dj)
while the orientation of the coupler link is angle θj . All (Dj ,Dj), j = 1, . . . ,M +N
are given, as are the angles of the poses, θj , j = 1, . . . ,M . The orientation of the
coupler link at the path-points is not given and must be included in the variables
of the problem. The orientations are expressed as a complex vector in polar form
as Θj = cos θj + i sin θj = eiθj . Since we are using isotropic coordinates, we also
introduce a corresponding conjugate vector, Θj . If the jth precision datum is a pose,
then Θj and Θj are given. For a path-point, these are unknowns, but they are not
independent, as they must satisfy the unit-modulus constraint:

ΘjΘj − 1 = 0, j = M + 1, . . . ,M +N. (2)

From the vector diagram of Fig. 2, one sees that the circle point Z1j on dyad 1
can be written as

Z1j = Θjz1 + Dj , (3)
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and also
Z1j = G1 + L1j . (4)

Combining these and writing the corresponding equation for the conjugate, we have,
for j = 1, . . . ,M +N ,

L1j = Θjz1 + Dj −G1, (5)

L1j = Θjz1 + Dj −G1. (6)

The fundamental synthesis equation guarantees that the length of the proximal link
remains constant at all times. That is, for j = 2, . . . ,M +N ,

L1jL1j − L11L11 = 0. (7)

Similar equations can be formulated for the second RR dyad, which forms a second
set of synthesis equations, these being, for j = 1, . . . ,M +N ,

L2j = Θjz2 + Dj −G2, (8)

L2j = Θjz2 + Dj −G2, (9)

along with, for j = 2, . . . ,M +N ,

L2jL2j − L21L21 = 0. (10)

An accounting of the unknowns is as follows. In isotropic coordinates, the vector
description of the linkage at the first precision datum has 8 variables, namely G1, G2,
z1, z2 and their conjugates, G1, G2, z1, z2. Additionally, for each pose and path-
point, we have unknowns L1j ,L2j and their conjugates L1j ,L2j . Finally, for N path-
points, the rotation coordinates (Θj ,Θj) are unknown. This gives 8+4(M+N)+2N
unknowns in total.

An accounting of the equations is as follows: Eq. (2), for j = M + 1, . . . ,M +N ;
Eqs. (5),(6),(8),(9), for j = 1, . . . ,M +N ; and Eqs. (7),(10), for j = 2, . . . ,M +N .
For general precision data, the expected dimension of the solution set for the (M,N)
Alt-Burmester problem is the total number of variables minus the total number of
equations, which is 10− 2M −N as in (1).

Some simplifications can be performed which leave the expected dimension of the
solution set unchanged. For example, Eqs (5),(6),(8),(9) can be used to eliminate
L1j , L2j , L1j , L2j from Eqs. (7),(10). This reduces the number of unknowns and
equations both by 4(M +N).

4 Complete solution of the (M,N) problem

We use numerical algebraic geometry to study the complete family of Alt-Burmester
problems, reporting the degree of the solution set and the degree of its projections
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onto the center point and circle point coordinates. For the four cases that have
in general a solution curve, we find not only the generic degrees of the curve and
its center-point and circle-point projections but also the generic number of critical
points of these curves. These indicate how many times the curve might reverse
direction, which is a crucial step in plotting a curve. Section 5 considers a few
particular examples of these curves and illustrates them with plots.

Although we solve the problems using a complete set of variables, namely

{G1,G2, z1, z2,G1,G2, z1, z2, [(Θj ,Θj), j = M + 1, . . . ,M +N ]},

we report on the degree of its projection onto the eight “natural” variables

{G1,G2, z1, z2,G1,G2, z1, z2}.

In the (M,N) combinations that give a zero-dimensional solution set, this degree
is an upper bound on the number of real solutions that any problem in that class
can have. The degree of the projection of the solution set onto just the center point
coordinates of dyad 1, (G1,G1), and separately onto just the circle point coordinates
of that dyad, (z1, z1), is often smaller than that of the original set.

4.1 Dimension and degree of the solution set

For each case (M,N), we used Bertini to solve a generic problem in which the pre-
cision data was randomly selected complex numbers. The results, with probability
one, describe the general behavior of the solution sets, in particular, their dimension
and degree. Table 1 gives these for the solution set in the eight natural variables,
whereas Tables 2 and 3 give them for the center-point and circle-point projections,
respectively. Singular solutions, which correspond to degenerate four-bar linkages,
are not included in these counts. Except for the (4, 0) case, whenever the dimension
of the solution set was at least 2, the closure of the projection onto the center point
and circle point filled the entire space. These cases are indicated with an asterisk in
Tables 2 and 3. In all the tables, the columns correspond to the number of poses, M ,
and the rows correspond to the number of path-points, N .

The degree of a zero-dimensional solution set is the number of solutions. For
positive-dimensional solution sets, the degree is the number of intersection points
of the component with a random slice, which is an invariant. The degree also gives
some measure of how complex is the solution set. Degree 1 corresponds to linear
components.

4.2 Problems having 0-dimensional solution sets

In Table 1, one sees that the number of solution points for the problems having
zero-dimensional solution sets ranges from 16 for the (5,0) problem to 8652 for the
(1,8) problem. These extremes are equivalent to Burmester’s five-pose problem and
Alt’s nine path-point problem, respectively.
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Table 1: Dimension and degree of Alt-Burmester solution sets, projected onto
all eight natural variables.

M
1 2 3 4 5

N

0 8 1 6 4 4 16 2 16 0 16
1 7 7 5 24 3 64 1 48
2 6 43 4 134 2 194 0 60
3 5 234 3 552 1 362
4 4 1108 2 1554 0 402
5 3 3832 1 2388
6 2 8716 0 2224
7 1 10858
8 0 8652

Table 2: Dimension and degree of Alt-Burmester solution sets, projected onto
the center point coordinates, (G1,G1).

M
1 2 3 4 5

N

0 ∗ ∗ ∗ 1 3 0 4
1 ∗ ∗ ∗ 1 3
2 ∗ ∗ ∗ 0 60
3 ∗ ∗ 1 128
4 ∗ ∗ 0 402
5 ∗ 1 816
6 ∗ 0 2224
7 1 3500
8 0 4326

We have already noted that Burmester showed that the solution set of the five-
pose problem consists of four dyads. Since the general formulation we use solves for
both dyads simultaneously, these show up in Table 1 as 4 · 4 = 16 four-bar linkages,
but the projection onto either the center point or the circle point of dyad 1 gives
the expected count of 4. Of the 16 solutions, the 4 that have dyad 1 equal to dyad 2
will not form true four-bar linkages. The remaining 12 give just 6 different four-
bar linkages, since switching the numbering on the two dyads counts as a different
solution to the polynomial system but makes no difference to the four-bar linkage.

The other extreme, Alt’s (1, 8) problem, also shows a difference in degree amongst
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Table 3: Dimension and degree of Alt-Burmester solution sets, projected onto
the circle point coordinates, (z1, z1).

M
1 2 3 4 5

N

0 ∗ ∗ ∗ 1 3 0 4
1 ∗ ∗ ∗ 1 3
2 ∗ ∗ ∗ 0 60
3 ∗ ∗ 1 142
4 ∗ ∗ 0 402
5 ∗ 1 1002
6 ∗ 0 2224
7 1 5124
8 0 8652

the three tables, but this time only the center-point projection is lower. As was ob-
served in [14], the 8652 solutions of this problem appear with two symmetry actions:
they appear in triplets according to Roberts cognates and each of these appears twice
just by reversing the numbering of the two dyads. Thus, there are only 4326 distinct
four-bar linkages, appearing as 1442 Roberts cognate triplets. However, it is known
that the center points of a Roberts cognate triplet form a triangle similar to the
coupler triangle, see, for example, Fig. 78 in [8]. Since there are only three center
points, under the six-way symmetry group, the projection onto (G1,G1) repeats
itself, giving just 4326 distinct points. Meanwhile, in the same Fig. 78 in [8], one
sees that there are six circle points, so the projection onto (z1, z1) does not repeat
itself.

4.3 Problems having 1-dimensional solution sets

There are four Alt-Burmester problems that have a 1-dimensional family of mecha-
nisms satisfying generic precision points. In these cases, a witness set for the solution
curve consists of complex points, and as briefly mentioned in Sec. 2, it takes extra
work to describe the set of real points that exist in the complex curve. The first
step in computing a cell decomposition of the real curve is to find the critical points
of the curve with respect to a sweeping hyperplane. The number of complex critical
points with respect to a general sweep direction is a natural invariant of the curve,
and we report on that here. To obtain the real cell decomposition for real precision
data, one can begin by computing the curve’s real critical points using parameter
continuation from the complex critical point set. For each problem, Table 4 lists
the number of critical points with respect to a general projection for three different
curves: the curve in the eight natural variables; the center-point curve (G1,G1);
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and the circle-point curve (z1, z1).

Table 4: Numbers of critical points for all one-dimensional Alt-Burmester prob-
lems with respect to polynomial system from Sec. 3.

(M,N) Generic number of critical points

All 8 natural variables (G1,G1) (z1, z1)

(1, 7) 55676 4168 38740 4168 44208 4168
(2, 5) 11228 988 8084 988 8456 988
(3, 3) 1440 144 972 144 1000 144
(4, 1) 152 16 92 16 92 16

nonsingular singular nonsingular singular nonsingular singular

4.4 Burmester’s (4,0) problem

One other case in these tables gives a result that deserves explanation. Case (4,0)
is Burmester’s four-pose problem. As in any problem with only pose data and no
path-points, the two dyads can be solved independently, and in fact their solution
sets are identical. Due to this independence, when projected onto either the center
point or the circle point coordinates, the two-dimensional solution set of case (4,0)
becomes just one-dimensional. As shown in Tables 2 and 3, the center-point curve
and the circle-point curve are each cubics, as was found by Burmester long ago.

Any problem of type (M, 0) should be solved taking advantage of Burmester’s
technique of separating the two dyads. We report the results for these cases using
the general formulation only for completeness.

5 Examples

The following present three examples of solving Alt-Burmester problems. All com-
putations were done using Bertini to obtain solution points or witness sets and
Bertini real to extract real curves.

5.1 0-dimensional solution set – a (4, 2) problem

The (4, 2) problem has a zero dimensional solution set for generic parameter values.
Table 5 contains randomly chosen values for the poses and points, which are used
for the discussion here.

The problem has 60 complex solutions, of which 18 are real. The center points
of the solutions must lie on the center-point curve of the associated (4, 0) problem
obtained by dropping the two path-points. In Fig. 3a, the locations of the center
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Table 5: Alt-Burmester task consisting of 4 poses and 2 path-points

j djx djy θj (deg)

1 15.95 29.38 102.07
2 19.84 32.66 91.72
3 26.90 34.41 –
4 32.66 32.93 –
5 37.40 29.06 53.52
6 40.00 26.59 30.45

points for the (4,2) problem are shown in blue superimposed on the cyan center-
point curve of the (4,0) problem, along with the four poses. Picking any one of the
center points for dyad 1 automatically picks a corresponding center point for dyad 2
from the same set, thus the 18 center points correspond to just 9 distinct four-bar
linkage solutions. These 18 solutions are closely clustered in projection onto the
center point. In Fig. 3b, we show how one of the solutions achieves the four poses
and two path-points. The particular solution points used are at G1, G2 in Fig. 3a.

5.2 1-dimensional solution set – a (4, 1) problem

The (4, 1) Alt-Burmester problem generically has a 1-dimensional solution set of
four-bar linkages. Table 6 gives specific parameter values we use in this example.

Table 6: Task specification with four poses and one point

j djx djy θj (deg)

1 22.13 11.54 −24.15
2 20.98 22.88 6.93
3 10.45 23.44 –
4 5.23 27.17 54.14
5 −5.66 24.14 78.02

Computing a numerical irreducible decomposition using Bertini reveals that
the algebraic variety in all of the variables for any (4,2) problem has two irreducible
components of dimension one: one of degree 16 and the other of degree 72. As we
will explain, the degree 16 piece is degenerate, so we ignore it. The degree 72 piece
projects to a degree 48 curve in the eight natural variables, so this is the number
reported in Table 1. Both components are self-conjugate, and hence potentially
contain real curves.
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Figure 3

As in the (4,2) case, the results for the (4,1) case can be better understood by
considering the center-point curve of the associated (4,0) problem. This time, the
(4,1) problem has a solution curve and it projects to exactly cover the (4,0) center-
point curve. But the (4,1) problem and the associated (4,0) problem do not have
the same solution set. The difference is that for the (4,0) problem, one can pick
any two points on the center-point curve to form a four-bar linkage. For the (4,1)
problem, the choice for one center point must be matched by one of a finite set of
center points for the other dyad such that the resulting four-bar linkage will reach
the extra path-point.

The degenerate degree 16 component occurs because one possibility for the sec-
ond center point is to choose it exactly the same as the first one. This gives a
four-bar linkage that has degenerated to a planar RR mechanism.

The other solution component, the degree 72 curve, contains the nondegenerate
solutions of the problem. Projecting this curve onto the eight natural variables
yields a degree 48 curve.

So far, these comments apply to any general (4,1) problem. For the particular
problem of Table 6, since it has real precision data, we may wish to find the real
points in its solution curve. The first step in computing a cellular decomposition of
the curve is to find its real critical points with respect to a sweep direction, including
turning, cusp, or singular points. To do so, we could use a ‘parameter continuation’
from the critical point computation reported in Table 4, where it was found that (4,1)
problems have in general 152 nonsingular and 16 singular critical points. However,
to numerically track the singular points would require ‘desingularization’, so instead
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Figure 4: A projection of the solution curve for the (4, 1) Alt-Burmester ex-
ample problem. There is an interval where no mechanism may be constructed.

we use the facility in Bertini real to directly compute the critical points for this
particular problem. The number of real points among these varies with the choice of
a sweep direction, so while these are crucial to computing a real cell decomposition,
their number is not of direct interest.

When the real arcs of the (4,1) curve have been computed in the full set of
coordinates, the curve can be drawn in any projection. Fig. 4 shows the projection
onto the center-point coordinates. Curiously, although the entire (4,1) solution curve
projects to cover the entirety of the related (4,0) center-point curve, the real points
of the (4,1) curve do not cover all the real points of the (4,0) center-point curve;
as seen in the figure, there is a gap. This surprising fact has a straightforward
explanation: in the gap, there are real points of the (4,0) curve that reach all four
poses, but to reach the specified path-point, the coupler link must take a non-real
rotation angle. The condition limiting the reach to the path-point is that one of the
RR dyads has its proximal and distal links parallel. For dyad 1, this is written

Θjz1L1j −Θjz1L1j = 0. (11)

where j is the index of the path-point, j ∈ [1..N ]. (In this example, j = 3.)
Accordingly, one can find these workspace boundary mechanisms by adding Eq. (11),
for the appropriate j to the synthesis constraints of Eqs. (2), (7) and (10). Among
the solutions to this system, there are several such that G1 corresponds with one
of the boundary points of the gap on the center-point curve. Furthermore, since
(z2, z2) do not enter the condition Eq. (11), it is not necessary to include Eqs. (10);
instead, it suffices to solve Eqs. (2), (7) and (11), a system of six equations in six
unknowns, (G1, z1,Θ5,G1, z1,Θ5). In this pared-down system, each boundary point
appears just once. A similar system formed for dyad 2 gives the same result, as must
be the case since the numbering of the dyads is arbitrary.
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5.3 1-dimensional solution set – a (3, 3) problem

As a final example, we consider synthesizing a four-bar linkage to guide a rigid body
through the 3 task poses and 3 path-points given in Table 7. Using Bertini real,
we computed a cellular decomposition of the solution curve. The projection of
this curve onto the center-point plane is shown in Fig. 5. According to Table 2,
this projection is a curve of degree 128, while Table 4 gives the generic number
of critical points in the different projections we have been discussing. Similar to
the (4,1) problem, picking one center point G1 from this curve determines a finite
number of locations for the other center point, G2. These points must also lie on
this same center-point curve.

Table 7: Task combination with 3-poses and 3-points

j djx djy θj
1 −72.67 39.91 72.51
2 −20.22 10.00 15.21
3 57.82 53.08 −63.51
4 5.06 70.00 –
5 −13.32 46.20 –
6 15.22 50.28 –

Figure 5 shows the center-point curve at three different scales. Zoomed far out,
Fig. 5a accentuates the asymptotes to infinity of the curve. These appear as 12
asymptotes, defining 24 rays. A center-point at infinity means that the associated
circle point moves on a circle of infinite radius, which makes these points equivalent
to a slider joint. Each asymptote corresponds to one point at infinity, so we see
that the solution set for the particular (3,3) problem under consideration includes
12 PRRR-type four-bar linkages. One could, of course, set up a new problem to
solve for these directly: an Alt-Burmester (3,3) problem for slider-cranks.

Zooming in twice produces Figs. 5b and 5c that show more details of the curve.
Especially in Fig. 5c, one may notice that there are three points in the plane where
the center-point curve has multiple self-crossings. Further investigation shows that
these points seem to be related to the three precision poses and are not dependent on
the three path-points. In particular, the self-crossings coincide with the poles of the
three poses. This is illustrated in Fig. 5d, which shows just the three precision poses
and their poles. At present, we have no further explanation for this phenomenon,
but we conjecture that the center-point curve of any (3,3) Alt-Burmester problem
has self-crossings at the vertices of the related pole triangle.
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(a) Far out view, showing 12 asymptotes to
infinity.

 

 

(b) Zoom showing how the asymptotes tran-
sition into the curve.

−100 −50 0 50

−100

−80

−60

−40

−20

0

20

40

60

80

100

G
x

G
y

 

 

(c) The apparent crossings of the curve in
this close-up correspond to the pole triangle
in (d).

(d) The pole triangle.

Figure 5: Plots of the (3, 3) Alt-Burmester problem from Table 7, projected
onto the center point of dyad 1.

17



6 Conclusions

We have studied all the (M,N) Alt-Burmester problems using numerical algebraic
geometry as implemented in the Bertini software package. We give the dimension
and degree of the solution set for every general case from the trivial (1,0) problem
that has an 8-dimensional solution, up to the five cases that have 0-dimensional
solutions. The 0-dimensional cases, which include Burmester’s five-pose problem,
case (5,0), and Alt’s nine path-point problem, case (1,8), have degrees ranging from
16 to 8652. Those extremes had been settled before, but the mixed cases in between,
namely (4,2), (3,4), and (2,6), are newly treated. The four cases with solution
curves have been investigated in more depth to the extent of determining the general
number of critical points of each, a step that is useful in plotting the real arcs of
these curves. The (1,7) curve is the most difficult one in the set, having, in the
natural 8 coordinates, a degree of 10,858 and approximately five times that number
of critical points. For the more tractable cases of the (4,1) and (3,3) problems, we
give illustrations of the center-point curves for a specific example of each and point
out interesting features of these.
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