Two Ways to Count
 Solutions to Polynomial
 Equations
 Margaret
 Robinson

 Two Ways to Count Solutions to Polynomial

 Two Ways to Count Solutions to Polynomial Equations

 Equations}Margaret Robinson
Mount Holyoke College

May 24, 2013

Generating functions

A generating function is a clothesline on which we hang up a sequence of numbers for display.—Herbert Wilf

Given a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots$ we can form its generating function

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Rational Generating Functions
Using formulas like

$$
\begin{gathered}
\sum_{n=0}^{\infty} t^{n}=\frac{1}{1-t} \\
\sum_{n=0}^{\infty}(n+1) t^{n}=\frac{1}{(1-t)^{2}}
\end{gathered}
$$

and

$$
\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} t^{n}=\frac{1}{(1-t)^{3}}
$$

Some generating functions can be seen to be rational functions of t !

Two Ways to
Solutions to
Polynomial
Equations
Margaret
Robinson

First Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and consider f with coefficients reduced modulo p.

Two Ways to
Solutions to
Polynomial
Equations
Margaret
Robinson

First Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and consider f with coefficients reduced modulo p.
■ Let

$$
\left|N_{e}\right|=\operatorname{Card}\left\{x \in \mathbb{F}_{p^{e}}^{(n)} \mid f(x)=0 \text { in } \mathbb{F}_{p^{e}}\right\}
$$

First Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and consider f with coefficients reduced modulo p.
■ Let

$$
\left|N_{e}\right|=\operatorname{Card}\left\{x \in \mathbb{F}_{p^{e}}^{(n)} \mid f(x)=0 \text { in } \mathbb{F}_{p^{e}}\right\}
$$

■ Define the Weil Poincaré Series as:

$$
P_{\text {Weil }}(t)=\sum_{e=0}^{\infty}\left|N_{e}\right| t^{e}
$$

with $\left|N_{0}\right|=1$ and $\left|N_{e}\right| \leq p^{n e}$.

Second Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and for $x \in \mathbb{Z}^{(n)}$.

Two Ways to
Solutions to
Polynomial
Equations
Margaret
Robinson

Second Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and for $x \in \mathbb{Z}^{(n)}$.
■ Let

$$
\left|\overline{N_{d}}\right|=\operatorname{Card}\left\{x \bmod p^{d} \mid f(x) \equiv 0 \bmod p^{d}\right\} .
$$

Second Generating Function

Consider a prime number p and a polynomial $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ in n variables with coefficients in \mathbb{Z} and for $x \in \mathbb{Z}^{(n)}$.
■ Let
$\left|\overline{N_{d}}\right|=\operatorname{Card}\left\{x \bmod p^{d} \mid f(x) \equiv 0 \bmod p^{d}\right\}$.
■ Define the Igusa Poincaré Series as:

$$
P_{\operatorname{lgusa}}(t)=\sum_{d=0}^{\infty}\left|\overline{N_{d}}\right| t^{d}
$$

with $\left|\overline{N_{0}}\right|=1$ and $\left|\overline{N_{d}}\right| \leq p^{\text {nd }}$.

Both these generating functions are known to be rational functions of t.

Two Ways to

Robinson

Both these generating functions are known to be rational functions of t.

■ Theorem (Dwork, 1959) $P_{\text {Weil }}(t)$ is a rational function of $t .\left|N_{e}\right|=\sum_{i=1}^{u} \alpha_{i}^{e}-\sum_{i=1}^{v} \beta_{i}^{e}$
(Special case of the first part of the Weil Conjectures 1949.)

Two Ways to
Count
Solutions to Polynomial
Equations
Margaret
Robinson

Both these generating functions are known to be rational functions of t.

■ Theorem (Dwork, 1959) $P_{\text {Weil }}(t)$ is a rational function of t. $\left|N_{e}\right|=\sum_{i=1}^{u} \alpha_{i}^{e}-\sum_{i=1}^{v} \beta_{i}^{e}$
(Special case of the first part of the Weil Conjectures 1949.)
■ Theorem (Igusa, 1975) $P_{\text {Igusa }}(t)$ is a rational function of t.
(Conjectured in exercises of the 1966 textbook by Borevich and Shafarevich.)

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 1

Let

$$
f(x)=x
$$

Then

$$
\left|N_{e}\right|=\left|\overline{N_{d}}\right|=1 .
$$

Hence,

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 1

Let

$$
f(x)=x
$$

Then

$$
\left|N_{e}\right|=\left|\overline{N_{d}}\right|=1 .
$$

Hence,

$$
P_{\text {Weil }}(t)=P_{\text {Igusa }}(t)=\sum_{e=0}^{\infty} t^{e}=
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 1

Let

$$
f(x)=x
$$

Then

$$
\left|N_{e}\right|=\left|\overline{N_{d}}\right|=1 .
$$

Hence,

$$
P_{\text {Weil }}(t)=P_{I g u s a}(t)=\sum_{e=0}^{\infty} t^{e}=\frac{1}{(1-t)}
$$

Two Ways to

Solutions to Polynomial
Equations
Margaret
Robinson

Example 2

Let

$$
f(x, y)=x y
$$

Then

$$
\left|N_{e}\right|=2 p^{e}-1
$$

Hence,

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2

Let

$$
f(x, y)=x y
$$

Then

$$
\left|N_{e}\right|=2 p^{e}-1
$$

Hence,

$$
P_{\text {Weil }}(t)=\sum_{e=0}^{\infty}\left(2 p^{e}-1\right) t^{e}=
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2

Let

$$
f(x, y)=x y
$$

Then

$$
\left|N_{e}\right|=2 p^{e}-1 .
$$

Hence,
$P_{\text {Weil }}(t)=\sum_{e=0}^{\infty}\left(2 p^{e}-1\right) t^{e}=\frac{1+(p-2) t}{(1-t)(1-p t)}$

Example 2 (continued)

Counting points solutions of $f(x, y)=x y \bmod p^{d}$ for each d, we see that $\left|\bar{N}_{d}\right|$ is more complicated but we find the recursion relation:

$$
\left|\overline{\mathrm{N}}_{0}\right|=1
$$

Example 2 (continued)

Counting points solutions of $f(x, y)=x y \bmod p^{d}$ for each d, we see that $\left|\overline{\mathrm{N}}_{d}\right|$ is more complicated but we find the recursion relation:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=2 p-1
\end{aligned}
$$

Example 2 (continued)

Counting points solutions of $f(x, y)=x y \bmod p^{d}$ for each d, we see that $\left|\bar{N}_{d}\right|$ is more complicated but we find the recursion relation:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=2 p-1 \\
& \left|\overline{\mathrm{~N}}_{2}\right|=p\left(\left|\overline{\mathrm{~N}}_{1}\right|-1\right)+p^{2}\left|\overline{\mathrm{~N}}_{0}\right|=3 p^{2}-2 p
\end{aligned}
$$

Example 2 (continued)
Counting points solutions of $f(x, y)=x y \bmod p^{d}$ for each d, we see that $\left|\bar{N}_{d}\right|$ is more complicated but we find the recursion relation:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=2 p-1 \\
& \left|\overline{\mathrm{~N}}_{2}\right|=p\left(\left|\overline{\mathrm{~N}}_{1}\right|-1\right)+p^{2}\left|\overline{\mathrm{~N}}_{0}\right|=3 p^{2}-2 p \\
& \left|\overline{\mathrm{~N}}_{d}\right|=p^{d-1}\left(\left|\overline{\mathrm{~N}}_{1}\right|-1\right)+p^{2}\left|\overline{\mathrm{~N}}_{d-2}\right|
\end{aligned}
$$

With careful counting and induction we get the closed form expression:

Example 2 (continued)
Counting points solutions of $f(x, y)=x y \bmod p^{d}$ for each d, we see that $\left|\overline{\mathrm{N}}_{d}\right|$ is more complicated but we find the recursion relation:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=2 p-1 \\
& \left|\overline{\mathrm{~N}}_{2}\right|=p\left(\left|\overline{\mathrm{~N}}_{1}\right|-1\right)+p^{2}\left|\overline{\mathrm{~N}}_{0}\right|=3 p^{2}-2 p \\
& \left|\overline{\mathrm{~N}}_{d}\right|=p^{d-1}\left(\left|\overline{\mathrm{~N}}_{1}\right|-1\right)+p^{2}\left|\overline{\mathrm{~N}}_{d-2}\right|
\end{aligned}
$$

With careful counting and induction we get the closed form expression:

$$
\left|\overline{\mathrm{N}}_{d}\right|=(d+1) p^{d}-d p^{d-1}
$$

Two Ways to Count Solutions to Polynomial Equations

Margaret
Robinson

Example 2 (continued)

The Igusa Poincaré series for the polynomial $f(x, y)=x y$ is:

$$
P_{\text {Igusa }}(t)=\sum_{d=0}^{\infty}\left[(d+1) p^{d}-d p^{d-1}\right] t^{d}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2 (continued)
The Igusa Poincaré series for the polynomial $f(x, y)=x y$ is:

$$
\begin{aligned}
P_{\text {lgusa }}(t) & =\sum_{d=0}^{\infty}\left[(d+1) p^{d}-d p^{d-1}\right] t^{d} \\
& =1+\sum_{d=1}^{\infty}(d+1)(p t)^{d}-d p^{-1}(p t)^{d}
\end{aligned}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2 (continued)
The Igusa Poincaré series for the polynomial $f(x, y)=x y$ is:

$$
\begin{aligned}
P_{\text {lgusa }}(t) & =\sum_{d=0}^{\infty}\left[(d+1) p^{d}-d p^{d-1}\right] t^{d} \\
& =1+\sum_{d=1}^{\infty}(d+1)(p t)^{d}-d p^{-1}(p t)^{d} \\
& =1+\sum_{d=1}^{\infty} d\left(1-p^{-1}\right)(p t)^{d}+\sum_{d=1}^{\infty}(p t)^{d}
\end{aligned}
$$

Two Ways to
Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2 (continued)
The Igusa Poincaré series for the polynomial $f(x, y)=x y$ is:

$$
\begin{aligned}
P_{\text {Igusa }}(t) & =\sum_{d=0}^{\infty}\left[(d+1) p^{d}-d p^{d-1}\right] t^{d} \\
& =1+\sum_{d=1}^{\infty}(d+1)(p t)^{d}-d p^{-1}(p t)^{d} \\
& =1+\sum_{d=1}^{\infty} d\left(1-p^{-1}\right)(p t)^{d}+\sum_{d=1}^{\infty}(p t)^{d} \\
& =1+\frac{\left(1-p^{-1}\right)(p t)}{(1-p t)^{2}}+\frac{p t}{(1-p t)}
\end{aligned}
$$

Two Ways to
Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2 (continued)
The Igusa Poincaré series for the polynomial $f(x, y)=x y$ is:

$$
\begin{aligned}
P_{\text {Igusa }}(t) & =\sum_{d=0}^{\infty}\left[(d+1) p^{d}-d p^{d-1}\right] t^{d} \\
& =1+\sum_{d=1}^{\infty}(d+1)(p t)^{d}-d p^{-1}(p t)^{d} \\
& =1+\sum_{d=1}^{\infty} d\left(1-p^{-1}\right)(p t)^{d}+\sum_{d=1}^{\infty}(p t)^{d} \\
& =1+\frac{\left(1-p^{-1}\right)(p t)}{(1-p t)^{2}}+\frac{p t}{(1-p t)} \\
& =\frac{1-t}{(1-p t)^{2}}
\end{aligned}
$$

Margaret
Robinson

Example 3

Let

$$
f(x, y)=y^{2}-x^{3}
$$

$$
P_{\text {lgusa }}\left(p^{-2} t\right)=\sum_{d=0}^{\infty}\left|\overline{N_{d}}\right|\left(p^{-2} t\right)^{d}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3

Let

$$
f(x, y)=y^{2}-x^{3}
$$

$$
\begin{aligned}
P_{\text {lgusa }}\left(p^{-2} t\right) & =\sum_{d=0}^{\infty}\left|\overline{N_{d}}\right|\left(p^{-2} t\right)^{d} \\
& =\frac{\left(1+p^{-2} t^{2}-p^{-3} t^{2}-p^{-6} t^{6}\right)}{\left(1-p^{-1} t\right)\left(1-p^{-5} t^{6}\right)}
\end{aligned}
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued)

From the Igusa Poincaré series for $f(x, y)=y^{2}-x^{3}$, we get a recursion relation of the form:

$$
\left|\overline{\mathrm{N}}_{0}\right|=1
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued)

From the Igusa Poincaré series for $f(x, y)=y^{2}-x^{3}$, we get a recursion relation of the form:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=p
\end{aligned}
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued)

From the Igusa Poincaré series for $f(x, y)=y^{2}-x^{3}$, we get a recursion relation of the form:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=p \\
& \left|\overline{\mathrm{~N}}_{d}\right|=(2 p-1) p^{d-1} \text { for } d=2,3,4,5
\end{aligned}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued)

From the Igusa Poincaré series for $f(x, y)=y^{2}-x^{3}$, we get a recursion relation of the form:

$$
\begin{aligned}
& \left|\overline{\mathrm{N}}_{0}\right|=1 \\
& \left|\overline{\mathrm{~N}}_{1}\right|=p \\
& \left|\overline{\mathrm{~N}}_{d}\right|=(2 p-1) p^{d-1} \text { for } d=2,3,4,5 \\
& \left|\overline{\mathrm{~N}}_{d}\right|=p^{d-1}(p-1)+\left|\overline{\mathrm{N}}_{d-6}\right| p^{7} \text { for } d>5
\end{aligned}
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued)

 Using partial fractions on $P_{\text {lgusa }}(t)$, we get the following closed form formulas for the $\left|\bar{N}_{d}\right|$:$$
\left|\overline{\mathrm{N}}_{0}\right|=1 \text { for } k \geq 0
$$

Solutions to Polynomial
Equations
Margaret
Robinson

Example 3 (continued) Using partial fractions on $P_{\text {lgusa }}(t)$, we get the following closed form formulas for the $\left|\bar{N}_{d}\right|$:

$$
\begin{aligned}
\left|\overline{\mathrm{N}}_{0}\right| & =1 \text { for } k \geq 0 \\
\left|\overline{\mathrm{~N}}_{6 k}\right| & =\left(p^{k+1}+p^{k}-1\right) p^{6 k-1} \\
\left|\overline{\mathrm{~N}}_{6 k+1}\right| & =\left(p^{k+1}+p^{k}-1\right) p^{6 k} \\
\left|\overline{\mathrm{~N}}_{6 k+2}\right| & =\left(2 p^{k+1}-1\right) p^{6 k+1} \\
\left|\overline{\mathrm{~N}}_{6 k+3}\right| & =\left(2 p^{k+1}-1\right) p^{6 k+2} \\
\left|\overline{\mathrm{~N}}_{6 k+4}\right| & =\left(2 p^{k+1}-1\right) p^{6 k+3} \\
\left|\overline{\mathrm{~N}}_{6 k+5}\right| & =\left(2 p^{k+1}-1\right) p^{6 k+4}
\end{aligned}
$$

Bernstein's Theorem

Bernstein's theorem states that for $f(x)$ a non-zero polynomial in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, there exists a differential operator P in
$\mathbb{Q}\left[s, x_{1}, \ldots, x_{n}, \partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right]$ and a unique, monic polynomial of smallest degree $b(s)$ in $\mathbb{Q}[s]$ such that

$$
P \cdot f(x)^{s+1}=b(s) f(x)^{s}
$$

for s in \mathbb{Z}.

Bernstein's Theorem

Bernstein's theorem states that for $f(x)$ a non-zero polynomial in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, there exists a differential operator P in
$\mathbb{Q}\left[s, x_{1}, \ldots, x_{n}, \partial / \partial x_{1}, \ldots, \partial / \partial x_{n}\right]$ and a unique, monic polynomial of smallest degree $b(s)$ in $\mathbb{Q}[s]$ such that

$$
P \cdot f(x)^{s+1}=b(s) f(x)^{s}
$$

for s in \mathbb{Z}. Conjecture: Zeros of the Bernstein polynomial are related to poles of $P_{\operatorname{lgusa}}\left(p^{-n} t\right)$

Two Ways to
Solutions to Polynomial
Equations

Margaret

Robinson

Example 1

When $f(x)=x$ the differential operator is $P=\frac{\partial}{\partial x}$ and the Bernstein polynomial is

$$
b(s)=(s+1)
$$

since we have that

$$
P \cdot x^{s+1}=(s+1) x^{s} .
$$

Two Ways to Count
Solutions to Polynomial
Equations

Margaret

Robinson

Example 1

When $f(x)=x$ the differential operator is $P=\frac{\partial}{\partial x}$ and the Bernstein polynomial is

$$
b(s)=(s+1)
$$

since we have that

$$
P \cdot x^{s+1}=(s+1) x^{s} .
$$

Note that $s=-1$ is the zero of the Bernstein polynomial.

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2

When $f(x, y)=x y$ the differential operator is

$$
P=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\right)
$$

and the Bernstein polynomial is

$$
b(s)=(s+1)^{2}
$$

since we have that

$$
P \cdot(x y)^{s+1}=(s+1)^{2}(x y)^{s} .
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 2

When $f(x, y)=x y$ the differential operator is

$$
P=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}\right)
$$

and the Bernstein polynomial is

$$
b(s)=(s+1)^{2}
$$

since we have that

$$
P \cdot(x y)^{s+1}=(s+1)^{2}(x y)^{s} .
$$

Note that $s=-1$ is a double root of $b(s)$.

Example 3

When $f(x, y)=y^{2}-x^{3}$ the differential operator is

Two Ways to
Solutions to Polynomial Equations

Margaret
Robinson

Example 3

When $f(x, y)=y^{2}-x^{3}$ the differential operator is

$$
\begin{aligned}
P=1 / 27 \partial^{3} / \partial x^{3} & +1 / 6 \times \partial^{3} / \partial x \partial y^{2} \\
& +1 / 8 y \partial^{3} / \partial y^{3}+3 / 8 \partial^{2} / \partial y^{2}
\end{aligned}
$$

and the Bernstein polynomial is

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3

When $f(x, y)=y^{2}-x^{3}$ the differential operator is

$$
\begin{aligned}
P=1 / 27 \partial^{3} / \partial x^{3} & +1 / 6 \times \partial^{3} / \partial x \partial y^{2} \\
& +1 / 8 y \partial^{3} / \partial y^{3}+3 / 8 \partial^{2} / \partial y^{2}
\end{aligned}
$$

and the Bernstein polynomial is

$$
b(s)=(s+1)(s+5 / 6)(s+7 / 6)
$$

Two Ways to
Solutions to Polynomial
Equations
Margaret
Robinson

Example 3

When $f(x, y)=y^{2}-x^{3}$ the differential operator is

$$
\begin{aligned}
P=1 / 27 \partial^{3} / \partial x^{3} & +1 / 6 \times \partial^{3} / \partial x \partial y^{2} \\
& +1 / 8 y \partial^{3} / \partial y^{3}+3 / 8 \partial^{2} / \partial y^{2}
\end{aligned}
$$

and the Bernstein polynomial is

$$
b(s)=(s+1)(s+5 / 6)(s+7 / 6)
$$

Note that $s=-1,-5 / 6$, and $-7 / 6$ are roots of $b(s)$.

Consider the Igusa Poincaré Series for our three examples:

Mystery

Consider the Igusa Poincaré Series for our three examples:

$$
P_{\operatorname{lgusa}}\left(p^{-1} t\right)=\frac{1}{\left(1-p^{-1} t\right)} \text { for } f(x)=x
$$

Two Ways to

Solutions to Polynomial
Equations
Margaret
Robinson

Mystery

Consider the Igusa Poincaré Series for our three examples:

$$
\begin{aligned}
& P_{\operatorname{lgusa}}\left(p^{-1} t\right)=\frac{1}{\left(1-p^{-1} t\right)} \text { for } f(x)=x \\
& P_{\operatorname{lgusa}}\left(p^{-2} t\right)=\frac{1-p^{-2} t}{\left(1-p^{-1} t\right)^{2}} \text { for } f(x, y)=x y
\end{aligned}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Mystery

Consider the Igusa Poincaré Series for our three examples:

$$
\begin{aligned}
P_{\lg \text { usa }}\left(p^{-1} t\right)= & \frac{1}{\left(1-p^{-1} t\right)} \text { for } f(x)=x \\
P_{\text {lgusa }}\left(p^{-2} t\right)= & \frac{1-p^{-2} t}{\left(1-p^{-1} t\right)^{2}} \text { for } f(x, y)=x y \\
P_{\text {lgusa }}\left(p^{-2} t\right)= & \frac{\left(1+p^{-2} t^{2}-p^{-3} t^{2}-p^{-6} t^{6}\right)}{\left(1-p^{-1} t\right)\left(1-p^{-5} t^{6}\right)} \\
& \text { for } f(x, y)=y^{2}-x^{3}
\end{aligned}
$$

Two Ways to
Solutions to Polynomial
Equations

Margaret

Robinson

Mystery (continued)
Let $t=p^{-s}$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Mystery (continued)

Let $t=p^{-s}$

$$
P_{\operatorname{lgusa}}\left(p^{-1-s}\right)=\frac{1}{\left(1-p^{-1-s}\right)} \text { for } f(x)=x
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Mystery (continued)

Let $t=p^{-s}$

$$
\begin{aligned}
& P_{\operatorname{lgusa}}\left(p^{-1-s}\right)=\frac{1}{\left(1-p^{-1-s}\right)} \text { for } f(x)=x \\
& P_{\text {lgusa }}\left(p^{-2-s}\right)=\frac{1-p^{-2-s}}{\left(1-p^{-1-s}\right)^{2}} \text { for } f(x, y)=x y
\end{aligned}
$$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Mystery (continued)

Let $t=p^{-s}$
$P_{\text {lgusa }}\left(p^{-1-s}\right)=\frac{1}{\left(1-p^{-1-s}\right)}$ for $f(x)=x$
$P_{\text {lgusa }}\left(p^{-2-s}\right)=\frac{1-p^{-2-s}}{\left(1-p^{-1-s}\right)^{2}}$ for $f(x, y)=x y$
$P_{\text {lgusa }}\left(p^{-2-s}\right)=\frac{\left(1+p^{-2-2 s}-p^{-3-2 s}-p^{-6-6 s}\right)}{\left(1-p^{-1-s}\right)\left(1-p^{-5-6 s}\right)}$
for $f(x, y)=y^{2}-x^{3}$

Two Ways to Count
Solutions to Polynomial
Equations
Margaret
Robinson

Mystery (continued)

Let $t=p^{-s}$
$P_{\text {lgusa }}\left(p^{-1-s}\right)=\frac{1}{\left(1-p^{-1-s}\right)}$ for $f(x)=x$
$P_{\text {lgusa }}\left(p^{-2-s}\right)=\frac{1-p^{-2-s}}{\left(1-p^{-1-s}\right)^{2}}$ for $f(x, y)=x y$
$P_{\text {lgusa }}\left(p^{-2-s}\right)=\frac{\left(1+p^{-2-2 s}-p^{-3-2 s}-p^{-6-6 s}\right)}{\left(1-p^{-1-s}\right)\left(1-p^{-5-6 s}\right)}$
for $f(x, y)=y^{2}-x^{3}$
Conjecture: Real poles of the Poincaré series are all zeros of the Bernstein polynomial. Why??

THANK YOU

I hope there is someone here who gets interested in these questions.

My email: robinson@mtholyoke.edu

