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We present a lattice Boltzmann method (LBM) with a weighted multiple-relaxation-time 
(WMRT) collision model and an adaptive mesh refinement (AMR) algorithm for direct 
numerical simulation of two-phase flows in three dimensions. The proposed WMRT model 
enhances the numerical stability of the LBM for immiscible fluids at high density ratios, 
particularly on the D3Q27 lattice. The effectiveness and efficiency of the proposed WMRT–
LBM–AMR is validated through simulations of (a) buoyancy-driven motion and deformation 
of a gas bubble rising in a viscous liquid; (b) the bag-breakup mechanism of a falling 
drop; (c) crown splashing of a droplet on a wet surface; and (d) the partial coalescence 
mechanism of a liquid drop at a liquid–liquid interface. The numerical simulations agree 
well with available experimental data and theoretical approximations where applicable.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Reliable simulation of multiphase flows under stiff conditions, which could be due to large Reynolds number and/or 
high density ratios, remains a challenge in computational fluid dynamics (CFD). Sharp-interface methods and their counter-
parts, diffuse-interface methods, are two distinct approaches for modeling interfacial dynamics [1]. Existing methods based 
on these techniques differ in terms of accuracy, efficiency, and ease of implementation. In this work, a particular subclass 
of diffuse-interface method, namely phase-field modeling, will be considered. In the phase-field approach, an advection–
diffusion-type equation, based on either Cahn–Hilliard [2] or Allen–Cahn [3] models, is used to track interfaces, which are 
assumed to have a finite thickness as opposed to zero-thickness in sharp-interface methods. In this study, we use the lattice 
Boltzmann equation (LBE) [4,5] to solve the governing equations for multiphase flows.

As opposed to traditional CFD methods based on some direct discretization of the Navier–Stokes equations, the LBE 
is derived from kinetic theory [6,7]. In lattice Boltzmann methods (LBM), the LBE solves the conservation laws based on 
linearized kinetic models. In this work we use the LBE with a multiple-relaxation-time (MRT) collision model [8–10], which 
is far more effective, in terms of numerical stability and accuracy [10], than the single-relaxation-time (SRT) collision model, 
also known as the lattice Bhatnagar–Gross–Krook (LBGK) model [11,12]. The MRT–LBE approach is based on projection 
theory: the advection process of the particle distribution function is carried out in the particle velocity space, whereas 
the collision process is done in moment space, i.e., the distribution function is projected to its velocity moments during 
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the collision process. Because the moments include some physical observables, such as the flow density, momentum, and 
energy, as well as their fluxes, the relaxation processes of the moments are physically meaningful; the relaxation of stresses 
is related to viscous dissipation of the momentum whereas the relaxation of the heat fluxes is related to thermal dissipation. 
With the MRT collision model, all transport coefficients for different processes can be tuned independently, as opposed to 
the LBGK model, in which all dissipation coefficients are identical as they are determined by the only relaxation parameter 
in the model. With the maximum degrees of freedom in utilizing all relaxation rates theoretically allowed in a lattice 
Boltzmann (LB) model, the MRT model not only optimizes the numerical efficiency of the LBE [9,10], it also removes the 
inherent defect of the LBGK model in treating boundary conditions [13].

Traditionally, the moments in the MRT–LBE are those of the particle velocity, and they are mutually orthogonal on the 
discrete velocity set {c i} with a uniform weight function of unity [8–10]. This formulation leads to some undesirable cou-
pling between the conserved hydrodynamic moments, i.e., flow density ρ , and some higher-order, non-hydrodynamic ones 
[14,15], which do not exist in the continuous velocity space. In particular, the most conspicuous spurious coupling is be-
tween the density and the forth-order moment. These spurious couplings can affect numerical stability in LB simulations. 
Some of these couplings can be removed by orthogonalization of moments with a non-uniform weight function [14], result-
ing in a weighed MRT (WMRT) model. In this work, the WMRT model in 2D [14] will be extended to 3D with 15, 19, and 
27 discrete velocities.

A major computational challenge in simulation of multiphase flows is the requirement to adequately resolve the in-
terfacial region between different fluids. This necessitates high resolution in the vicinity of the interface. A uniform grid 
throughout the entire computational domain is inefficient and may be too costly in terms of computational resources. Tech-
niques based on adaptive mesh refinement (AMR) algorithms are very effective in tackling this issue [16–21]. While AMR 
techniques have been used with LBM previously [22–27], only recently, a new AMR–MRT–LBM for two-phase flows in 2D 
was developed [28] using a conservative phase-field LBE [29] and an MRT–LBM for immiscible two-phase flows [30].

In this work, we develop 3D WMRT–LB models with enhanced numerical stability and robustness. With the conventional 
notation DdQq to denote an LB model in d dimensions with q discrete velocities, we develop D3Q15, D3Q19, and D3Q27 
WMRT–LB models. We also extend our previously proposed AMR algorithm [28] from 2D to 3D. We then consolidate the 
proposed WMRT–LBM and AMR to construct an efficient AMR–LBM for direct numerical simulation of multiphase flows 
in 3D. Given that the proposed AMR algorithm, particularly in 3D, could be rather complicated and beyond the scope of 
interest for some people, we will formulate a stand-alone WMRT–LBM in such a way that interested readers are able to 
fully exploit the proposed model without having to use the AMR routine.

To demonstrate the effectiveness and efficiency of our proposed AMR–LBM for multiphase flows, we selectively study 
a few challenging interfacial phenomena in droplet and bubble dynamics [31]. We first consider three interesting test 
problems: (a) the buoyancy-driven motion of a rising bubble [32]; (b) a falling droplet [33], and (c) the splashing of a drop 
on a wet surface [34]. Then, we focus on one particularly challenging problem: a droplet coalescing with a flat liquid pool 
and the mechanism of partial coalescence [35].

In partial coalescence, a drop partially merges with a liquid interface, and instead of a complete coalescence, a daughter 
droplet of smaller size is left behind. The dynamics of partial coalescence of a liquid drop at a liquid–liquid interface have 
been studied by many previously [35–41]. The pioneering experiments of Charles and Mason [35] reported as many as eight 
consecutive stages of observable partial coalescence at a liquid–liquid interface. Thoroddsen and Takehara [36] observed 
up to six stages in the coalescence cascade between a liquid drop and a liquid–air interface. Subsequent experimental and 
numerical studies demonstrate the importance of viscous, inertial, buoyancy and surface tension forces [38,39,41]. All afore-
mentioned studies observe secondary droplets produced at small values of the Ohnesorge number, which quantifies the 
relative strength of viscous force over interfacial tension. Consequently, the governing equations become stiff due to either 
a large Reynolds number or a small Weber number. Thus, it is numerically challenging to simulate interfacial dynamics at 
small Ohnesorge numbers. To the best of our knowledge, all numerical simulations of partial coalescence at a flat liquid–
liquid interface to date are carried out in axisymmetric coordinates [37,39,41]. Given that non-axisymmetric perturbations 
can grow and become significant at high Reynolds numbers (corresponding to low Ohnesorge numbers), genuine 3D simu-
lations are invaluable in studying these phenomena. Therefore, the partial coalescence phenomenon will be revisited in this 
study by using the proposed WMRT–LBM with AMR in 3D.

The remainder of this paper is organized as follows. In Sec. 2 we present the formulation of the conservative phase-field 
LBE for interface tracking. We describe the 3D WMRT–LBM that recovers the Navier–Stokes equations in Sec. 3. In Sec. 4
we discuss the numerical implementation of the proposed model. In Sec. 5 we present numerical results for three bench-
mark studies: (a) an air bubble rising due to buoyancy, (b) breakup of a falling liquid drop under gravity, and (c) droplet 
splashing onto a wet surface. We investigate the partial coalescence mechanism of a liquid drop at a liquid–liquid interface 
in Sec. 6. Section 7 summarizes the paper, and (Appendix A) provides the technical details of constructing WMRT models 
for D3Q15, D3Q19, and D3Q27 lattices. This includes the weight coefficients and the transformation matrices, which map 
the distribution function to its moments.

2. Conservative phase-field LBE

We consider a two-phase system with light and heavy fluids, and define the phase-field variable φ such that it is zero 
in one phase (light fluid) and one in the other (heavy fluid). Most phase-field-based LB models mimic the Cahn–Hilliard 
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equation [42]. From the numerical viewpoint, an undesirable feature of the Cahn–Hilliard model is the need to calculate the 
Laplacian of the chemical potential, which implies computation of a fourth-order derivative. This shortcoming is reduced 
to the calculation of second-order derivatives in the phase-field model proposed by Sun and Beckermann [43]. This can be 
further reduced to the calculation of first-order derivatives using LBM [29].

The conservative phase-field equation for interface tracking in incompressible binary fluids can be written as [44]

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(
∇φ − 4

ξ
φ(1 − φ)n̂

)]
, (1)

where t stands for time, u is the macroscopic velocity vector, M is the mobility and ξ is the interface thickness (see Sec. 6.2
for a practical guideline on choosing these parameters), and n̂ is the unit vector out-normal to the interface

n̂ = ∇φ

|∇φ| (2)

(see Eq. (33) and the following paragraph for numerical implementation of n̂). For an interface located at r0 and at thermo-
dynamic equilibrium, the phase-field distribution at r assumes a hyperbolic tangent profile

φ(r) = 1

2

[
1 ± tanh

(
2|r − r0|

ξ

)]
. (3)

In order to recover phase-field equation (1), the following LBE is proposed [29]:

∂hi

∂t
+ c i · ∇hi = −hi − h(eq)

i

λφ

, (4)

where hi is the phase-field distribution function, λφ is the phase-field relaxation rate, and c i (i = 0, 1, 2, . . ., q − 1) is the 
microscopic velocity set which is given in Appendix A for different lattices in 3D. The equilibrium phase-field distribution 
function is [29]

h(eq)
i = φ�i + wi

M

c2
s

[
4

ξ
φ(1 − φ)

](
c i · n̂

)
, (5)

in which

�i = wi

[
1 + c i · u

c2
s

+ 1

2

(
c ic i

c2
s

− I

)
: uu

c2
s

]
, (6)

where cs = c/
√

3 is the speed of sound in the system, c = δx/δt (for uniform grids δx = δt = 1 lu (lattice units)), I is the 
d × d identity matrix in which d is the spatial dimension, and wi is the weight coefficient set corresponding to the velocity 
set c i [7] (see Appendix A). The mobility is related to the phase-field relaxation rate by

M = λφc2
s . (7)

The phase-field LBE (4) can be solved in two steps:

collision: h∗
i (x, t) = hi(x, t) + �h, (8a)

advection:
∂h∗

i

∂t
+ c i · ∇h∗

i = 0, (8b)

where h∗
i denotes the post-collision value of hi and �h = −(hi − h(eq)

i )/τφ is the collision operator where τφ = λφ/δt + 1/2. 
On uniform grids, perfect shift hi(x, t + δt) = h∗

i (x − c iδt, t) is the exact solution to the advection equation; therefore, the 
following relation holds when δx = δt:

hi(x + c iδt, t + δt) = hi(x, t) − hi(x, t) − h(eq)
i (x, t)

τφ

. (9)

The phase field is then calculated by taking the zeroth moment of the phase-field distribution function

φ =
q−1∑
i=0

hi (10)

and the density ρ is simply found by a linear interpolation

ρ = ρL + (ρH − ρL)φ, (11)

where ρL and ρH are the bulk densities of the light and heavy fluids, respectively.
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3. LBE for pressure evolution

The discrete Boltzmann equation for the particle distribution function f i with a general forcing term F can be written 
as:

D f i

Dt
= � f + f (eq)

i

ρc2
s

(c i − u) · F , (12)

where D/Dt := ∂t + c i · ∇ is the total derivative along the characteristics, � f is the collision term (to be specified later), and 
f (eq)

i = ρ�i in which �i is defined in Eq. (6). Since the hydrodynamic pressure p is the primary quantity of interest, we 
make the following change of variable

gi = c2
s f i + wi(p − p0), (13)

where p0 = ρc2
s is the ideal gas equation of state. The evolution equation for gi then reads as

Dgi

Dt
= �g + �i(c i − u) · F + wi

D(p − p0)

Dt
, (14)

where �g = c2
s � f (see Eq. (26)). Both p and p0 are conserved quantities, that is for incompressible flows ∂t p + u · ∇p = 0

and ∂t p0 + u · ∇p0 = 0. Thus

wi
D(p − p0)

Dt
= wi(c i − u) · ∇(p − p0). (15)

The forcing term F may be written as

F = −∇(p − p0) + F s + F b, (16)

where the term (p − p0) accounts for deviations from ideal gas in the equation of state, F b is the body force, and F s is the 
interfacial tension force (see Eq. (31)). Substituting Eqs. (15) and (16) in Eq. (14) and neglecting the term (�i − wi)∇p ∼
O (Ma3) leads to

Dgi

Dt
= �g + Gi, (17)

where

Gi = (c i − u) · [(�i − wi)∇p0 + �i(F s + F b)] . (18)

Because the right-hand side of Eq. (17) is a function of gi , the discretized version of Eq. (17) is implicit. However, it can be 
made explicit by a simple change of variable:

ḡi = gi − δt

2

(
�g + Gi

)
. (19)

This is equivalent to using the following modified equilibrium for gi

ḡ(eq)
i = g(eq)

i − δt

2
Gi . (20)

The conserved quantities are now ρu and p:

ρu = 1

c2
s

∑
i

ḡic i + δt

2
(F s + F b), (21)

p =
∑

i

ḡi + δt

2
u · ∇p0. (22)

It is worth noting that the updated velocity is used to calculate the pressure in Eq. (22).
Equation (17) can be treated with Strang splitting [45], and the resulting algorithm consists of two steps:

collision: ḡ∗
i (x, t) = ḡi(x, t) + �g + Gi, (23a)

advection:
∂ ḡ∗

i

∂t
+ c i · ∇ ḡ∗

i = 0, (23b)
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where the asterisk denotes the post-collision state and all terms on the right-hand side of Eq. (23a) are evaluated at (x, t). 
Again, on uniform grids (δx = δt) perfect shift or streaming is the solution to the advection equation

ḡi(x, t + δt) = ḡ∗
i (x − c iδt, t). (24)

The following Navier–Stokes equation for incompressible multiphase flows is recovered from the above LB equations

ρ (∂t u + u · ∇u) = −∇p + ∇ · σ + F s + F b, σ := μ
[
∇u + (∇u)T

]
. (25)

4. Numerical implementation

4.1. Collision operators

In this study we use the weighted multiple-relaxation-time (WMRT) collision [14] (see Appendix A)

�g = −M−1 · S · (m − m(eq)), (26)

where M−1 is the inverse of the orthogonal transformation matrix M, which transforms the distribution functions from 
physical space to moment space, S is the diagonal relaxation matrix, and m = M · ḡ and m(eq) = M · ḡ(eq) are the moments 
of the distribution function (see Appendix A).

The focus of this work is not the optimization of relaxation rates for accuracy and stability. Therefore, only the relaxation 
rates of the second-order moments, which are related to shear stresses, vary according to the kinematic viscosity of the 
fluid (see Eq. (29)), and all other relaxation rates are simply set to one. In other words, the conserved quantities and 
non-hydrodynamic modes are relaxed to their equilibrium values. This means that for the common 3D lattices

S = diag(1, 1, 1, 1︸ ︷︷ ︸
(d+1)

, sν, sν, sν, sν, sν︸ ︷︷ ︸
(d+2)(d−1)/2

, 1, 1, . . . , 1︸ ︷︷ ︸
q−d(d+3)/2

) (27)

and

sν = 1

τ + 1/2
, (28)

where τ is the relaxation time, which is related to the kinematic viscosity by

ν = τ c2
s δt. (29)

If we set all the relaxation rates in Eq. (27) equal to sν , then the commonly used BGK or SRT model is recovered, with 

�g = − ḡi−ḡ(eq)
i

τ+1/2 . It is well-known that the BGK model causes numerical instabilities as the relaxation time approaches 0. In 
order to achieve small relaxation times, which correspond to high Reynolds numbers, employing the MRT collision model 
is inevitable. We must emphasize that the classical MRT model for the D3Q27 lattice [46,47] becomes unstable using the 
relaxation rates in Eq. (27) [15]. The proposed D3Q27 WMRT model, however, gives us stable and accurate solutions as will 
be shown.

The materials presented so far are adequate for writing a computer program for numerical simulation of two-phase 
flows on uniform grids. On the down side, however, it might be very costly to carry out 3D computations with sufficient 
grid resolution. Although the proposed LB model has the advantage of being highly scalable on massively parallel machines, 
computational resources (hardware storage and time) can still be a bottle-neck for efficient study of multiscale phenomena. 
To rectify this issue, we will formulate the model on structured, nonuniform grids in the following section, and incorporate 
it into an AMR framework (see Sec. 4.4). As will be seen in Sec. 5, the AMR algorithm plays a key role in achieving high 
efficiency in saving computational resources while producing reasonably accurate results. The major obstacle, particularly 
for new users who are not familiar with AMR, is that writing an AMR algorithm can be challenging, cumbersome, and 
time-consuming.

4.2. Nonuniform grids

One way to utilize LBM on nonuniform grids, where the grid spacing �x is an integer multiple of the finest grid spacing 
δx, is to discretize the advection equation using a finite-difference scheme [27]. The upwind Euler scheme would be too 
dissipative and reduces the accuracy of LBM to first order. To retain second-order accuracy of the LBM on nonuniform grids, 
we solve the advection equation using the following Lax–Wendroff scheme [48,26]:

f i(x, t + δt) = f ∗
i (x, t) − C

[
f ∗

i (x, t) − f ∗
i (x − ei�x, t)

]
− 1

C (1 − C)
[

f ∗
i (x + ei�x, t) − 2 f ∗

i (x, t) + f ∗
i (x − ei�x, t)

]
,

(30)
2
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where f i here is a placeholder for either of the distribution functions (hi or ḡi ), ei = c i/c is the dimensionless velocity 
set, and C := cδt/�x = δx/�x is the Courant–Friedrichs–Lewy (CFL) number. As can be seen in the above equation, when 
C = 1 the Lax–Wendroff equation becomes the perfect shift, which is the exact solution to the advection equation. This is 
the case when the spatial grid resolution is such that �x = δx, and is favorable because the perfect shift solution eliminates 
any numerical error due to dispersion or dissipation, which stem from the finite-difference approximation of the advection 
equation. This feature is fully exploited by using the AMR algorithm described in Sec. 4.4.

4.3. Calculation of the gradients

The surface tension force can be calculated by

F s = μφ∇φ, (31)

where

μφ = 4βφ (φ − 1)

(
φ − 1

2

)
− κ∇2φ (32)

is the chemical potential. Coefficients β and κ are related to the surface tension σ and interface width ξ by β = 12σ/ξ and 
κ = 3σξ/2. With the exception of the distribution functions needed to complete the advection step, as in any single-phase 
LB model, the only non-local variable here is the phase field. Compared to other existing LB models for multiphase flows this 
is advantageous because the efficiency of the numerical scheme is increased by enhancing the locality of the LBE, making 
the model more practical for parallel implementation.

All the derivatives are calculated using second-order finite-differences. The gradient of the phase-field variable, which 
appears in the computation of the normal to the interface in Eq. (2) and in the computation of macroscopic properties in 
Eqs. (21) and (22), is calculated using the following second-order isotropic differences

∇φ = 3

�x

∑
i

ei wiφ(x + ei�x, t). (33)

To avoid division by zero in calculation of Eq. (2), a small number (10−12) is added in the computation of the magnitude 
of the phase-field gradient in the denominator. The Laplacian term in Eq. (32) is calculated using the following isotropic 
differences with second-order accuracy

∇2φ = 6

(�x)2

∑
i

wi [φ(x + ei�x, t) − φ(x, t)]. (34)

On the other hand, Eq. (18) includes first derivatives of the phase-field (∇p0 = c2
s ∇ρ = c2

s (ρH − ρL)∇φ and F s = μφ∇φ) 
which are multiplied by the microscopic velocity set (c i · ∇). These terms are treated as directional derivatives along char-
acteristics [49]. For calculation of the modified equilibrium distribution function in Eq. (20), the directional derivatives that 
appear in Gi in Eq. (18) are discretized using

ei · ∇φ|(x,t) = 1

2�x
[φ(x + ei�x, t) − φ(x − ei�x, t)] , (35)

and the directional derivatives that appear in calculation of Gi in the collision step in Eq. (23a) are discretized using

ei · ∇φ|(x, t) = −1

4�x
[φ(x + 2ei�x, t) − 5φ(x + ei�x, t) + 3φ(x, t) + φ(x − ei�x, t)] . (36)

It is worth noting that using mixed differences has been shown to compromise momentum conservation [50]. Although we 
can employ isotropic differences to calculate all the gradients [51], in this study we use mixed differences only in calculation 
of the collision step in Eq. (23a).

4.4. Adaptive mesh refinement in 3D

Roughly speaking, two orders of magnitude reduction in computer hardware storage and speed-up in the computations 
are achieved by implementing the proposed 3D AMR algorithm. In addition, post-processing of the output data is much 
more efficient due to significant reduction in the size of the output files. The 3D AMR algorithm implemented in this paper 
is a direct extension of the cell-centered AMR structure previously proposed in 2D [27,28]. Here, we briefly introduce the 
necessary parameters and nomenclature, and refer the interested reader to Refs. [26,27] for full details of the algorithm.

The AMR hierarchy is built by using structured, cubic blocks. All blocks are self-similar in the sense that they consist of 
nx × ny × nz cells with different grid spacings characterized by their refinement level l. The base block is the coarsest one 
with l = 0, and the grid spacing for each block is
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�x = Lx

nx2l
= L y

ny2l
= Lz

nz2l
, (37)

where Lx , L y , and Lz are the size of the base block in the x-, y-, and z-directions, respectively. In the current work we use 
nx = ny = nz = 8.

Once the computational domain is covered with a sufficient number of base blocks, the so-called refinement criteria 
(see Sec. 4.4.1) are used to identify zones where higher resolution is needed, e.g., in the vicinity of the interface between 
different fluids. Accordingly, those blocks in the desired regions are flagged for refinement. The actual refinement/coarsening 
automation is triggered by noting that the difference in the refinement level between two adjacent blocks cannot exceed 
one. This process is repeated until the number of refinement levels reaches a maximum input value. The value of this 
maximum allowable refinement level is assigned by taking into account the limit of available computational resources, i.e., 
time and memory. This also ensures that the blocks are not generated indefinitely.

Once the AMR hierarchy is built, we need a means for communicating the nonlocal variables, i.e., h∗
i , ḡ∗

i , and φ for our 
purposes, between adjacent blocks. This is achieved by using pointers to determine the neighboring blocks and by using 
ghost cells to communicate the necessary data. In 2D the data is communicated with eight neighboring blocks, while in 
3D inter-block communications go up to 26 neighbors. When two neighboring blocks are at the same refinement level the 
ghost cells are directly filled by a simple copy. Otherwise, triquadratic interpolations, essential to a spatially second-order 
accurate solution [52,26,27], are used to obtain the unknown distribution functions (h∗

i and ḡ∗
i ) and phase field (φ). It is 

worth mentioning that only one layer of data, in each direction, is assigned as ghost cells for the distribution functions 
while two layers are assigned for the phase-field variable due to the use of second-order biased differences (see Eq. (36)). 
For boundary blocks, a negative pointer value is assigned to specify the type of boundary condition to be applied.

Once again, it is worth noting that �x and δt in our model are not the same because we solve the advection equation 
using the Lax–Wendroff scheme, which decouples space and time. Therefore, all the blocks are advanced in time simulta-
neously using the same time step but different grid spacing. We do, however, use �x = δx = 1 (C = 1) on the blocks at the 
finest refinement level (finest grids) to obtain the most accurate results (as mentioned in Sec. 4.2, the perfect shift is the 
solution of the advection equation on these finest blocks). This also eliminates any dispersion error pertinent to the Lax–
Wendroff scheme in the vicinity of interfacial regions, where higher accuracy is desirable. Therefore, an interesting feature 
of the LBM, that is the perfect shift or streaming, is properly utilized on nonuniform grids.

4.4.1. Refinement criteria
For automation of the AMR, a reliable refinement criterion, or a so-called feature-detecting estimator, is required. Once 

the refinement criterion within a certain block is above a threshold value εr it is flagged for refinement. Likewise, if the 
refinement criterion in all leaf blocks of a given parent block is below a prescribed value εd the parent block is flagged for 
coarsening or derefinement. For multiphase flows we use the following refinement criterion ε

ε = |∇φ| =
√(

∂φ

∂x

)2

+
(

∂φ

∂ y

)2

+
(

∂φ

∂z

)2

, (38)

which is sensitive to noticeable changes in the phase field, and so a good measure for resolving interfacial regions. We have 
found the following values εr = 0.002 and εd = 0.001 to yield reasonably accurate and efficient simulations [28].

5. Numerical validations

Here we present several simulations, representative of multiphase flow problems of practical and scientific interest, to 
assess the proposed WMRT–LBM–AMR in 3D. In what follows, we use the characteristic domain size L0 = Nδx, where 
N is the equivalent number of grid points on a uniform grid, which might be different than grid spacing (δx ≤ �x), to 
nondimensionalize the length. We present the results in terms of the density ratio ρ∗ = ρH/ρL and viscosity ratio μ∗ =
μH/μL, where μH and μL are the viscosities of the heavy and light fluids, respectively. The simulations are executed using 
the Intel compiler in release mode (O3 optimization) on a personal computer with an Intel® Core™ i7-4910MQ processor 
(CPU) @2.90 GHz base frequency and 32 GB shared memory (RAM).

5.1. Mass conservation

To begin, we demonstrate the ability of the proposed WMRT–LBM, without AMR, to conserve mass by comparing a 
Cahn–Hilliard-based LBM [49] and the current conservative phase-field model [28]. To this end, we place a circular droplet 
with dimensionless radius R∗ = R/L0 = 0.25 in the middle of a periodic domain. The liquid droplet is surrounded by a 
stationary gas phase (ρ∗ = 1000 and μ∗ = 100). The shape of the droplet at initial time and after 20000 iterations is shown 
in Fig. 1 for two different LB models. As can be seen, the droplet in the Cahn–Hilliard-based model loses its mass and 
shrinks with time, while the mass of the droplet using the current model remains constant (to within round-off error). This 
is why we call the current LB model “mass conserving”. However, when combined with the AMR technique in Sec. 4.4, the 
proposed model does not exactly conserve mass due to interpolation at the borders of different blocks and due to dispersion 
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Fig. 1. Stationary droplet test with ρ∗ = 1000 and μ∗ = 100. (a) Cahn–Hilliard-based LBM [49]; (b) Current phase-field LBM [28].

errors associated with the Lax–Wendroff method. Nevertheless, any mass conservation issues of the combined AMR–LBM 
are not as severe as those that arise with Cahn–Hilliard-based models, especially because we use higher resolution in the 
vicinity of interfaces.

5.2. Rising bubble

The buoyancy-driven motion of a gas bubble in a viscous liquid is an important phenomenon with many scientific 
and engineering applications [31,32]. Numerical simulation of bubble dynamics is more challenging than droplet dynamics 
because the (inertial and viscous) forces exerted on the gas bubble are stronger. We have previously studied a similar 
problem at ρ∗ = 10 in axisymmetric coordinates [53]. In this paper we consider a fully 3D bubble rising in a viscous liquid, 
typical of an air–water system, to assess the proposed model in terms of accuracy and efficiency.

The computational domain depicted in Fig. 2 is a right rectangular prism of size (1, 4, 1), which is equivalent to a 
uniform grid of resolution 256 × 1024 × 256. Initially, we place a spherical gas bubble with R∗ = 0.125 at (0, 1, 0). We take 
advantage of the symmetry of the problem with respect to the x and z axes and use symmetric boundary conditions at 
x = 0 and z = 0. The volumetric buoyancy force F b = (ρH − ρ)g y ŷ, where g y is the magnitude of gravitational acceleration, 
is applied in the vertical direction ŷ, with bounce-back boundary conditions at the bottom (y = 1), top (y = 4), right (x = 1), 
and front (z = 1) boundaries. In this section, the computations are performed using the D3Q27 lattice.

In addition to the density and viscosity ratios, the flow can be characterized by the gravity Reynolds number

ReGr =
ρH

√
g y D3

μH
, (39)

where D is the drop diameter, and the Eötvös number

Eo = g yρH D2

σ
. (40)

In the literature, the Eötvös number is usually accompanied by the Morton number

Mo = g yμ
4
H

ρHσ 3
. (41)

The dimensionless time is also defined by

t∗ = t

√
g y

D
. (42)

A variety of shapes that the bubble attains with ρ∗ = 1000, μ∗ = 100, and different values of the pertinent dimension-
less numbers at t∗ = 10, when it has roughly reached its terminal rise velocity ut , are shown in Fig. 3. In this section, the 
numerical values for the interface thickness and mobility are ξ = 5 lu and M = 0.04 lu, respectively. Our results are qualita-
tively similar to experimental observations by Bhaga and Weber [32]. Spherical and ellipsoidal bubbles are observed at low 
to intermediate Eötvös numbers, while at higher Eötvös numbers spherical-cap and skirted bubbles are formed. These are 
also consistent with the bubble map in Ref. [31].

Additionally, we calculate and compare the drag coefficient of the bubble versus experimental data given by [32]:

Cexp
D =

[
2.670.9 +

(
16

Re

)0.9
] 1

0.9

, (43)
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Fig. 2. Rising bubble setup. (a) Initial configuration showing the edge of AMR block (on the x–y plane) and the grid resolution (on the y–z plane); (b) plane 
view of the evolution of the bubble with ρ∗ = 1000, μ∗ = 100, ReGr = 40, and Eo = 40 (Mo = 2.50 × 10−2). The flood contours show the phase field at 
t∗ = 0–10 with �t∗ = 2.

Fig. 3. Terminal shape of the rising bubble with ρ∗ = 1000 and μ∗ = 100 under different conditions at t∗ = 10. The top row is at a constant gravity 
Reynolds number (ReGr = 40) and the bottom row is at a constant Eötvös number (Eo = 30). (a) ReGr = 40, Eo = 1 (Mo = 3.91 × 10−7); (b) ReGr = 40, 
Eo = 5 (Mo = 4.88 × 10−5); (c) ReGr = 40, Eo = 100 (Mo = 3.91 × 10−1); (d) ReGr = 10, Eo = 30 (Mo = 2.70); (e) ReGr = 30, Eo = 30 (Mo = 3.33 × 10−2); 
(f) ReGr = 120, Eo = 30 (Mo = 1.30 × 10−4).

where Re = ρHut D/μH. The numerical drag coefficient can be obtained by balancing the buoyancy and inertial forces, which 
for a spherical bubble becomes

CLBM
D = 4

3

g y(ρH − ρL)D

ρHu2
t

. (44)

The numerical findings, together with experimental data from Eq. (43), are plotted against the Reynolds number in Fig. 4. As 
can be seen, the numerical results are in good agreement with experimental data. It is worth noting that each simulation, 



A. Fakhari et al. / Journal of Computational Physics 341 (2017) 22–43 31
Fig. 4. Drag coefficient for a rising bubble (ρ∗ = 1000 and μ∗ = 100). Comparison between experimental data shown by the solid black line [32] and current 
AMR–LBM shown by red square symbols. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

which takes about 4 h to run on a laptop with four processors, is performed about 200 times faster than a simulation on 
an equivalent uniform grid. Moreover, the savings in hardware and memory resources are roughly two orders of magnitude, 
with an additional saving in computational cost (both hardware and time) for post processing of the output data files, which 
are about 80 times smaller than those obtained from a uniform grid.

5.3. Breakup of a falling drop

The deformation and breakup of a falling droplet under buoyancy is an interesting phenomenon which has been studied 
numerically by many authors [54–56]. A liquid droplet of dimensionless radius R∗ = 0.125 is placed at (0, 3.5, 0) within 
a computational domain of size (1, 4, 1) with symmetric boundaries at x = 0 and z = 0 as shown in Fig. 5(a). No-slip, 
link bounce-back boundary conditions are applied at the bottom and top faces of the domain with Neumann boundary 
conditions at x = 1 and z = 1. The buoyancy force F b = (ρL −ρ)g y ŷ is applied to the entire fluid. In addition to ρ∗ and μ∗ , 
the flow is characterized by two principle dimensionless numbers: the Bond number

Bo = g y(ρH − ρL)D2

σ
(45)

and the Ohnesorge number

Oh = μH√
ρHσ D

. (46)

Here we consider deformation of the falling drop with ρ∗ = 10, μ∗ = 2, Bo = 200, and Oh = 0.15 using the D3Q19 lattice 
with ξ = 4 lu and M = 0.015 lu. The Bond number, which quantifies the relative importance of buoyancy to surface tension 
forces, is chosen large enough to ensure a rather drastic deformation in the topology of the falling drop. These parameters 
are chosen in such a way as to observe the well-known bag-breakup mode of the falling drop [54,57].

The mid-plane (z = 0) view of the evolution of the drop as it falls is plotted in Fig. 5(b). The formation of a bag-shaped 
drop is evident at t∗ = 4.2. As time goes on, pressure forces prevail over interfacial tensions and the bag becomes thinner. 
Eventually, the thin bag breaks into multiple droplets at t∗ = 5.4. Fig. 6 shows the streamlines around the falling drop at 
an intermediate time and moments before initiation of the bag breakup. The mechanism of creation and breakup of the 
bag-shaped drop is also illustrated in 3D in Fig. 7 at different times. The simulation of the bag breakup mechanism is in 
good agreement with experimental observations [33]. As can be seen in Fig. 7, the flow field is no longer axisymmetric at 
late times, which highlights the fully 3D nature of this breakup mechanism. Axisymmetric simulations [54,57] are indeed 
inadequate for capturing such details [56].

5.4. Drop splashing on a wet surface

The dynamics of a drop impacting an already wet surface is another computationally demanding phenomenon of broad 
interest. In addition to challenges associated with large density and viscosity contrasts, this problem has the extra difficulty 
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Fig. 5. Falling droplet (ρ∗ = 10, μ∗ = 2, Bo = 200, Oh = 0.15). (a) Initial configuration at t∗ = 0; (b) 2D view of the evolution of the falling drop. The flood 
contours show the phase field at t∗ = 0, 1.8, 2.6, 3.2, 3.8, 4.2, 4.6, and 5.4, sequentially.

Fig. 6. 2D view of the streamlines around the falling droplet (ρ∗ = 10, μ∗ = 2, Bo = 200, Oh = 0.15).

of a singularity at the impact point. We choose this specific problem to asses the accuracy and feasibility of the proposed 
model to simulate such flows with rapid topological changes. In addition to the density and viscosity ratios, two additional 
dimensionless numbers naturally arise: the Reynolds number

Re = ρHU0 D

μH
(47)

and the Weber number

We = ρHU 2
0 D

, (48)

σ
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Fig. 7. Bag breakup of the falling droplet (ρ∗ = 10, μ∗ = 2, Bo = 200, Oh = 0.15).

where U0 is the initial velocity of the drop. For this problem the dimensionless time is defined as t∗ = t U0/D . Theoretical 
predictions [34] suggest that the spreading radius r can be estimated as r = √

DU0t , or in dimensionless form

r∗ = √
t∗, (49)

where r∗ = r/D . In Ref. [34], the spreading radius was calculated as the radius of the point where the velocity of the 
fluid was maximum at a given time. Geometrically, this point was shown to approximately coincide with the contact line 
between the liquid drop and the wet layer. Using numerical simulations, Josserand and Zaleski [34] found that the spread 
radius actually follows r∗ = 1.1

√
t∗ .

Following Josserand and Zaleski [34], we conduct simulations that fall in the range of intermediate to high Reynolds 
numbers where splashing occurs. We consider two cases with ρ∗ = 500 and We = 8000 at two different Reynolds num-
bers. In the first case, Re = 100 and μ∗ = 400 while in the second case Re = 1000 and μ∗ = 40. The drop is centered at 
(1, 0.26, 1) in a domain of size (1, 1, 1), which corresponds to a 5123 grid with symmetric boundaries at x = 0 and z = 0. 
The dimensionless radius of the drop is R∗ = 0.2 and the dimensionless height of the liquid film shown in Fig. 8(a) is 0.06. 
The boundary conditions are link bounce-back at the bottom and top of the domain and zero-gradient at x = 1 and z = 1. 
The simulations are carried out on the D3Q27 lattice with ξ = 5 lu and M = 0.03 lu.

Fig. 8(a) shows the plane view of the initial configuration, and Figs. 8(b) and 8(c) illustrate the evolution of the edge of 
the drop over time for Re = 100 and Re = 1000, respectively. As can be seen, the droplet undergoes a smooth, and roughly 
axisymmetric, splashing at Re = 100. Increasing the Reynolds number to 1000 causes the axisymmetric rim to break into 
multiple droplets, which is known as crown formation (see Fig. 8(c)).

The 3D snapshot of the impacting drop at t∗ = 2.0 are shown in Fig. 9 for both Re = 100 and Re = 1000. After the drop 
impacts the liquid film, a thin liquid sheet (rim) is formed that propagates outwards, radially. Depending on the relative 
strength of inertial and viscous forces, characterized by the Reynolds number, the rim may become unstable and break up, 
as is the case for Re = 1000 in Fig. 9(b). The growth rate of the stable rim is expected to follow power-law relation (49). As 
can be seen in Fig. 10, the spreading radius is in accordance with the theoretical prediction and previous numerical findings 
(r∗ = 1.1

√
t∗ [34]). It is worth highlighting the contrast with 2D results [28], which overestimate the spreading. Also, as can 

be seen in Fig. 10, the spread radius seems to deviate from the power-law relations at late times. This may be attributed to 
boundary effects as the droplet gets closer to the edge of the computational domain though the power-law relation is not 
expected to be accurate at late times [34].

6. Droplet coalescence at a flat interface

A droplet in the vicinity of a flat interface of the same fluid, when undergoing coalescence, exhibits interesting behav-
iors depending on overriding factors characterized by the interplay of buoyancy, viscous, and interfacial forces [35–41]. In 
addition to density and viscosity ratios, important dimensionless groups are the Bond and Ohnesorge numbers defined in 
Eqs. (45) and (46), respectively. For this problem the capillary time, tc =√ρH D3/σ , is commonly used to nondimensionalize 
time such that t∗ = t/tc .

The main mechanisms for coalescence of the drop depend on the magnitude of Bo and Oh. Depending on the strength of 
surface tension, gravity, and viscous forces, a drop may undergo complete coalescence, partial coalescence or rebound, and 
splashing. Numerical simulation of partial coalescence in particular is complicated by the very small length and time scales 
that arise from the multiscale nature of this phenomenon.

6.1. Partial coalescence

As our first example, similar to experiments conducted by Chen et al. [38], a liquid drop with ρ∗ � 1.316 is placed 
above a flat liquid–liquid interface. The dimensionless groups are identical to those reported in Refs. [38,39]: μ∗ = 0.5, 
Bo = 9.59 × 10−2, and Oh = 5.53 × 10−3 (note that in Ref. [38] the Ohnesorge number was defined based on the average 
density of the fluids).
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Fig. 8. 2D view of drop impact on a wet surface with ρ∗ = 500 and We = 8000. The interface profile is shown at (a) initial time (t∗ = 0), and the evolution 
of the interface with time is plotted at t∗ = 0, 0.5, 1.0, 1.5, 2.0 for (b) Re = 100 and μ∗ = 400 and (c) Re = 1000 and μ∗ = 40.

Initially, a spherical drop of dimensionless radius R∗ = 1/6 is placed at (0, 1 + R∗ + δ, 0) inside a cubic domain of size 
(1, 2, 1) where δ = 7.8 × 10−3 is the dimensionless gap between the lower edge of the drop and the liquid–liquid interface. 
Symmetric boundary conditions are used at x = 0 and z = 0 and zero-gradient (Neumann) boundary conditions are imposed 
at x = 1 and z = 1. The numerical values of the mobility and interface thickness are ξ = 3 lu and M = 0.015 lu, respectively 
(see the discussion in Sec. 6.2). The initial pressure field is approximated to be hydrostatic with a volumetric body force 
F b = −ρg y ŷ applied to the entire fluid. The z = 0 view of the computational setup and initial condition is shown in 
Fig. 11(a). In Fig. 11, the interface is shown by a thick black line and the color contours denote the pressure field, which 
is normalized by the capillary tension force (p∗ = pD/4σ ). Snapshots of the partial coalescence mechanism just before 
coalescence at t∗ = 0.8 and moments after pinch-off at t∗ = 1.0 are shown in Figs. 11(b) and 11(c), respectively.

A side-by-side comparison of the current numerical simulations with the experimental observations in Ref. [38] is shown 
in Fig. 12. Initially, while the drop is being drained into the liquid pool, a capillary wave (shown by an arrow in the 
experimental pictures) is generated. The drop then evolves into a cylindrical body of liquid (t∗ = 0.56) due to the upward 
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Fig. 9. Drop impact on a wet surface at t∗ = 2.0 (ρ∗ = 500, We = 8000). (a) Re = 100, μ∗ = 400; (b) Re = 1000, μ∗ = 40 (for the video see this link).

Fig. 10. Theoretical and numerical results of the spreading radius versus time (ρ∗ = 500, We = 8000, Re = 100, μ∗ = 400).

Fig. 11. 2D view of the partial coalescence between a liquid drop and a liquid–liquid interface at different times. ρ∗ = 1.316, μ∗ = 0.5, Bo = 9.59 × 10−2, 
and Oh = 5.53 × 10−3. The interface is shown by a thick black line and the flood contours show the normalized pressure (p∗ = pD/4σ ).

https://youtu.be/_jeP7AjIo-g
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Fig. 12. Partial coalescence between a liquid drop and a liquid–liquid interface. Comparison between the current model and the experiments by Chen et 
al. [38]. ρ∗ = 1.316, μ∗ = 0.5, Bo = 9.59 × 10−2, and Oh = 5.53 × 10−3. The green contour shows the isosurface of φ = 0.5. Solid black lines in experiments 
and dotted red lines in simulations are the guidelines for tracking the vertical position of the liquid drop. The initial and final times are t∗ = 0 and 
t∗ = 0.890 with �t∗ = 0.081, which corresponds to 542 microseconds in experiments. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

momentum of this capillary wave. Then pinch-off occurs at t∗ = 0.81, and a daughter droplet can be seen suspended above 
the deformed liquid pool at t∗ = 0.89.

6.2. Effect of the mobility

Aside from the physical parameters, the mechanism of drop coalescence onto a fluid interface depends on numerical 
factors such as the mobility and interface thickness. Although free parameters, these quantities are dictated by numerical 
stability and accuracy. In order for simulations to approach the sharp-interface solution, it is generally more accurate to use 
smaller values for the interfacial thickness ξ . However, using a value of ξ that is too small leads to numerical instabilities, 
especially as the density ratio increases. Similarly, lower values for the mobility are desirable. Having a too large a mobility 
results in excessive numerical dissipation in the system which in turn leads to inaccurate results [58]. In our simulations we 
obtain numerically stable and reasonably accurate results by choosing ξ ∼ 3–5 lu and M ∼ 0.01–0.05 lu, which correspond 

to the numerical Péclet number Pe =
√

g y D3

M of 75–3. Specifically, from experience, we recommend using ξ = 3 lu and 
M = 0.01–0.02 lu when ρ∗ = 1–10, ξ = 4 lu and M = 0.02–0.03 lu when ρ∗ = 10–100, and ξ = 5 lu and M = 0.03–0.05 lu 
when ρ∗ = 100–1000.
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Fig. 13. Effect of the mobility on the pinch-off mechanism at t∗ = 0.8 (ρ∗ = 1.316, μ∗ = 0.5, Bo = 9.59 × 10−2, Oh = 5.53 × 10−3). (a) Pe = 75; (b) Pe = 15; 
(c) Pe = 3.

Fig. 14. Coalescence cascade of a liquid drop at a liquid–liquid interface. ρ∗ = 1.316, μ∗ = 0.1, Bo = 10−2, and Oh = 10−4.

In order to see the effect of mobility on the quality of the partial coalescence, we conducted three simulations with 
the same physical parameters as before but for different mobilities: M = 0.003 lu, M = 0.015 lu, and M = 0.075 lu. The 
results are shown in Fig. 13. As can be seen in Fig. 13(a), the pinch-off mechanism is arrested when the mobility is the 
smallest (M = 0.003 lu). On the other hand, for the droplet with the highest mobility in Fig. 13(c) the initiation of the 
partial coalescence is expedited. The intermediate value for the mobility in Fig. 13(b), which was found empirically through 
trial and error, leads to the best agreement with experimental observations reported by Chen et al. [38].

6.3. Coalescence cascade

We consider one further problem, partial coalescence at a very low Ohnesorge number, where viscous forces are very 
small relative to inertia and surface tension. We double the grid resolution and increase the drop radius to R∗ = 0.2. Other 
dimensionless groups are μ∗ = 0.1, Bo = 10−2, and Oh = 10−4. These parameters correspond to extremely low relaxation 
rates τL = 0.000015 lu and τH = 0.000117 lu for the light and heavy fluids, respectively, and are chosen to test the stability 
of the proposed numerical method. With these relaxation rates it is essentially impossible to run a stable simulation us-
ing the BGK model or even the standard MRT model on the D3Q27 lattice. At such low Ohnesorge numbers, the droplet 
undergoes a coalescence cascade [35,36], where partial coalescence occurs multiple times. As can be seen in Fig. 14, the 
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original drop pinches off at t∗ = 0.8 creating a daughter droplet that is roughly half the size of the parent drop. The partial 
coalescence process can now repeat itself as long as the Ohnesorge number of the subsequent daughter droplet remains 
below a critical value. It has been shown that the cascade process is self-similar in the sense that the ratio of the ra-
dius of the daughter droplet to the radius of its parent drop is nearly constant [36]. After bouncing a couple of times, the 
daughter droplet retouches the liquid–liquid interface, which is now deformed due to reflection of waves from the lateral 
boundaries, at t∗ = 1.8. Again, in Fig. 14(e), a capillary wave is created at the exterior surface of the droplet, which leads to 
another pinch-off mechanism at t∗ = 2.2. Such a cascade phenomenon has been observed to occur as many as eight times 
in liquid–liquid experiments [35]. Here though, the second daughter droplet, which is now about one-forth of the original 
drop, completely merges onto the deformed interface. At t∗ = 2.4, viscous forces are strong enough to suppress another 
sequence of the partial coalescence mechanism.

It is worth noting that we also conducted 2D simulations (not shown) for a wide range of Ohnesorge numbers in the 
search for a pinch-off regime, but partial coalescence was never observed in 2D. This is interesting because there has been 
some debate as to the mechanism by which the whole process occurs. On the one hand there is a camp that argues that 
the Rayleigh–Plateau instability is the main mechanism responsible for breakup of the liquid interface [35,36,41], and on 
the other hand there is a theory by Blanchetti and Bigioni [37], who argued against this mechanism. They claimed that 
the pinch-off mechanism depends strongly on the inward momentum of the collapsing neck. Our numerical simulations do 
not support this, but side with postulations based on the Rayleigh–Plateau instability in the pinch-off mechanism of liquid 
drops. In our 2D simulations, no matter how strong the horizontal momentum of the 2D drop is after the coalescence, 
pinch-off never occurs. Knowing that the Rayleigh–Plateau instability is essentially a 3D phenomenon and does not trigger 
in 2D, our simulations tend to support its role and oppose the theory proposed in Ref. [37]. Furthermore, the arguments 
in Ref. [37] were based on setting the velocity field equal to zero (once the liquid drop had stretched to its maximum 
height) and restarting the simulations. Aside from this unphysical treatment, it is not clear whether the incompressibility 
condition was enforced or the pressure field was left intact. Knowing that pressure disturbances in the azimuthal direction 
are the main mechanisms responsible for Rayleigh–Plateau instability, the conclusions drawn based on this ad hoc treatment 
is questionable. Moreover, it is not obvious whether simulation of any instability-induced breakup mechanism is possible 
without introducing a perturbation in the velocity or pressure fields.

7. Summary and conclusion

In this paper we have proposed a novel weighted multiple-relaxation-time lattice Boltzmann method for direct numerical 
simulation of immiscible fluids. The proposed WMRT–LBM consists of a conservative phase-field LBE for interface tracking 
and a pressure-evolution LBE, which recovers the Navier–Stokes equations. In addition to its increased numerical stability 
for the D3Q27 lattice, the proposed WMRT model is shown to be a promising tool for simulation of two-phase flows at very 
small relaxation times. The WMRT–LBE model was also formulated for utilization on nonuniform grids and equipped with 
a 3D adaptive mesh refinement algorithm for efficient use of computational resources.

The model was validated by demonstrating that it could faithfully reproduce the dynamics of a rising bubble in a viscous 
fluid, the bag-breakup mechanism of a falling drop, droplet splashing on a wet surface, and the partial coalescence of a 
liquid drop at a liquid–liquid interface. At a small enough Ohnesorge number, our simulations of the partial coalescence 
were found to be in excellent agreement with reported experimental observations. At lower Ohnesorge numbers, we were 
able to reproduce the so-called coalescence cascade, where a single drop undergoes partial coalescence multiple times. Our 
numerical simulations further support the idea that the Rayleigh–Plateau instability is responsible for the partial coalescence 
mechanism. In essence, the proposed WMRT–LBM–AMR was shown to be a successful and reliable model for simulation of 
breakup and coalescence mechanisms.
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Appendix A. WMRT for three-dimensional lattices

The moments of the monomials cl
ixcm

iycn
iz are defined as [8–10,59,46]:

ψlmn =
∑

i

cl
ixcm

iycn
iz ḡi, (A.1)

where ḡi is defined in Eq. (19). For a DdQq model, there exist q independent moments [8–10], and these moments can be 
orthogonalized in the basis of the monomials in q-dimensional space Rq .

Let mi ∈R
q denote a column vector, i.e.,

mi = (mi0, mi1, . . . , mib)
†,



A. Fakhari et al. / Journal of Computational Physics 341 (2017) 22–43 39
where b := q − 1 is the number of non-zero velocities and † denotes the transpose, thus m†
i is a row vector in Rq . The first 

1 + d independent and orthogonal row vectors are:

m†
0 = (1, 1, . . . , 1︸ ︷︷ ︸

q

),

m†
1 = (c0x, c1x, c2x, . . . , cbx),

m†
2 = (c0y, c1y, c2y, . . . , cby),

m†
3 = (c0z, c1z, c2z, . . . , cbz).

By definition these 1 + d vectors are orthogonal, i.e., m†
i · m j = |mi | |m j |δi j , where |mi | is the Euclidean length of the vector 

mi and δi j is the Kronecker delta. The above (1 +d) vectors correspond to conserved moments in the system, which are the 
vectors corresponding to the basis of the kernel or the null space of the collision operator. If g denotes the following vector 
in Rq ,

g(x, t) = (g0(x, t), g1(x, t), . . . , gb(x, t))†,

then the conserved moments can be obtained as the following:

p = m†
0 · g = g† · m0,

ρux = m†
1 · g = g† · m1,

ρu y = m†
2 · g = g† · m2,

ρuz = m†
3 · g = g† · m3.

The rest of [q − (1 + d)] independent vectors can all be constructed from {mi |0 ≤ i ≤ d}.
For the LB models, the inner product among {mi} can be defined in two ways, namely with or without the weight 

coefficients. The most salient difference between the weighted and unweighted orthogonality is certain couplings of mo-
ments [14], which may affect the stability of the model. In this work, the inner product is defined with the weights 
{wi}:

〈
mi, m j

〉
w :=

b∑
k=0

wkmikm jkδi j, (A.2)

where mik and m jk are the kth components of vectors mi and m j , respectively. With wk = 1, the above defini-
tion reduces to the usual definition of mi · m j , i.e., the unweighted inner product that is used in standard MRT [10,
46].

With a 3D LB model of q discrete velocities, the first vector in Rq is the zeroth-order moment, which corresponds to the 
pressure p in incompressible flows:

m0 = |c i |0 = 1,

and the next three vectors in Rq are the first moments, which correspond to the three components of the flow momentum 
ρux , ρu y , and ρuz:⎧⎪⎨

⎪⎩
m1 = cix,

m2 = ciy,

m3 = ciz

The next (d + 2)(d − 1)/2 components in Rq are the second moments, which are related to the shear stress. In 3D, these 
moments are:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m4 = cixciy,

m5 = ciyciz,

m6 = cizcix,

m7 = 3c2
ix − |c i|2,

m8 = c2
iy − c2

iz
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There is another second moment m9 = |c i |2 − 1, which is related to energy, and the rest of the components in Rq are 
incrementally higher order non-hydrodynamic moments, which are lattice dependent.

For the D3Q15 lattice

third moment:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m10 = 1
2 cix

(
3|c i|2 − 5

)
,

m11 = 1
2 ciy

(
3|c i|2 − 5

)
,

m12 = 1
2 ciz

(
3|c i|2 − 5

)
,

m13 = cixciyciz

fourth moment: m14 = 1

2

(
3|c i|4 − 9|c i|2 + 4

)

For the D3Q19 lattice

third moments:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m10 = cix
(
3|ci |2 − 5

)
,

m11 = ciy
(
3|ci |2 − 5

)
,

m12 = ciz
(
3|ci |2 − 5

)
,

m13 = cix

(
c2

iy − c2
iz

)
,

m14 = ciy
(
c2

iz − c2
ix

)
,

m15 = ciz

(
c2

ix − c2
iy

)

fourth moments:

⎧⎪⎨
⎪⎩

m16 = 3|c i|4 − 9|c i|2 + 1,

m17 = (2|c i|2 − 3
) (

3c2
ix − |c i|2

)
,

m18 = (2|c i|2 − 3
)(

c2
iy − c2

iz

)
For the D3Q27 lattice

third moments:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m10 = cix
(
3|ci |2 − 5

)
,

m11 = ciy
(
3|ci |2 − 5

)
,

m12 = ciz
(
3|ci |2 − 5

)
,

m13 = cix

(
c2

iy − c2
iz

)
,

m14 = ciy
(
c2

iz − c2
ix

)
,

m15 = ciz

(
c2

ix − c2
iy

)
,

m16 = cixciyciz

fourth moments:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m17 = 1
2

(
3|c i|4 − 9|c i|2 + 4

)
,

m18 = (3|c i|2 − 4
) (

3c2
ix − |c i|2

)
,

m19 = (3|c i|2 − 4
)(

c2
iy − c2

iz

)
,

m20 = cixciy
(
3|ci |2 − 7

)
,

m21 = ciyciz
(
3|ci |2 − 7

)
,

m22 = cizcix
(
3|c i|2 − 7

)

fifth moments:

⎧⎪⎨
⎪⎩

m23 = 1
2 cix

(
9|ci |4 − 33|ci |2 + 81

)
,

m24 = 1
2 ciy

(
9|c i|4 − 33|ci |2 + 81

)
,

m25 = 1
2 ciz

(
9|c i|4 − 33|ci |2 + 81

)
sixth moment: m26 = 1

2

(
9|c i|6 − 18|c i|4 + 87|ci |2 − 26

)
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Fig. 15. Discrete velocity sets for 3D LB models.

A.1. D3Q15 model

The discrete velocity set for the D3Q15 is set as is illustrated in Fig. 15(a), and the corresponding weight coefficients are

wi = 1

72

⎧⎨
⎩

16, i = 0,

8, i = 1–6,

1, i = 7–14.

(A.3)

The weighted transformation matrix M is given by:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 1 −1
0 0 0 1 −1 0 0 1 −1 1 −1 −1 1 1 −1
0 0 0 0 0 1 −1 1 −1 1 −1 1 −1 −1 1
0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 2 2 2 2 2 2 2 2
0 −1 1 0 0 0 0 2 −2 −2 2 2 −2 2 −2
0 0 0 −1 1 0 0 2 −2 2 −2 −2 2 2 −2
0 0 0 0 0 −1 1 2 −2 2 −2 2 −2 −2 2
0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1
2 −1 −1 −1 −1 −1 −1 2 2 2 2 2 2 2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.4)

Note that the elements in the second, third, and fourth row in M correspond to the x-, y-, and z-components of the lattice 
velocity set c i in units of c := δx/δt . This thus uniquely defines the ordering (or labeling) of the velocity set {c i |0 ≤ i ≤
(q − 1)} for different lattices.

A.2. D3Q19 lattice

The discrete velocity set for the D3Q19 is set as is illustrated in Fig. 15(b), and the weight coefficients are

wi = 1

36

⎧⎨
⎩

12, i = 0,

2, i = 1–6,

1, i = 7–18.

(A.5)
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The weighted transformation matrix M is:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 −2 2 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 −2 2 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 −2 2 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
1 −2 −2 −2 −2 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1
0 −2 −2 1 1 1 1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.6)

A.3. D3Q27 lattice

The discrete velocity set for the D3Q27 is illustrated in Fig. 15(c), and the corresponding weight coefficients are

wi = 1

216

⎧⎪⎪⎨
⎪⎪⎩

64, i = 0,

16, i = 1–6,

4, i = 7–18,

1, i = 19–26.

(A.7)

The weighted transformation matrix M for the D3Q27 model becomes:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 −1 −1 1 1 −1 1 −1
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 −1 1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1 1 −1 1 −1 1 −1 −1 1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0 0 0 0 0 0 0 0
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
0 −2 2 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 4 −4 −4 4 4 −4 4 −4
0 0 0 −2 2 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 4 −4 4 −4 −4 4 4 −4
0 0 0 0 0 −2 2 0 0 0 0 1 −1 −1 1 1 −1 −1 1 4 −4 4 −4 4 −4 −4 4
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 −1 1
1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4
0 −2 −2 1 1 1 1 2 2 2 2 2 2 2 2 −4 −4 −4 −4 0 0 0 0 0 0 0 0
0 0 0 −1 −1 1 1 2 2 2 2 −2 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 2 2 −2 −2 −2 −2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 2 2 2 2 −2 −2 −2 −2
0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 2 2 −2 −2 2 2 −2 −2
0 1 −1 0 0 0 0 −2 2 −2 2 −2 2 −2 2 0 0 0 0 4 −4 −4 4 4 −4 4 −4
0 0 0 1 −1 0 0 −2 2 2 −2 0 0 0 0 −2 2 −2 2 4 −4 4 −4 −4 4 4 −4
0 0 0 0 0 1 −1 0 0 0 0 −2 2 2 −2 −2 2 2 −2 4 −4 4 −4 4 −4 −4 4

−1 2 2 2 2 2 2 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 −4 8 8 8 8 8 8 8 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.8)
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