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Abstract. Anomalous transport cannot be adequately described with clas-

sical Fickian advection-dispersion equations (ADE) with constant coefficients.

Rather, fractional calculus models may be used, which capture salient fea-

tures of anomalous transport (e.g. skewness and power-law tails). FracFit

is a parameter estimation tool based on space- and time-fractional models

used by the hydrology community. Currently, four fractional models are sup-

ported: 1) space fractional advection-dispersion equation (sFADE), 2) time-

fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile

(FMIM) equation , and 4) temporally tempered Lévy motion (TTLM). Model

solutions using pulse initial conditions and continuous injections are eval-

uated using stable distributions or subordination integrals. Parameter esti-

mates are extracted from measured breakthrough curves (BTCs) using a weighted

nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for

pulse initial conditions and continuous injections are presented. Two sam-

ple applications are analyzed: 1)pulse injection BTCs in the Selke river and

2) continuous injection laboratory experiments using natural organic mat-

ter. Model parameters are compared across models and goodness-of-fit met-

rics are presented, facilitating model evaluation.
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1. Introduction

Anomalous transport cannot be adequately described with classical Fickian advection

dispersion equations (ADE) with constant coefficients [Metzler and Klafter , 2004; Neu-

man and Tartakovsky , 2009]. So-called anomalous transport is quite ubiquitous, spanning

a multitude of scientific disciplines [Klages et al., 2008], including the hydrologic sciences

where it has been observed in both surface [Deng et al., 2006; Phanikumar et al., 2007;

Haggerty et al., 2002; Aubeneau et al., 2014] and subsurface [Benson et al., 2001; Berkowitz

and Scher , 1997; Cortis and Berkowitz , 2004; Wang and Cardenas , 2014; LeBorgne and

Gouze, 2008; Becker et al., 2000] water environments. Anomalous transport is character-

ized by sub- or super- diffusive spreading of a plume, as inferred from the growth rate of its

second centered moment, as well as heavy power law tails in concentration distributions

and breakthrough curves (BTCs).

Several modeling approaches have been developed for anomalous diffusion, including

continuous time random walks (CTRW) [Berkowitz et al., 2006; Boano et al., 2007], multi

rate mass transfer (MRMT) [Haggerty and Gorelick , 1995] and fractional advection dis-

persion equations [Benson et al., 2000]. All have enjoyed remarkable success in matching

observations from experiments, spanning laboratory to field scales. For both CTRW [Cor-

tis and Berkowitz , 2005] and MRMT [Haggerty , 2009], publicly available computational

toolboxes for parameter estimation exist. Alternative modeling approaches include spa-

tial and temporal Markov models [LeBorgne et al., 2008; Meyer and Tchelepi , 2010] and

the adjoint equation method [Maryshev et al., 2016]. The goal of this paper is to de-

scribe a new toolbox for fractional advection-dispersion models [Liu et al., 2003; Schumer
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et al., 2003; Meerschaert et al., 2008]. Given the historical success of fractional calculus

in hydrology [e.g. Benson et al., 2001; Chakraborty et al., 2009; Shen and Phanikumar ,

2009], such a general tool is desirable, allowing for improved inter-model comparison and

rapid model validation, as well as enabling use by a broader fraction of the hydrologic

community, not to mention countless other disciplines where fractional dispersion models

are used.

Motivated by this need, we have developed FracFit, a parameter estimation tool based

on common space- and time-fractional models. FracFit is modular, allowing new models

to be developed, implemented, verified for correctness and tested in a rapid fashion. A

current version is available on GitHub (https://github.com/jfk-inspire/FracFit). This

technical report provides a summary of the models and numerics used in FracFit, which

includes novel optimal weights used in the weighted nonlinear least squares (WNLS)

algorithm for parameter estimation. We then apply FracFit to two data sets, which

have not previously been interpreted with fractional models, illustrating the automated

fitting of pulse and continuous injection BTCs. Space-fractional, time-fractional, and

tempered-fractional models are discussed and compared.

2. Overview of Fractional Models

FracFit is a collection of MATLAB scripts that find the optimal parameter vector θ

for a particular fractional model. At present, four representative models are implemented;

the code is modular allowing additional models to be implemented with relative ease. In

particular, all models use a common interface. Here we consider the following four forms

of fADE commonly used in hydrology:
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1. Space fractional advection-dispersion equation (sFADE) [Benson et al., 2000]

2. Time-fractional dispersion equation with drift (TFDE) [Liu et al., 2003]

3. Fractional mobile-immobile (FMIM) equation [Schumer et al., 2003]

4. Temporally tempered Lévy motion(TTLM) [Meerschaert et al., 2008]

For each model we consider two setups and solve for concentration C(x, t). These are

(i) a pulse initial condition C(x, t = 0) = Kδ(x) on −∞ < x < ∞ where K is initial

mass and (ii) a continuous injection C(x, t = 0) = 0 and C(x = 0, t) = C0, where C0 is a

prescribed concentration, on 0 < x < ∞. The governing equations and solutions for each

of the four models are summarized in Table 1. The sFADE model involves positive and

negative Riemann-Liouville derivatives on the real line. The TFDE involves a Caputo

derivative on the half-axis. The FMIM model utilizes a Riemann-Liouville derivative

on the half-axis. The TTLM model utilizes a tempered Riemann-Liouville derivative on

the half axis. For the FMIM and TTLM models, the governing equations are for the

mobile phase. The solutions are tabulated in terms of stable probability density functions

(PDFs), stable cumulative density functions (CDFs), and subordination integrals, which

can be calculated with widely available stable toolboxes [e.g. Nolan, 1997; Veillette, 2012]

or MATLAB’s Statistics and Machine Learning Toolbox (R2016a and later).

Details on each of these models are available in the noted references. The parameter

vector θi associated with each model is listed in Table 2, along with a description of each

parameter, parameter units, and bounds for each parameter.
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3. Parameter Estimation

FracFit’s parameter estimation is based on the weighted nonlinear least squares

(WNLS) approach developed in [Chakraborty et al., 2009]. The original method is directly

applicable for pulse initial condition cases as the solutions are either scalar multiples of

PDFs or subordination integrals involving PDFs. For the continuous injection cases, the

solutions involve CDFs or subordinated CDFs; for these functions, the specific techniques

presented in [Chakraborty et al., 2009] do not hold and the estimation method requires

modification. Here we briefly review the WNLS method and propose an extension for the

estimation of CDFs required for continuous injection cases.

Using a particle-tracking model, [Chakraborty et al., 2009] showed that concentration

variance is proportional to concentration, implying that data is heteroscedastic; therefore,

a weighted nonlinear regression is used where the weights are proportional to the recip-

rocal of measured concentration. As a result, areas of lower concentration receive greater

weight, which is important for capturing anomalous transport characteristics. Assuming

we have N measurements of a BTC Ci at times t1, . . . , tN , we wish to fit a candidate

analytical model C(x, t) to the observed data by minimizing the weighted mean square

error (WMSE) function

E(θ) =
1

N

N∑
i=1

wi (Ci − C(x, ti))
2 , (1)

where C(x, t) is the appropriate PDF function and the weights are given by wi = 1/Ci.

These weights are applicable to any BTC that can be normalized into PDFs, including

bi- or multi-modal BTCs. However, all the fractional calculus models considered in this

report have solutions that are unimodal.
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The continuous injection breakthrough curves (CBTCs) are fit in terms of a CDF instead

of a PDF; hence, we expect a different set of weights wi. In Appendix B, we construct an

estimator for the CDF showing that the optimal weights for CBTCs are

wi =
1

(1− C∗
i )C

∗
i

, (2)

where C∗
i = Ci/C0. Hence the weights are largest when C∗

i is near either one or zero;

i.e. at early and late arrival times, similar to the lower concentrations in the pulse case

at early and late times. Since the measured normalized CBTC contains some (relative)

experimental error of order ϵ ≪ 1, we assign weights of zero if Ci < ϵ or Ci > (1 − ϵ).

We note that this truncation is a modeling choice and may bias the fit. Alternatively, the

variance of the CBTC may be modeled as σ2
i = max (0, (1− C∗

i )C
∗
i )+ϵ, thereby modifying

Eq. (2). For pulse initial conditions, the variance may be modeled as σ2
i = max (0, C∗

i )+ϵ.

The curve fits in Sections 4 and 5 use truncation, while the non-truncated weights are

provided as an option in FracFit.

The WMSE function given by Eq. (1) is optimized with respect to θ using the local

optimization lsqnonlin routine in MATLAB’s Optimization Toolbox. Since lsqnonlin

finds local minimum to the objective function (1), FracFit requires a reasonable guess θ0

to find a global minimum. For sFADE, we first fit the ADE to find (v,D) and then set

α = 1.5 and β = 0 as the initial guess. Similarly, for TFDE, we use (v,D) from the ADE

fit and set γ = 0.9. For the FMIM initial guess, we numerically compute the median and

mode and estimate v and β assuming γ = 0.75. Finally, for TLLM, we use the FMIM

initial guess and set λ = 1/max(t). We stress that these estimates are ad hoc and may

not be appropriate for all data sets. Hence, we also allow the user to manually select both

an initial guess θ0 as well as a lower bound θl and upper bound θu of the search region.
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Since local optimization may not converge for all data sets, we have also implemented a

global optimization option using a genetic algorithm (ga) routine [Conn et al., 1991]

in MATLAB’s Global Optimization Toolbox. The ga is much more expensive than

lsqnonlin. Future generations of FracFit may utilize a two-step optimization scheme,

where global optimization is used to find the initial guess for the local optimization scheme.

To evaluate the goodness of fit (GOF), we calculated the mean absolute residual (MAR)

defined by

MAR =
1

N

N∑
i=1

|Ci − C(x, ti)/C0|. (3)

MAR quantifies the mean error between model and data and demonstrates the relative

change in error reduction achieved by applying different models to the same data set.

Alternative GOF measures, such as the (corrected) Akaike information criterion (AICc),

are only valid for maximum likelihood estimation, which we have not implemented in

FracFit.

As an initial test, we generated synthetic pulse injection data for the sFADE, FMIM,

and TTLM models and present a representative subset here. The time-axis consisted of

400 samples logarithmically spaced on [40, 2000] with an observation point of x = 1.5. A

known parameter θt was chosen for each model to produce a synthetic BTC that resembled

measured data. FracFit was then used to estimate θ. The results of this experiment are

shown in Table 3 in dimensionless units. The MAR for sFADE, FMIM, and TTLM are

0.00324, 0.00950, and 0.00488, respectively. For this data set, FracFit is able to estimate

the known parameters for all the models, although the estimate for the tempering rate

λ in TTLM is off by about 20 %. This is unsurpising and we note that the algorithm

is sensitive to both the number, duration, and sampling of the synthetic BTC. For the
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tempering parameter in TTLM estimates will be poor if the duration of the BTC is limited

relative to the tempering time scale [Aubeneau et al., 2014].

4. Application 1: Pulse Initial Condition Breakthrough Curves from

Transport Experiment in the Selke River

Our first example with observed data is a series of in-stream pulse injection experiments

conducted in the Selke river [Schmadel et al., 2016]. In this experiment, there were seven

in-stream monitoring sites that were sampled throughout each of the seven tracer injection

experiments, leading to 49 BTCs. Three fractional models are evaluated: sFADE, FMIM,

and TTLM, as well as the ADE. FracFit is useful for this study in terms of efficiency

and consistency in BTC fitting, especially when considering multiple models.

Four representative BTCs were selected from the data set: two from the first injection,

measured at site 6 (x = 428 m) and site 7 (x = 294 m), and two from the seventh

injection, measured at site 2 (x = 928 m) and site 3 (x = 819 m). The BTC fits for the

seventh injection and measured concentration data are shown on log-log scale in Figure

1. Parameter estimates for these BTCs are shown in Table 4. A GOF metric (MAR)

evaluated for the three fractional models and the ADE are shown in Table 5 for all four

BTCs.

Examining the fits in Fig. 1, note that neither the main plume nor the heavy late-time

tail was captured by ADE for any of the BTCs shown. For the sFADE model, all fits

were negatively skewed with β = −1, which agrees with earlier studies [Chakraborty et al.,

2009; Deng et al., 2004]. This negative skewness has been attributed to retention and the

existence of “dead zones”. While sFADE provides acceptable fits for the BTCs under

consideration, sFADE does admit non-physical behavior (negative dispersion) that may
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manifest itself at other measurement locations/times. Space-time duality calculations in

[Baeumer et al., 2009] show an equivalence between space- and time-fractional models,

which may account for the good sFADE fit in Figure 1 and provide a more physical

interpretation.

Examining the fits in the left and right panels of Fig. 1, sFADE, FMIM, and TTLM

yielded a better fit than ADE. However, sFADE and FMIM failed to capture the late-

time truncation of the power-law, while TTLM captured this feature. Recall that TTLM

imposes an exponential cutoff to power-law waiting times, allowing TTLM to transition

from anomalous to Fickian transport [Meerschaert et al., 2008]. This transition is governed

by the tempering rate λ. We note that simultaneous estimation of the capacity coefficient

β and tempering rate λ is problematic with a single (mobile) BTC since the parameters

act in a coupled fashion.

To address this problem, additional data, such as the BTC at another location, or

measured mobile or immobile mass, may be utilized [e.g. Briggs et al., 2009]. As an

example, we simultaneously fit the BTCs for Sites 2 and 3 using Injection 7. We allowed

the velocities vi and dispersion coefficients Di to vary between the sites but used the

same exponent γ, capacity coefficient β, and tempering rate λ, yielding a parameter

θ = (γ, β, λ, v1, v2, D1, D2) with seven degrees of freedom. This simultaneous fit yielded

estimates of the exponent γ = 0.63, capacity coefficient β = 0.115 sγ−1 and tempering

rate λ = 0.00239 s−1. Parameters such as γ, β, and λ may also be allowed to vary

with downstream distance. Analyzing multiple BTCs shows the variability of model

parameters of a given stream and demonstrates local variations in transport and storage.

Simultaneous fits for other models, such as sFADE, are also available in FracFit.
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5. Application 2: Continuous Injection Breakthrough Curves from Natural

Organic Matter (NOM) Transport

As a second example, we fit continuous injection breakthrough curves (CBTCs) from

laboratory experiments. These experiments studied transport of organic matter through

porous media columns and displayed strong anomalous transport characteristics [Dietrich

et al., 2013; McInnis et al., 2014, 2015]. The data was originally fit with a CTRW model

using the CTRW toolbox [Cortis and Berkowitz , 2005].

Two data sets are considered: 1) synthetic polystyrene sulfonates (PSSs) in columns

packed with naturally Fe/Al-oxide-coated sands from Oyster, Virginia [McInnis et al.,

2015] and 2) dissolved organic matter (DOM) from Nelson’s Creek, MI in a column of

porous medium (oxide-coated quartz sand) [McInnis et al., 2014]. Both are continuously

injected through sands via a gravity feed system with concentration measured at the

outlet. Full details of the experiments are available in [McInnis et al., 2014, 2015].

Figure 2 displays the sFADE and TFDE fits for the PSS samples. Comparable fits (not

shown) were obtained for the DOM cases. The fitted parameter θ1 = (α, β, v,D) for the

sfADE and θ2 = (γ, v,D) for the TFDE are shown in Tables 6 and 7 respectively along

with the mean absolute residual (MAR), allowing comparison with the CTRW model fits

from [McInnis et al., 2015].

For both models PSS1000 yields the poorest fit, with an MAR an order of magnitude

larger than all others. For all cases, except PSS8000, the sfADE appears to yield slightly

smaller MAR, although it benefits from having one additional free parameter. Generally

the MAR is comparable to those obtained by the CTRW in [McInnis et al., 2015]. Our

goal is not to compare CTRW and fADE model fits, but rather demonstrate FracFit’s
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ability to interpret a continuous injection anomalous transport breakthrough curve, which

is clearly shown here.

6. Conclusion

FracFit is a flexible tool that facilitates parameter estimation for a variety of models,

such as sFADE, TFDE, FMIM, and TTLM. Future models may be implemented within

this framework; since models are treated in a consistent manner, inter-comparison of

models may be performed seamlessly. The user may choose either a local, gradient-based

optimization scheme, or a global optimization scheme. One interesting application is

studying the duality between space- and time-fractional models[Baeumer et al., 2009]:

under certain conditions, a time-fractional model can be equivalent to a space-fractional

model.

Appendix A: Derivation of an Approximate sFADE CBTC Expression

The CBTC solution requires a fixed boundary condition at x = 0; however, no closed

form analytical solution exists at this time. The CBTC solution may be approximated

by the “dam break” problem on the real line. We derive an analytical approximation

following what is done for the classical ADE (α = 2) in [Danckwerts , 1953]. Consider

the sFADE model (top row of Table 1) on −∞ < x < ∞ subject to initial condition

C0(x, 0) = C0 if x < 0 and C0(x, 0) = 0 if x ≥ 0. Using the sFADE pulse initial condition

solution , the CBTC solution is approximated by

C(x, t) =

∫ ∞

−∞
CsFADE(x

′, 0)G(x− x′, t) dx′, (A1)
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where G(x, t) is the Green’s function of sFADE. Evaluating the integral in Eq. (A1) yields

C(x, t)

C0

= 1− Fα,β

(
x− vt

(Dt)1/α

)
= Fα,β

(
x− vt

(Dt)1/α

)
, (A2)

where F α,β(z) denotes the complementary CDF function (survival function). To verify

this approximation, we compared it to a complete numerical solution in Zhang et al.

[2007]. Agreement between Eq. (A2) and the numerical solution is very good, indicating

that Eq. (A2) is a good approximation for continuous injection BTCs.

Appendix B: Optimal Weights for CBTCs

Assume we have n statistically independent particles representing the tracer plume.

The time-dependent location of the k-th particle is given by the random variable X
(k)
t ,

which is distributed according to the density fθ (x, t). The vector θ specifies the model

parameters, and the CDF, as in Eq. (A2), is Fθ (x, t) =
∫ x

−∞ fθ(x
′, t) dx′. We construct an

estimator of Fθ (x, t) via the empirical cumulative distribution function [van der Vaart ,

1998, Chapter 19]

F̂θ (x, t) =
1

n

n∑
k=1

I
(
X

(k)
t ≤ x

)
, (B1)

where I(X ≤ x) is the indicator function defined such that I(X ≤ x) = 1 if X ≤ x and

zero otherwise. Suppressing the time dependence, the expected value of Eq. (B1) is

E
[
F̂θ(x)

]
=

1

n

n∑
k=1

∫ ∞

−∞
I (x′ ≤ x) fθ(x

′) dx′

=
1

n

n∑
k=1

Fθ (x)

= Fθ (x) , (B2)

indicating that the empirical CDF is an unbiased estimator. Calculating moments using

the standard argument for Kolmogorov-Smirnov statistics [van der Vaart , 1998, Chapter

D R A F T March 2, 2017, 11:21am D R A F T

This article is protected by copyright. All rights reserved.



KELLY ET AL.: FRACFIT PARAMETER ESTIMATION X - 15

19] yields

E
[
F̂θ(x)F̂θ(y)

]
=

1

n
Fθ (min(x, y)) +

n− 1

n
Fθ(x)Fθ(y). (B3)

Use Eq. (B2) along with the identities Var[X] = E[X2] − (E[X])2 and Cov[X,Y ] =

E[XY ]− E[X]E[Y ], yielding

Var
[
F̂θ(x)

]
=

1

n
Fθ(x) (1− Fθ(x)) (B4a)

Cov
[
F̂θ(x), F̂θ(y)

]
=

1

n
[Fθ (min(x, y))− Fθ(x)Fθ(y)] . (B4b)

For n particles, we have

Var
[√

nF̂θ(x)
]
= Fθ(x) (1− Fθ(x)) . (B5)

Unlike the PDF estimator in [Chakraborty et al., 2009], the covariance does not ap-

proach zero, implying that measurements of the CDF are correlated. Numerical eval-

uation of the covariance showed that the correlation was small, so weighted nonlinear

least squares was chosen over generalized least squares, which minimizes the functional

Q(θ) = [C− Fθ(x)]
T Σ−1

θ [C− Fθ(x)]. Under this small correlation assumption, Eq. (B5)

implies that the variance of the CDF is proportional to Ci(1−Ci). Since the CBTC solu-

tions for all models under consideration are either complementary CDFs or subordinated

CDFs, we conclude that the CBTC has a variance proportional to Ci(1 − Ci), yielding

Eq. (2).
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Model Parameters Units Lower and Upper Bounds θl and θu

sFADE stable index α unitless 1 < α ≤ 2

θ1 = (α, β, v,D) skewness β unitless −1 ≤ β ≤ 1

average plume velocity v [L/T] v > 0

fractional dispersivity D [Lα/T] D > 0

TFDE time-fractional exponent γ unitless 0 < γ ≤ 1

θ2 = (γ, v,D) fractional velocity v [L/Tγ] v > 0

fractional dispersivity D L2/Tγ D > 0

FMIM time-fractional exponent γ unitless 0 < γ ≤ 1

θ3 = (γ, v, β,D) average plume velocity v [L/T] v > 0

TTLM capacity coefficient β 1/Tγ β > 0

θ4 = (γ, v, β,D, λ) fractional dispersivity D [L2/T] D > 0

tempering rate λ [1/T] λ > 0

Table 2. Summary of parameters θi for four fractional hydrology models: 1)sFADE, 2)

TFDE, 3) FMIM, and 4) TTLM. Parameters, units, and default parameter lower bounds

θl and upper bounds θu are given, where L denotes a unit of length and T denotes a

unit of time. The user has the option to modify θl and θu for a particular data set. For

pulse initial condition C(x, 0) = Kδ(x) problems, the initial mass K > 0 is an additional

parameter.
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Table 3. Parameter estimates for a synthetic breakthrough curve using sFADE (panel

A), FMIM (panel B), and TTLM (panel C).

Panel A: sFADE

Parameter α β v D K

Known θt 1.3 -1 0.02 0.002 25

Estimated θ 1.3 -0.99 0.02 0.002 24.9

Panel B: FMIM

Parameter γ v β D K

Known θt 0.85 0.03 0.12 1.0 ×10−5 25.0

Estimated θ 0.841 0.0297 0.111 1.02 ×10−5 24.80

Panel C: TLLM

Parameter γ v β D λ K

Known θt 0.85 0.0300 0.12 1.00 ×10−5 0.003 25.0

Estimated
θ

0.855 0.0301 0.125 1.00 ×10−5 0.00247 24.42

Figure 1. Model inter-comparison using Selke river data for Injection 7: Site 2 (left

panel) and Injection 7: Site 3 (right panel). The ADE, sFADE, FMIM, and TTLM models

are fit to a pulse injection BTCs at the four sites.
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Table 4. Parameter estimates for the Selke river breakthrough curve using sFADE

(panel A), FMIM (panel B), and TTLM (panel C) models for Injection 7: Sites 2 and 3.

Panel A: sFADE

BTC α β v (m/s) D (mα/s) K (ppm)

Inj 7: Site 2 1.59 -1 0.339 0.549 1306.8

Inj 7: Site 3 1.49 -1 0.338 0.376 1330.9

Panel B: FMIM

BTC γ v (m/s) β (sγ−1) D (m2/s) K (ppm)

Inj 7: Site 2 0.78 0.421 0.0528 1.563 1693.2

Inj 7: Site 3 0.79 0.445 0.0717 1.048 1796.7

Panel C: TLLM

BTC γ v (m/s) β (sγ−1) D (m2/s) λ (s−1) K (ppm)

Inj 7: Site 2 0.67 0.498 0.0948 1.166 0.00219 106098

Inj 7: Site 3 0.64 0.568 0.110 0.108 0.00233 60173

BTC ADE sFADE FMIM TTLM

Inj 1: Site 6 0.3509 0.0459 0.0556 0.0537

Inj 1: Site 7 0.4837 0.0566 0.0640 0.0586

Inj 7: Site 2 0.3248 0.1099 0.1704 0.1193

Inj 7: Site 3 0.4927 0.1630 0.2515 0.0631

Table 5. MAR for the Selke river BTCs for ADE, sFADE, FMIM, and TTLM models.
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Figure 2. Parameter fits θ1 = (α, β, v,D) for the sFADE model and θ2 = (γ, v,D) for

the TFDE model for the four PSS continuous injection BTCs.

Sample α β v (cm/min) D (cmα/min) MAR

PSS1000 1.9565 -1 0.33108 0.17855 0.01639

PSS4600 1.4404 -0.93009 0.145 0.050669 0.00410

PSS8000 1.4095 -0.88437 0.12994 0.059243 0.00349

PSS18000 1.4475 -0.66565 0.1629 0.11041 0.00369

NOM 1.08956 0.16792 0.13126 0.27184 0.00543

HPOAs 1.04927 0.04555 0.10141 0.44257 0.00423

TPIAs 1.21822 0.04564 0.09207 0.24646 0.00304

Table 6. Parameter fit θ1 = (α, β, v,D) for the sFADE model.

Sample γ v(cm/minγ) D (cm2/min) MAR

PSS1000 0.98087 0.36339 0.78824 0.03611

PSS4600 0.91581 0.21482 0.020473 0.00769

PSS8000 0.90001 0.21157 0.03856 0.00228

PSS18000 0.8695 0.28709 0.13912 0.00453

NOM 0.95682 0.11083 1.96505 0.01423

HPOAs 0.84591 0.15961 0.51451 0.01550

TPIAs 0.75066 0.25419 1.15895 0.00980

Table 7. Parameter fit θ2 = (γ, v,D) for the TFDE model.
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