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a b s t r a c t

Based on a conservative phase-field lattice Boltzmann (LB) method, we present a 3Dmodel
for tracking an interface in multiphase flows. In addition to being mass-conserving, the
main advantage of this LB method is that the collision process is made entirely local by in-
voking central moments in the calculation of vectors normal to the interface. We construct
the model on different 3D lattices (D3Q7 and D3Q15) with inherently distinct isotropy
properties. To test themodel we conduct a variety of benchmark studies, such as the evolu-
tion of an interface in the formof a slotted sphere in a rotational flow field, and the evolution
of a spherical interface in a vortex flow, a deformation flow, and a shear flow. The results
of these benchmarks are compared against the finite-difference-based version of the LB
model, in which a non-local finite-difference scheme is used to calculate the interface nor-
mal. In terms of error, the moment-based model, while competitive, is generally outper-
formed by the finite-difference model. Despite this, the moment-based interface tracking
model is inherently more efficient, and deserves consideration, particularly for memory-
distributed parallel computing.We also consider the interaction between a binary fluid and
a solid wall, and introduce a method to implement the three-phase contact angle within
this framework. The proposed model for dealing with the contact line is simple, clean, and
straightforward to implement, and shown to recover desired contact angles very well.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Interface tracking equations and their application are an indispensable part of multiphase flow solvers in modern
computational fluid dynamics. Across the literature there are many numerical schemes for tracking interfaces between
different fluids [1], which, among others, include the volume-of-fluid method [2], front-tracking techniques [3,4], and
level set methods [5,6]. Phase-field approaches are another class of models that have attracted attention in this area
[7,8]. The primary difference between this approach and others is that instead of solving a pure advection equation, an
advection–diffusion-type equation is solved to represent the interface within a diffuse interface context.

To date, the majority of phase-field interface-tracking models invoke Cahn–Hilliard (CH) theory [9]. The CH equation
is derived by minimizing a free-energy functional. The interface evolution is then governed by the difference in chemical
potential of the fluids. This chemical potential, which is typically obtained by considering a double-well potential barrier
and curvature effects, tends to zero at thermodynamic equilibrium. If the system is pushed out of its equilibrium state, the
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chemical potential creates a force imbalance in such a way as to minimize the free energy of the system. The Allen–Cahn
equation [10],which is particularly useful in the study of solidification processes, is a related approach for tracking the phase-
field variable. Motivated by this approach, Sun and Beckermann [11] proposed a simpler phase-field model for tracking the
interface between two fluids, which was later reformulated in conservative form [12]. In this model, the phase field evolves
by considering the balance between advective, diffusive, and phase-separation fluxes across the fluid interface. We refer to
this scheme as the conservative phase-field (CPF) model.

While both aim to represent similar behaviors, there are some key differences between the CH and CPF equations.
Mathematically, the CH equation includes spatial derivative terms of second and fourth order. Numerically, this can be
disadvantageous; not only does this diminish the locality of a numerical scheme, but also there is a reduction in numerical
accuracy due to the need to calculate the Laplacian (∇2) of another term, which itself includes the calculation of a Laplacian
within in [13]. The CPF equation, on the other hand, is driven by curvature and only requires the calculation of first-
order and second-order derivatives, much more ideal for efficient numerical implementation. Even the more troublesome
second-order derivative can be further reduced to calculation of only first-order derivatives within the framework of Lattice
Boltzmann Methods (LBM) [14].

LBM is a class of mesoscopic approaches developed for the solution of a variety of partial differential equations,
including the advection–diffusion and Navier–Stokes equations [15–18]. Lattice Boltzmann Equations (LBEs) are derived by
considering spatial and temporal changes in a Maxwellian particle distribution function [19]. Specifically, LBEs are solved
by partitioning the movement of particles into two steps: collision and advection. On commonly used structured uniform
grids, the solution to the advection step is a perfect shift, which is also known as streaming. During the collision process,
the discrete distribution function is updated to account for interactions between particles. One of the interesting features
of the LBE, in the absence of external forces, is that all the nonlinearity in the governing equations is local (collision) and all
the nonlocality is linear (streaming). This property is extremely useful and makes LBM highly scalable in terms of parallel
computing. However when an external force, such as interfacial tension, is present this powerful feature can be lost. This is
the case for multiphase systems where typically one must compute features such as the curvature or the normal vector to
the interface, among other factors.

Although there have been partial attempts to develop an LBEwith an entirely local collision step for tracking the interface
between different fluids [20,21], the majority of interface tracking LB models are best described as hybrid finite-difference
(FD) LBM [13,22–26]. Until recently [14], all previous interface tracking LB models, based on CH theory, appeal to finite-
differences for calculating the gradients required for computation of the curvature or interface normal. Using FD schemes
not only reduces the efficiency of cache-based computers, but also compromises the locality of the LBM.

Another important multiphase system that prior CPF based studies have not considered is the problem of a three-phase
contact line. Although methods based on CH theory are available for treatment of the contact angle between a binary fluid
and a solidwall [27], little to nowork has been done in dealingwith arbitrary contact angles using CPFmodels. This ismainly
due to the fact that CPF models are relatively new [12], particularly within the LBE framework [14]. Given the importance of
fluid–solid interactions in natural and engineering applications (e.g., multiphase flow through porousmedia [18]), modeling
the triple fluid–fluid–solid contact line is a crucial problem that must be addressed. In this study we aim to fill this gap.

Recently, we proposed a clean LBM for tracking the interface between two different phases in 2D [14]. By clean wemean
that the collision step was constructed to be purely local. Knowing that LBM inherently recovers conservation laws in their
conservative form, we develop a three-dimensional LBM to mimic the CPF equation. We use central moments to formulate
an LBE with an entirely local, and sufficiently accurate, collision step for both highly isotropic (D3Q15, D3Q19, and D3Q27)
lattices and a minimally isotropic (D3Q7) lattice. We also formulate a supplemental FD-LBM, where finite-differences are
used to calculate the required gradients, for interface tracking in 3D. Herein we call the former approach themoment-based
LBM (MB-LBM) and the latter one the FD-LBM. The accuracy of the models is compared by applying them to four important
benchmark problems. Finally, we propose an efficient and straightforward formula for treating a three-phase contact angle
for fluid–solid interactions in both 2D and 3D systems.

2. Conservative phase-field LBE

For the sake of simplicity and brevity, herein we formulate the CFP equation using a single-relaxation-time (SRT)
collision model. Generalizing this approach to the multi-relaxation-time (MRT) model or the cumulant approach should
be straightforward [14,28]. We construct the model for the D3Q15 lattice as well as D3Q7. Compared with the D3Q7 lattice,
the D3Q15 lattice is more isotropic, and thereforemore accurate, and has better Galilean invariance properties. On the other
hand, the D3Q7 is more efficient and requires less computational resources. Formulation of the model using higher-order
(D3Q19 or D3Q27) lattices is also presented (see Appendix) but not implemented in this work.

Let us introduce the phase-field variable φ, which is used to identify different fluids within a multiphase system. For the
binary fluid system considered here, φ = 1 identifies phase 1 and φ = 0 represents phase 2. The following conservative
equation governs topological changes in the phase field [11,12]:

∂φ

∂t
+ ∇ · (φu) = ∇ ·


M


∇φ −

4φ(1 − φ)

ξ
n


(1)
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where t stands for time, u is the macroscopic velocity vector,M is the mobility, ξ is the interface thickness, and n is the unit
vector normal to the interface defined by

n =
∇φ

|∇φ|
. (2)

The equilibrium phase-field profile for an interface located at x = x0 is

φ(x) =
1
2


1 − tanh


2|x − x0|

ξ


. (3)

In our previous work, we proposed the following LBE [14], which recovers Eq. (1):

hα(x + eαδt, t + δt) = hα(x, t) −
hα(x, t) − heq

α (x, t)
τφ + 1/2

(4)

where hα is the phase-field distribution function, τφ is the relaxation time, and the equilibrium distribution function is given
by

heq
α = φΓα + wα

M
c2s


4φ(1 − φ)

ξ


(eα · n) (5)

where cs is the lattice speed of sound, to be specified, and the relaxation time is related to the mobility by

M = τφc2s δt. (6)
For the D3Q15 lattice the microscopic velocity set eα and the weight coefficients wα are

eα = c


(0, 0, 0), α = 0
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 1 − 6
(±1, ±1, ±1), α = 7 − 14

(7)

and

wα =
1
72

16, α = 0
8, α = 1 − 6
1, α = 7 − 14

(8)

and the dimensionless distribution function Γα is

Γα = wα


1 +

eα · u
c2s

+
(eα · u)2

2c4s
−

u · u
2c2s


(9)

where c = δx/δt is the constant lattice speed and the speed of sound in Eqs. (5), (6), and (9) is cs = c/
√
3. The microscopic

velocities and weight coefficients for D3Q19 and D3Q27 are also provided in the Appendix.
For the D3Q7 lattice the microscopic velocity set and the weight coefficients are

eα = c

(0, 0, 0), α = 0
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 1 − 6 (10)

and

wα =
1
8


2, α = 0
1, α = 1 − 6 (11)

and the dimensionless distribution function Γα now becomes

Γα = wα


1 +

eα · u
c2s


. (12)

The speed of sound in Eqs. (5), (6), and (12) is cs = c/2 for the D3Q7 lattice.
In order to calculate the normal to the interface in Eq. (2), we can use first-order central moments [14]

mc =
1
c


α

hα(eα − u) (13)

to find the interface normal according to

n =
−mc

|mc | + ϵ
(14)

where ϵ = 10−12 is a small number added to avoid division by zero in the algorithm. Alternatively, we can use finite
differences to calculate the derivatives in Eq. (2). Here, we implement the following isotropic FD scheme:

∇φ =
c

2c2s δx


α

eαwα [φ(x + eαδt) − φ(x − eαδt)] . (15)
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Table 1
L2-norm of the error based on Eq. (17) for different case studies.

Benchmark: Slotted sphere Vortex Deformation Shear

MB-LBM (D3Q15) 0.497E−05 0.491E−05 0.267E−05 0.918E−05
FD-LBM (D3Q15) 0.498E−05 0.745E−06 0.175E−05 0.767E−06
MB-LBM (D3Q7) 0.515E−05 0.652E−05 0.458E−05 0.110E−04
FD-LBM (D3Q7) 0.507E−05 0.769E−06 0.181E−05 0.959E−06

The phase field is updated by taking the zeroth moment of the distribution function after the streaming step

φ(x, t) =


α

hα(x, t). (16)

3. Numerical validation

We consider four different benchmarks with distinct, but prescribed, velocity fields to assess the numerical model. In
each of the four cases the flows that are prescribed are such that at certain periodic intervals the phase field must return to
its initial condition, meaning that the robustness of the numerical model can be tested by comparing the predicted phase
field at that time to the initially prescribed field. In all of these tests, the input parameters in lattice units are U0 = 0.01,
M = 0.001, and ξ = 3. The number of lattice nodes in each direction of the domain is L0 = 256. Errors in our simulations
will be calculated using an L2-norm as

∥δφ∥2 =


x


φ(x, tf ) − φ(x, 0)

2
L30

(17)

where tf = t L0/U0 is the final time. In what follows, we use L0 to nondimensionalize the spatial coordinates (for example,
x∗

= x/L0) and the radius of the spherical interface (r∗
= r/L0). Time is also made dimensionless with the final time

(t∗ = t/tf ). For simplicity, from here on we drop the asterisks and use x, r , and t instead of x∗, r∗, and t∗, respectively.
In the numerical simulations presented in the following sections, qualitative and quantitative comparisons are made

between (a) the MB-LBM on D3Q15 lattice, in which the normal to the interface is calculated by Eq. (14), (b) the FD-LBM on
D3Q15 lattice, in which Eq. (15) is used to calculate the normal to the interface, (c) the MB-LBM on D3Q7 lattice, and (d) the
FD-LBM on D3Q7 lattice.

3.1. Rotation of a slotted sphere

One of the most popular benchmark tests for validation of interface tracking schemes is Zalesak’s disk [29]. For 2D flows,
a slotted circle is placed in a rotational flow field [29–32]. Here, this 2D disk is replaced with a spherical interface for 3D
simulations [32]. We then consider the evolution of a slotted sphere in a rotational velocity field given byux(x, y, z) = 2πU0 (0.5 − y)

uy(x, y, z) = 2πU0 (x − 0.5)
uz(x, y, z) = 0.

(18)

The magnitude of the rotational field (2πU0) is chosen specifically such that the spherical interface revolves once after a
single cycle (i.e., over a time period t = 1).

We place a slotted sphere with the radius r = 0.15 at (0.5, 0.75, 0.5) in a cubic domain ∈ (1, 1, 1). The width of
the slot (in x-direction) is 0.1 and its height (in y-direction) is r + 0.05 (see Fig. 1). The phase field is initialized to be one
inside and zero outside the spherical interface. It is worth noting that the velocity field for this problem is not periodic. For
this test problem we use zero gradient boundary conditions on all boundaries. While many previous studies have imposed
periodic conditions [14,22,23,25], this gives rise to numerical artifacts originating from the corners [22,25], particularly for
large Péclet numbers. Imposing zero gradient at the boundary removes this, improving the accuracy of the scheme as well
as numerical stability for low mobility cases.

The final shape of the slotted sphere at t = 1 is shown in Fig. 2 for both moment-based and FD-based interface tracking
LB models on the D3Q15 lattice as well as on the D3Q7 lattice. Visually it is apparent that the MB-LBM yields reasonable
results but the FD-LBM gives a smoother profile with less oscillations on the interface. Comparing the simulations using the
D3Q7 and D3Q15 lattices, we observe that the D3Q15 lattice results in a smoother interface as expected. For this problem
there is a very rapid jump in the phase field across the spherical interface at initial time. This might contribute to the lower
performance of the MB-LBM. A comparison of the L2-norm of the errors in Table 1 suggests that the errors for all methods
are nearly identical.
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(a) t = 0. (b) t = 1/4.

(c) t = 1/2. (d) t = 3/4.

Fig. 1. Rotation of a slotted sphere with time. The isosurface of φ = 0.5 is plotted.

Fig. 2. Final shape of the slotted sphere at t = 1. The simulation results of the conservative phase-field LBM based on (a) central moments (Eq. (14)) on
D3Q15, (b) finite-differences (Eq. (15)) on D3Q15, (c) central moments (Eq. (14)) on D3Q7, and (d) finite-differences (Eq. (15)) on D3Q7. The isosurface of
φ = 0.5 is plotted.

3.2. Vortex flow

For the secondbenchmark,weplace a spherical interfacewith radius r = 0.15 centered at (0.35, 0.35, 0.35) in a periodic
domain ∈ (1, 1, 1). The following vortex flow is prescribed [30,32]:ux(x, y, z) = 2U0 sin2 (πx) sin (2πy) sin (2πz) cos(π t)

uy(x, y, z) = −U0 sin2 (πy) sin (2πz) sin (2πx) cos(π t)
uz(x, y, z) = −U0 sin2 (πz) sin (2πx) sin (2πy) cos(π t).

(19)

The cos(π t) term in the velocity field makes the flow reversible such that the interface starts reverting at t = 1 and fully
recovers its initial shape at t = 2. For this vortex flow, the phase field is initialized according to Eq. (3).

The evolution of the interface at different times is shown in Fig. 3. The side-by-side comparison between theMB-LBM and
the FD-LBM on both D3Q15 and D3Q7 lattices at t = 2, when the original interface should be recovered, is shown in Fig. 4.
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(a) t = 0. (b) t = 1/2.

(c) t = 1. (d) t = 3/2.

Fig. 3. Evolution of a spherical interface under vortex flow. The isosurface of φ = 0.5 is plotted.

Fig. 4. Final shape of the spherical interface in a vortex flow at t = 2. The simulation results of the CPF-LBM based on (a) MB-LBM on D3Q15, (b) FD-LBM
on D3Q15, (c) MB-LBM on D3Q7, and (d) FD-LBM on D3Q7. The isosurface of φ = 0.5 is plotted.

Visually it is apparent that the MB-LBM suffers from unwanted wiggles at the interface, similar to the previous benchmark.
As previously described [14], the moment-based approach seems to be susceptible to grid-scale oscillations. Increasing the
interfacial thickness ξ can help damp these. It is also apparent that the FD-based model yields smoother results and a more
accurate solution. As noted in Table 1, the calculated error for the FD-basedmodel is an order of magnitude smaller than the
moment-based approach. Comparing the D3Q15 and D3Q7 lattices, it is also evident that the D3Q15 lattice gives us more
accurate results. Although visually the interface obtained by the MB-LBM on D3Q7 lattice seems to be smoother than the
D3Q15 counterpart in Fig. 4, note that overall the quantitative error, as measured in Table 1, is smaller for the D3Q15 lattice,
as expected.

3.3. Deformation field

Next we employ a more complex velocity field which induces more stretching and deformation than the previous two
cases. Again, we place a spherical interface with radius r = 0.2 at (0.5, 0.5, 0.5) in a periodic domain ∈ (1, 1, 1). The
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(a) t = 0. (b) t = 1/4.

(c) t = 1/2. (d) t = 3/4.

Fig. 5. Evolution of a spherical interface under swirling deformation. The isosurface of φ = 0.5 is plotted.

following flow field is imposed [33]:
ux(x, y, z) =

U0

2
[sin (4π(x − 0.5)) sin (4π(y − 0.5)) + cos (4π(z − 0.5)) cos (4π(x − 0.5))] cos(π t)

uy(x, y, z) =
U0

2
[sin (4π(y − 0.5)) sin (4π(z − 0.5)) + cos (4π(x − 0.5)) cos (4π(y − 0.5))] cos(π t)

uz(x, y, z) =
U0

2
[sin (4π(z − 0.5)) sin (4π(x − 0.5)) + cos (4π(y − 0.5)) cos (4π(z − 0.5))] cos(π t).

(20)

Again the cos(π t) term causes the interface to return to its original position at t = 1. As in the previous test, the phase-field
profile is initially smoothly defined by Eq. (3).

This flowhasmultiple vorticeswithin the computational domain, resulting in amore chaotic deformation of the interface
(Fig. 5). At t = 1 the interface reverts to its initial position as shown in Fig. 6. While the general shape is well recovered,
there is a clear generation of some kinks on the interface for both formulations. These kinks are more pronounced for the
MB-LBM, suggesting a larger numerical error relative to the FD-LBM, which matches quantitative measures in Table 1.

3.4. Shear flow

For our final benchmark, we place a spherical interface with radius r = 0.2 at (0.3, 0.3, 0.5) in a cubic domain
∈ (1, 1, 1). We extend the 2D shear flow employed by Rudman [31] to 3D such thatux(x, y, z) = π U0 cos (π(x − 0.5)) [sin (π(z − 0.5)) − sin (π(y − 0.5))] cos(π t)

uy(x, y, z) = π U0 cos (π(y − 0.5)) [sin (π(x − 0.5)) − sin (π(z − 0.5))] cos(π t)
uz(x, y, z) = π U0 cos (π(z − 0.5)) [sin (π(y − 0.5)) − sin (π(x − 0.5))] cos(π t).

(21)
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Fig. 6. Final shape of the spherical interface in a severe deformation field at t = 1. The simulation results of the CPF-LBM based on (a) MB-LBM on D3Q15,
(b) FD-LBM on D3Q15, (c) MB-LBM on D3Q7, and (d) FD-LBM on D3Q7. The isosurface of φ = 0.5 is plotted.

(a) t = 0. (b) t = 1/2.

(c) t = 1. (d) t = 3/2.

Fig. 7. Evolution of a spherical interface under shear flow. The isosurface of φ = 0.5 is shown.

The phase field is initialized according to Eq. (3), and, similar to the slotted sphere case, zero-gradient BCs are used in all
directions. For this velocity field, the interface will return to its original position at t = 2.

The evolution of the interface with time is illustrated in Fig. 7. The topological changes in Fig. 7 are seemingly not as
extreme as in the previous benchmark, but flows like these can cause more distortion as is evident from Fig. 8. In addition
to numerical wiggles on the interface, as seen before, the original spherical shape is not as cleanly recovered and appears
more distorted. The manifestation of this noticeable distortion is evident in Table 1. Note that the error of the FD-LBM (for
both D3Q15 and D3Q7 lattices) is an order of magnitude smaller than the MB-LBM. While this is clearly an improvement,
we must keep in mind that this increased accuracy using the FD-LBM comes at a cost, requiring a non-local collision step,
which the moment-based approach does not.

On the other hand, comparing the CPF-LBM on D3Q15 and D3Q7 lattices in Table 1, we note that the D3Q15 lattice
results in slightly more accurate solutions. The computations on the D3Q7 lattice, however, are almost twice as fast as those
on the D3Q15 lattice. This could be beneficial for massively parallel (or serial) computations where very high accuracy is not
desired.
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Fig. 8. Final shape of the spherical interface at t = 2. The simulation results of the conservative phase-field LBE based on (a) MB-LBM on D3Q15,
(b) FD-LBM on D3Q15, (c) MB-LBM on D3Q7, and (d) FD-LBM on D3Q7. The isosurface of φ = 0.5 is shown.

3.5. Discussion of the benchmark results

Table 1 highlights that the D3Q15 lattice outperforms the D3Q7 lattice in terms of accuracy. The reason for this becomes
clear when considering the equivalent partial differential equations for the LBM, as can be obtained by asymptotic analysis
(see for example [34,35] and Appendix G in [28]). Recall that the phase indicator φ(x, t) is the zeroth moment of the
phase-field distribution function hα(x, t). Asymptotic analysis [14] reveals that the corresponding flux density of the phase
indicator is given by the first-order moments of the distribution hα(x, t). Second-order moments are again flux densities
of the first-order moments and so on. In the case of the phase-field equation it is sufficient for a model to cover zeroth-
and first-order moments, that is the phase indicator and its flux density. Higher-order moments contribute only to the
numerical error of the method and their influence is diminished by refining the grid and the time step. For a second-order-
accurate advection–diffusion equation, moments of order two and higher are formally irrelevant. Due to its limited degrees
of freedom the D3Q7 lattice offers only three of the six second-order moments as independent observable quantities. Being
designed for solving the hydrodynamic equations, which require more isotropy than the phase-field equation, the D3Q15
lattice has all six second-order moments as independent observable quantities. This means it offers enough degrees of
freedom to also adjust the flux densities of the first-order moments. Hence, the leading numerical errors in the phase-field
equation can be eliminated. It is important to note that this does not happen automatically but requires a careful choice of the
second-order moments. As for the phase indicator itself there are two major components of the fluxes of any moment: the
advective flux and the diffusive flux. The advective flux is responsible for Galilean invariance. For the second-ordermoments
Galilean invariance is imposed by adding all second-order monomials in velocity to the equilibrium function. This cannot
be done on the D3Q7 lattice and Galilean invariance is hence violated (the diffusion coefficient is found to be a function
of velocity). The advective flux is governed by the relaxation rate of the respective moment. Adjusting this independently
would require amulti relaxation time approach. If the equivalent partial differential equation at the leading order of the error
is carefully tailored such that its solution is null, the order of convergence of the method increases. However, in addition to
the fluxes of higher order there is an influence of initial and boundary conditions and of the external velocity field on the
leading order error. It is therefore difficult to obtain a genuine higher order method. It is observed here that even though the
method usingmore speeds is not of higher order, it still eliminates enough numerical artifacts that it results in an appreciable
improvement of the overall results.

3.6. Efficiency

A comparison between the run-time of D3Q7 and D3Q15 lattices is shown in Table 2 for both MB-LBM and FD-LBM. An
OpenMP Parallel Fortran code is executed using the Intel compiler on a personal computer with Intel R⃝ CoreTM i7-4910MQ
processor (CPU) @2.90 GHz base frequency and 32.0 GB sharedmemory (RAM). The results in Table 2 show the computation
cost per time step on a 256×256×256 grid. As can be seen, the computations using the D3Q7 lattice, although less accurate,
are roughly performed twice as fast as those using theD3Q15 lattice,whether FD-LBMorMB-LBM is utilized. This is expected
since theD3Q15 lattice has approximately twice the number ofmicroscopic velocities (15) as theD3Q7 lattice (7). Comparing
MB-LBM and FD-LBM on the same lattice, we see that the finite-difference-based model, although non-local, is competitive
compared with the moment-based model. Note that these results are obtained on a shared-memory machine. Given that
the MB-LBM is entirely local, this behavior would change dramatically in favor of the MB-LBM on distributed-memory
machines using, say, MPI parallel programming. It should be noted that the current results are obtained using a modular
code that strives for generality and readability rather than efficiency and optimization. As such, the results presented in
Table 2 should not be taken as decisive as to the actual performance of the methods, but should rather be considered as a
comparative guideline.

4. Three-phase contact line

In all the previous benchmarks we only considered the evolution of an interface due to a given velocity field in a domain
with either periodic or zero-gradient BCswith no solid boundaries. Fluid–solid interactions, however, are important across a
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Table 2
Comparison between the performance of MB-LBM and FD-LBM on D3Q7 and D3Q15 lattices. The CPU time
(in seconds) per iteration for a 2563 grid on a shared-memory PC using 4 processors.

D3Q15 (MB) D3Q15 (FD) D3Q7 (MB) D3Q7 (FD)

CPU time (s) 1.230 1.289 0.595 0.668

Fig. 9. A schematic of the three-phase contact angle. θ is the contact angle and α = π/2− θ is the angle between the interface normal and the horizontal
wall (2D projection of the interface normal is shown).

broad spectrum of scientific and engineering applications, such asmultiphase flow and transport through porousmedia [18]
and binary fluid interaction with hydrophobic nanochannels [36,37].

In this section we propose a simple and accurate remedy for the conservative phase-field equation to model a three-
phase contact line. We impose the contact angle between a two-phase (liquid–gas) flow and the third phase (solid) using
a simple mathematical formula. The same relations also hold for the contact angle between a binary fluid (liquid–liquid or
gas–gas) and a solid surface. For brevity, numerical simulations will be performed using the FD-LBM on the D3Q15 lattice.
Although the chosenmodel appears to be the most accurate of considered methods, a similar approach is possible using the
other models and/or lattices.

For the sake of simplicity, let us assume a solid wall is aligned with the horizontal axis in the x-direction; note the model
can be generalized to arbitrarily-oriented solid surfaces. Referring to Fig. 9, the contact angle θ between a semispherical
interface and a flat wall can be written as θ = π/2 − α, where α is the angle between the unit vector normal to the
interface and the flat substrate. Noting that the projection of the interface normal on the x–z plane is proportional to

(∂φ/∂x)2 + (∂φ/∂z)2, the following mathematical formula holds at the surface of the solid wall:

tanα =
−∂φ/∂y

(∂φ/∂x)2 + (∂φ/∂z)2
(22)

which gives us

∂φ

∂y
= −


∂φ

∂x

2

+


∂φ

∂z

2

tanα. (23)

In contrast to free-energy-based formulas for contact line treatment, the above relationship is very simple and
straightforward to implement. Derivatives of the phase field along the x- and z-directions are readily calculated using central
differences, and the derivative of the phase field in the normal (y) direction gives us the unknown data. For the half-way
(link) bounce-back boundary condition, which is implemented in this study, Eq. (23) at the bottom wall becomes:

φi,0,k = φi,1,k +
δx
2


φi+1,1,k − φi+1,1,k

2
+


φi,1,k+1 − φi,1,k−1

2 tanα (24)

where i and k denote discretized lattice indices in the x- and z-directions, respectively. The lattice node with j = 0 indicates
the exterior (ghost cell) layer, and the effective location of the solid wall is half-way between j = 0 and j = 1. Although, as
described in Ref. [14], we might be able to use moments in calculation of the gradients, we advocate finite differences for
reasons of numerical stability and accuracy in addition to clarity of the algorithm.

Here we present two test cases with different contact angles: (1) a hydrophilic surface with θ = 45°, and (2) a
hydrophobic surface with θ = 135°. Initially, we place a semi-spherical (semi-circular in 2D) droplet with r = 0.125 at
(0.5, 0, 0.5) in a computational domain of size (1, 0.5, 1). 128 lattice points in the x- and z-directions and 64 lattice points
in the y-direction are used. For 2D simulations ∂φ/∂z is set to zero in the above formulas. The boundary conditions are
periodic in x- and z-directions and no-slip at the top and bottom of the domain, where bounce-back on the link is used to
find the values of the distribution function. The interface is tracked by solving Eq. (4) and using Eq. (24) to find the unknown
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(a) θ = 45°. (b) θ = 135°.

Fig. 10. Three-phase contact line in 2D. Initial profile (black dashed line) and equilibrium profile (solid red line) for two different contact angles:
(a) θ = 45°, (b) θ = 135°.

(a) θ = 45°. (b) θ = 135°.

Fig. 11. Three-phase contact line in 3D. Isosurface of φ = 0.5 for two contact angles: (a) θ = 45°, (b) θ = 135°.

phase-field values, which are needed in calculation of the normal to the interface in Eq. (15). The hydrodynamic properties
(density, velocity, and pressure) are found by using the LBM proposed in Ref. [38]. For the following examples, the density
and viscosity ratios are both set to 10.

Fig. 10 shows the results of the 2D simulations. The initial profile is shown by a black dashed line and the final shape of the
interface after 10000 iterations is shown by the solid red line. Similarly, 3D simulations are shown in Fig. 11. The isosurface
of φ = 0.5 for the drop sitting on both hydrophobic and hydrophilic surfaces is shown. As can be seen, the proposed formula
is successful in modeling the contact angle between a fluid–fluid–solid interface.

5. Summary

A three-dimensional conservative LBE for tracking the interface between different fluids was developed in this study. In
this model, the only gradient that must be explicitly calculated is that of the normal to the interface, which is a first-order
derivative. An entirely local collision step was devised, based on central moments, to obtain this first-order derivative. This
was achieved by taking the first central moment of the phase-field distribution function. Alternatively, finite-differences
were used to calculate the interface normal. The choice between the first central moment and FD scheme is made by
compromising between the locality and the accuracy of the numerical scheme. The moment-based approach, while very
simple and efficient for parallel computing, appears to suffer fromgrid-scale oscillations. This ismainly due to approximating
the interface normal from the first-order moments. Although this caveat does not make the scheme numerically unstable,
it reduces the fidelity of the simulations compared with the FD-based approach. Complete elimination of these unwanted
grid-scale oscillations merits future study.

Appendix. Weight coefficients and microscopic velocity sets for D3Q19 and D3Q27

The discrete velocity set for the D3Q19 lattice is

eα = c


(0, 0, 0), α = 0
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 1 − 6
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), α = 7 − 18

(A.1)

and the weight coefficients are

wα =
1
36

12, α = 0
2, α = 1 − 6
1, α = 7 − 18.

(A.2)
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The discrete velocity set for the D3Q27 lattice is

eα = c


(0, 0, 0), α = 0
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 1 − 6
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1), α = 7 − 18
(±1, ±1, ±1), α = 19 − 26

(A.3)

and the corresponding weight coefficients are

wα =
1

216


64, α = 0
16, α = 1 − 6
4, α = 7 − 18
1, α = 19 − 26.

(A.4)

The lattice speed of sound for all D3Q15, D3Q19, and D3Q27 lattices is cs = c/
√
3.
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