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ABSTRACT 12 

Bioturbation is the dominant mode of sediment transport in many aquatic environments, and 13 

strongly influences both sediment biogeochemistry and contaminant fate. Available bioturbation 14 

models rely on highly simplified biodiffusion formulations that inadequately capture the 15 

behavior of many benthic organisms. We present a novel experimental and modeling approach 16 

that uses time-lapse imagery to directly relate burrow formation to resulting sediment mixing. 17 
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We paired white-light imaging of burrow formation with fluorescence imaging of tracer particle 18 

redistribution by the oligochaete Lumbriculus variegatus. We used the observed burrow 19 

formation statistics and organism density to parameterize a parsimonious model for sediment 20 

mixing based on fundamental random walk theory. Worms burrowed over a range of times and 21 

depths, resulting in homogenization of sediments near the sediment-water interface, rapid 22 

nonlocal transport of tracer particles to deep sediments, and large areas of unperturbed 23 

sediments. Our fundamental, parsimonious random walk model captures the central features of 24 

this highly heterogeneous sediment bioturbation, including evolution of the sediment-water 25 

interface coupled with rapid near-surface mixing, and anomalous late-time mixing resulting from 26 

infrequent deep burrowing events. This approach provides a general, transferable framework for 27 

explicitly linking sediment transport to governing biophysical processes. 28 

INTRODUCTION 29 

Sediment-dwelling organisms modify their local environment as they burrow, scavenge for 30 

food, and hide from predators. Biological reworking of sediments, termed bioturbation, mixes 31 

particles in the sediment bed
1-3

. Reworked sediments encounter different biogeochemical 32 

environments that control particle transformation, for example by microbial metabolism, 33 

precipitation/dissolution, and sorption/desorption processes. Particulate organic matter is 34 

metabolized more slowly in anoxic sediments, and particles retained in such environments are 35 

more likely to be preserved
4-6

. Similarly, reduced metal sulfides are oxidized when transported 36 

from depth into oxic surficial environments, leading to liberation of bioavailable dissolved 37 

metals
7-11

. Bioturbation is thus an important transport process that should be included in 38 

biogeochemical models for sediment diagenesis and contaminant fate in sediments.  39 
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Continuum models are widely used to represent bioturbation
12-15

. These models treat the 40 

subsurface as a continuous domain with volume-averaged bulk properties, such as porosity and 41 

particle concentrations. The simplest continuum model for bioturbation is the 1-D biodiffusion 42 

model
13, 16-19

.  In this model, fluxes are proportional to local concentration gradients, following 43 

classical Fickian diffusion assumptions, yielding particle motions that are small, isotropic and 44 

frequent relative to the scale of observation
20, 21

. Scale restrictions limit the applicability of local 45 

continuum models in natural environments. Motion that violates standard assumptions of regular 46 

Fickian diffusion, and thus cannot be predicted by continuum biodiffusion models, is commonly 47 

termed anomalous transport
22, 23

. Fickian assumptions are violated when organisms quickly 48 

transport sediments over long distances. In this case, particle fluxes are not controlled solely by 49 

local concentration gradients, and are thus nonlocal. Commonly used bioturbation models are 50 

also asymptotic, meaning they are valid only after a large number of mixing events have been 51 

observed. However, timescales for sediment mixing by bioturbation can be very large because 52 

burrowing is highly heterogeneous and new burrow formation is infrequent, yielding substantial 53 

deviations from asymptotic model predictions
21

. 54 

Several approaches have been proposed for anomalous bioturbation. Robbins
24

 and Boudreau
25

 55 

independently developed models to describe upward-conveying deposit feeders, which are 56 

worms that continuously ingest sediments at depth and egest them above the sediment-water 57 

interface (SWI). These models include a nonlocal transport term associated with feeding over a 58 

range of depths. François et al.
26

 extended this approach to 2-D using a finite element numerical 59 

model. Stochastic continuous time random walk (CTRW) models have also been proposed for 60 

bioturbation
27,

 
28

. As with Fickian biodiffusion, CTRW models describe the ensemble 61 

redistribution of particles resulting from an underlying random motion, but no predefined range 62 
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of scales are assumed in the CTRW formulation. Instead, the model is parameterized with 63 

probability density functions (PDFs) whose shapes explicitly define the scales that govern 64 

particle movements.   65 

A scarcity of direct observations limits identification and parameterization of bioturbation 66 

models
27, 31

. Current models assume, but do not verify, that biodiffusion and nonlocal transport 67 

are the relevant processes governing sediment mixing. Incorrect assumptions of governing 68 

processes greatly limit model fidelity and transferability, since model parameters are not clearly 69 

linked to fundamental, measurable system attributes. The goal of the present study was to 70 

develop a parsimonious model to directly relate statistics of burrow formation to resulting 71 

sediment mixing. We used Lumbriculus variegatus as a model organism because it is a common 72 

bioturbator of freshwater sediments and a standard test organism for contaminant transport and 73 

toxicity studies
32-34

. L. variegatus is a head-down deposit feeder that transports sediments 74 

nonlocally by ingesting particles at depth and egesting them at the SWI. Using time-lapse 75 

imagery, we observed the development of burrow structures and the resulting redistribution of 76 

tracer particles within experimental chambers. We then used the observed burrow statistics to 77 

parameterize a numerical random walk model for sediment bioturbation, and tested the model 78 

predictions against independent observations of sediment transport.  79 

 80 

METHODS 81 

Sediment Collection and Characterization 82 

We collected sediments from Lake DePue, a shallow backwater lake of the Illinois River (IL, 83 

USA). Sediments, collected to a depth of 15 cm, were transported to the laboratory and 84 

refrigerated at 4 °C until used. Sediments were characterized by Xie et al.
35

. 81% of the 85 
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sediments by volume had a diameter ≤45 µm, and ~70% had a diameter ≤10 µm. Bulk sediment 86 

properties (porosity, permeability, carbon content, and metals concentrations) are reported in the 87 

Supporting Information. 88 

 89 

Experimental Setup 90 

 Organism burrowing and sediment mixing were observed in an acrylic aquarium (10 cm long 91 

x 10 cm wide x 22 cm high). We added 8 cm of homogenized sediment to the aquarium and then 92 

added 1.5 L of artificially-reconstituted fresh water (see Supporting Information)
35,36

, creating a 93 

10-cm water column that was constantly recirculated between the aquarium and the reservoir.  A 94 

mechanical stirrer (IKA Lab Egg, Cole Parmer, IL, USA) was used to keep the overlying water 95 

in the aquarium well mixed, and the reservoir was constantly aerated so that the water column 96 

remained oxic.  97 

We allowed sediments to stabilize for 24 h, which was sufficient for all suspended particles to 98 

deposit back to the bed. We then added 5 mg of fluorescent tracer particles (ZQ-14, DayGlo 99 

Color Corp, OH) to form a uniform 0.8-mm-thick layer at the SWI. Tracer particles had 100 

excitation and emission wavelengths of 405 nm and 620 nm, respectively. The tracer particle size 101 

(20-60 µm in diameter) was chosen so that particle mobility was similar to Lake DePue 102 

sediments, based on the critical shear for resuspension.     103 

We added 0.250 g of Lumbriculus variegatus (Aquatic Research Organisms, Hampton, NH, 104 

USA) evenly over the SWI immediately following sediment stabilization. This corresponds to an 105 

organism density of 6,300/m
2
,
37

 which falls within the typical range of oligochaete densities in 106 

freshwater sediments, 1,000-40,000/m
2 38-40

. L. variegatus egested and excreted the organic-rich 107 

test sediments, and no exogenous food was added during the experiment.  108 
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This experimental setup enabled us to directly assess the linkage between L. variegatus 109 

movement and sediment transport, since all observed transport events were directly associated 110 

with organism motions. We used time-lapse photography to capture L. variegatus burrowing 111 

activity and resulting sediment transport. Methods to measure tracer particle motion follow those 112 

previously used to assess biological reworking of freshwater and marine sediments
28, 29

. We 113 

placed a digital camera (Nikon D7000, 40-mm macro lens) 35 cm from one face of the 114 

experimental chamber (Figure 1), providing a 13-µm pixel resolution. Burrow development and 115 

resulting sediment mixing were then imaged with a series of three photographs taken at 3-min 116 

intervals. Tracer particles were first imaged using ultraviolet LEDs (excitation wavelength 407 117 

nm, Super Bright LEDs Inc., St. Louis, USA), and the fluorescent emission signal was isolated 118 

by a 610-nm bandpass filter (10 nm bandwidth, Edmund Optics Inc., NJ, USA). White LEDs 119 

(Super Bright LEDs) were then triggered to capture the SWI location SWI and worm burrows. 120 

Lastly, a dark image was taken to measure background light. The experiment was replicated in 121 

duplicate using sediments from the same sample and identical image-acquisition hardware. 122 

 123 

Image Processing 124 

Image processing, numerical simulations, and model fits were performed with Matlab R2015b 125 

(Mathworks Inc., USA). Images were converted from .RAW to .JPEG using a linear tone curve, 126 

after which background light intensity was subtracted (dark images). We quantified SWI 127 

movement by first identifying images where the SWI changed rapidly (e.g., because of sediment 128 

mound collapse). We manually traced the SWI in these images and then automatically 129 

interpolated the SWI for all others.  130 
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 131 
Figure 1: Experimental setup. 132 

To calculate tracer particle distributions, we averaged light intensity over the width of each 133 

fluorescent image to generate a 1-D fluorescence intensity profile, ���, ��, where � = distance 134 

below the SWI and � = time since worms were added. We then normalized these profiles by the 135 

overall light intensity measured below the SWI: 136 

���, �� � ���, ��
∑ ���, ��


	. (1) 

Burrows were identified using white-light images. We smoothed these images using a 137 

Gaussian filter and binarized them using a global thresholding algorithm (detailed in Supporting 138 

Information). Because LED intensity varied slightly from image to image, we averaged images 139 

over a 90-min window to exclude optical noise and minimize misidentification of spurious 140 

burrowing events. We then coarsened the resulting grayscale images to 230-µm pixels, 141 

corresponding to the typical burrow width. The resulting image was 205 x 137 pixels. Burrow 142 

development was determined from pixels that changed from light to dark between successive 143 

images.  Burrows were identified at a threshold of <15% light intensity to minimize false 144 

positives. For each pixel that changed from light to dark, the pixel depth and the time since the 145 

last disturbance event (wait time) were recorded. We used these results to generate a joint PDF: 146 
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��, �� � ���, ��
�  

(2) 

where ��, �� is the probability density of a burrow event occurring at depth � after wait time �, 147 

���, �� is the number of events that occurred for a pixel centered at depth � with wait time �, and 148 

� is the total number of events. Marginal burrow-depth and wait-time PDFs were computed 149 

from the joint PDF by integrating over the complementary parameter: 150 

�	��� � � ��, ��
�

d� 
(3) 

���� � � ��, ��



d�. (4) 

Random Walk Model  151 

We constructed a numerical random walk model for sediment motion conditioned on ��, ��. 152 

The model domain consisted of a 2-D grid, identical to the coarsened grid used to monitor 153 

burrowing events. Model time steps were set equal to the averaging window for experimental 154 

images (90 min). The initial condition was a thin layer of tracer added uniformly to the top 0.8 155 

mm of the grid, which matched the experimental conditions. 156 

We considered two different random walk models: coupled and uncoupled. In the coupled 157 

model, sediment particles sample a wait time, Τ~�, and then sample a burrow depth from the 158 

joint density, �~�⋅, Τ�, which is conditioned on Τ. In the uncoupled model, sediment particles 159 

sample independently from � and �. Burrowing events are considered vertical and instantaneous, 160 

so within a single time step a worm is assumed to have burrowed and returned to the surface. 161 

The horizontal location of each burrow is randomly assigned from a uniform distribution. Tracer 162 

particles are redistributed according to a set of rules that transports a fraction of sediments to the 163 

SWI at a rate proportional to the mean SWI velocity (i.e. rate of SWI movement due to sediment 164 
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reworking), and a characteristic burrow velocity derived from the marginal PDFs (see 165 

Supporting Information).  166 

We ran 200 realizations of the model to generate ensemble-averaged concentration profiles 167 

���, ��. Worm densities matched experimental conditions, 6,300/m
2
. We then calculated the 168 

mean and variance for the tracer particle concentration profile at each time:  169 

���, �� � 	� ����, ��d�

���

�
 

(5) 

��� , �� � 	� !� − ���, ��# ���, ��d�.

���

�
 

(6) 

Biodiffusion Model  170 

For comparison, we fit a simple advection-diffusion (ADE) model to experimental results: 171 

$���, ��
$� + &' $���, ��$� � (' $

 ���, ��
$�  

(7) 

where &' is the bioadvective drift of the tracer peak and (' is the effective biodiffusion 172 

coefficient (both assumed constant). We treated the SWI as a no-flux boundary, enabling a 173 

standard Green’s function solution to the problem
41

. We fit &' and (' with a Maximum 174 

Likelihood Estimation method
42

.  175 

 176 
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RESULTS 177 

Burrow statistics 178 

 179 
Figure 2: (a) Event plot showing locations where at least one burrowing event occurred (black 180 

pixels). Large portions of the sediment remained unworked, especially below 10 mm (white 181 

pixels). (b) PDF of organism movements. This density was decomposed into marginal burrow-182 

depth and wait-time PDFs. (c) Marginal burrow-depth density with an exponential fit, 183 

����	~	)*+,
, where ) = 0.48/mm. (d) Cumulative wait-time distribution, fit to a truncated 184 

power-law distribution, -�. / ��	~	�01�	�21+�321�4+��0 �3�⁄ 1  , for times �4 ≪ � ≪ � , where 7 is the power 185 

law slope 
43
.  Line shows a best-fit truncated power law with �4 = 1.5 h, �  = 200 h, and 7 = 186 

1.35.  187 

 188 
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Total sediment reworking (Figure 2a) and burrowing distributions (Figure 2b, c) varied with 189 

depth. By day 9, worms had reworked 86% of sediments above 5.0 mm and 10.3% of sediments 190 

between 5.0 mm and the deepest burrow (16.4 mm). Percentages increased to 90% and 13.5% by 191 

the end of the experiment. Just 3% of sediments from 10.0-16.4 mm were reworked at the 192 

experimental endpoint.  The joint PDF, , shows that 56% of burrowing events were less than 5 193 

mm with wait times less than 10 h (Figure 2b).  Burrows below 10.0 mm accounted for 0.4% of 194 

all events. An average burrow depth of 2.16 mm and wait time of 0.91 d were calculated from 195 

the marginal densities.  196 

 197 

 198 
Figure 3: Time series of mean tracer depth and SWI displacement. t = 0 is the time at which 199 

worms were introduced.  200 

Because sediments did not completely consolidate until 2 d after worms were introduced, we 201 

tracked the evolution of the average SWI location relative to its location when sediments finished 202 

consolidating (day 2). After consolidation the SWI height grew linearly until stabilizing at day 9 203 

(Figure 3, red line). Time-lapse photography showed that this stabilization was primarily due to 204 

excavated sediment mounds collapsing at a rate equal to their growth (see movie S1).  However, 205 

the rate of sediment reworking also decreased from 4,200 pixels/day to 3,200 pixels/day after 206 
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day 9 (24% decrease).  SWI velocity was found to be 0.18 mm/d for the initial period of linear 207 

growth (days 2-9).  208 

 209 

Fluorescent Tracer Results 210 

 211 
Figure 4: Fluorescence profiles from the experiment (—) and the joint random walk model (– –) 212 

at different times; blue, cyan, black, and red lines are 0, 4, 7, and 15 d, respectively. Tracer 213 

spread rapidly from the SWI and then slowed at later times, as evidenced by the similarity 214 

between Day 7 and Day 15 profiles. Inset shows tracer profiles in deep sediments. The model 215 

captured rapid tracer propagation into deep sediment layers (below 10 mm), which could not be 216 

captured by the ADE model (results shown in Supporting Information).  217 

 218 

Tracer particles were rapidly mixed near the SWI (upper 5 mm) and also rapidly driven into 219 

deeper into the bed. Depth-averaged tracer concentration profiles are shown in Figure 4 for 220 
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multiple times. Profiles are characterized by a slow advection of the tracer peak, accompanied by 221 

a gradual decrease in the peak concentration and spreading of the tracer profile.  Both advection 222 

and spreading of the peak slowed at day 9, and little change occurred in the profile from days 9-223 

15. Nonlocal tracer transport was observed as early as 1.75 d, when a peak appeared at 8 mm 224 

depth. The first peak below 10 mm appeared on Day 6 (14 mm). 225 

 226 

 227 
Figure 5: Changes in tracer mean (a) and variance (b) from initial values calculated from 228 

experimental observations (blue dots) and predicted by the models (black line for coupled, red 229 

line for uncoupled, and cyan line for ADE).  230 
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The gradual changes in advection and spreading were also reflected in the first- and second-order 231 

statistics of the profiles (Figure 5, blue dots). Both experimental statistics showed a sharp 232 

transition to slower growth rates at day 9, and this timing corresponded exactly to the transition 233 

in the SWI displacement (Figure 3).  Similar trends in tracer mean and variance were observed in 234 

a replicate experiment (see Supporting Information).   235 

Model Results 236 

 The random walk model reproduced several central features of the experimental tracer 237 

profiles, including the slow advection of the tracer peak, spreading of the peak, nonlocal 238 

transport beyond 10 mm, and rapid mixing of near-surface sediments (Figure 4). The coupled 239 

and uncoupled models performed nearly identically, which indicates that burrowing depth and 240 

frequency were largely independent. Random walk simulations captured the overall trend in both 241 

the mean and variance, but under-predicted the observed mean tracer propagation (Figure 5). 242 

However, the asymptotic rate of increase of the mean was identical between models and 243 

experiment (0.04 mm/d at day 15), indicating that the random walk model captures the 244 

asymptotic behavior over long times. Predicted and observed variance matched near the 245 

experimental endpoint, but model’s rate of increase was 3 times faster than the experimental rate 246 

(0.09 mm
2
/d vs 0.03 mm

2
/d, averaged over 1 d). 247 

Because the sediment redistribution time series exhibited a clear non-diffusive trend, we fit the 248 

ADE model over the initial time interval where experimental variance was linear (days 0-9). 249 

Best-fit values were &' � 0.052 mm/d and (' � 0.73 mm
2
/d. The ADE could not adequately 250 

capture deep burrowing events at early times because this model only represents local diffusive 251 

fluxes with an inherent length support scale of 82('�. As a result, the ADE only predicted 252 

significant motion below 10 mm after 3.9 d (based on tracer concentration density > 1 x 10
-4

), 253 
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whereas the random walk model reached this threshold over just 0.4 d because of its ability to 254 

reproduce rapid, nonlocal transport events based on the observed spatial and temporal scales of 255 

worm burrow events. The ADE model greatly overpredicted the mean transport at late times 256 

because this model only accounts for mean transport with a time-invariant advection parameter. 257 

Mixing events in the random walk model were directly related to burrowing events and, thus, 258 

were appropriately restricted to the bioactive region of sediments. This enabled the random walk 259 

model to more accurately capture the observed transition to slower mean transport after day 9. 260 

Similarly, ADE variance increased linearly, which matched the experimental result at early times 261 

(a direct consequence of the model fit) but failed to capture the transition to slower spreading 262 

after day 9. This transition was captured by the random walk model owing to its direct encoding 263 

of the linkage between burrowing events and sediment mixing.   264 

 265 

DISCUSSION: 266 

Worm burrowing and sediment mixing 267 

L. variegatus motion was highly heterogeneous. Although this organism is commonly 268 

described as an upward conveyor
37, 44

, we observed several distinct behaviors, including 269 

sediment excavation, particle ingestion/egestion, rapid reworking of interfacial sediments, and 270 

deep burrowing.  Burrows were biased to the upper 10 mm of the bed (99.6% of events), which 271 

left extensive areas of the subsurface unaltered (Figure 2a). Marginal burrow-depth probabilities 272 

show that the majority of depths follow an exponential PDF. However, the infrequent deep 273 

burrowing events (0.4%) that rapidly transported sediments beyond 10 mm were not adequately 274 

described by this PDF, and were instead super-exponential. The marginal wait-time distribution 275 

contains a scale-free region from 1.5-200 h, illustrating a wide range of times between revisits to 276 
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a specific location. The lower limit of this distribution is expected to extend to the minute scale, 277 

since we observed frequent organism movements in images taken 3 min apart. Similarly, 278 

truncation at 200 h simply reflects the experiment duration, since the majority (64%) of the 279 

sediments between the SWI and the deepest burrow remained unperturbed at the end of the 280 

experiment.  281 

Heterogeneous burrowing by L. variegatus resulted in anomalous sediment mixing. Deep 282 

burrow events immediately delivered tracer particles well below the SWI, illustrating that these 283 

very infrequent events significantly influenced the tracer distribution by transporting sediments 284 

nonlocally. Low tracer concentrations below 10 mm were visible in the 1-D fluorescence profiles 285 

by day 4 (Figure 4), even though worms had only reworked a small portion of these sediments: 286 

only 3% of sediments between 10-16 mm depth had been reworked at the end of the experiment. 287 

Mean and variance of the tracer concentration profiles increased steadily for the first 9 days of 288 

the experiment (Figure 5), and then continued to increase at a slower rate thereafter. A similar 289 

transition was observed in the SWI dynamics (Figure 3, red line). Time-lapse images show that 290 

worms created steadily-growing mounds of sediment during the first 9 days, displacing the SWI 291 

upward. Mounds collapsed after reaching a critical height and/or after disruption by worms. 292 

Mound growth and collapse equilibrated at day 9, leading to stochastic variations but no net 293 

increase in the SWI height after this time. The synchronous changes in tracer statistics and mean 294 

SWI height suggest that sediment mixing is directly linked to mound formation on the SWI, 295 

meaning propagation of particles is not only due to worm movements below the surface, but also 296 

deposition of egested and excavated particles at the SWI.  297 

Sediment mixing by L. variegatus was also time dependent. Tracer particles initially 298 

propagated downward at a rate of 0.32 mm/d (Figure 5a), and propagation slowed to 0.04 mm/d 299 
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after day 9. By this time worms had already reworked 86% of sediments above 5 mm. 300 

Subsequent sediment reworking near the SWI did not substantially alter tracer distributions, 301 

since tracer particles were well mixed in this region. Ongoing burrowing deeper in the sediments 302 

controlled downward tracer propagation at late times. The fraction of sediments reworked 303 

between 5-16 mm increased by 30% after day 9. 304 

These results show that a minimum of several weeks are needed before a pulse of particles is 305 

well mixed in the zone of L. variegatus activity, which is an important consideration for 306 

sediment biogeochemistry
7, 15, 45, 46

. In particular, our findings suggest that heterogeneous 307 

sediment reworking by bioturbating organisms strongly influences the timescale of response to 308 

natural and engineered perturbations. The infrequency of nonlocal bioturbation events leaves 309 

large areas of deep sediments unmixed for long periods of time, limiting interaction between new 310 

and pre-existing particles at these depths. This is expected to limit the timescale of response to 311 

sediment amendments for site remediation that require close contact between introduced 312 

particles and contaminated sediments
1
 

47-50
. Nonlocal transport also can mobilize contaminated 313 

sediments from depth while effectively bypassing regions of sediment capping or amendment. 314 

The approach presented here can be used to predict conditions under which introduced particles 315 

can be simply deposited on the SWI vs. conditions that require active mixing to ensure adequate 316 

contact with underlying contaminated sediments.  317 

Sediment Transport Model 318 

Our random walk model uniquely relates biophysical information to sediment mixing, utilizing 319 

statistics of organism motion acquired through a novel direct-visualization approach. The 320 

model’s use of burrow statistics as a proxy for organism motion directly links sediment transport 321 

to the most relevant governing process (burrowing), as opposed to commonly-used bioturbation 322 
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models that represent transport with assumed system-scale descriptive parameters, e.g., 323 

biodiffusion coefficient. The model specifically relates observations of burrow formation to 324 

sediment motion over all relevant spatial and temporal scales, which distinguishes it from local 325 

continuum models that are inherently limited to frequent small-scale motions. The classical 326 

biodiffusion model adequately captures the effects of frequent, local mixing events near the SWI, 327 

but does not represent intermittent tracer displacements to deep sediments or the associated 328 

transition from fast mixing of surficial sediments to slower mixing of deeper sediments. Models 329 

with a depth-dependent diffusion coefficient can improve fits to tracer data
13, 51

, but they 330 

inherently cannot represent nonlocal transport and are non-transferrable because they are not 331 

explicitly related to the underlying motion processes. Conveyor-feeding models explicitly 332 

incorporate nonlocal particle displacements
20, 24

, but also do not capture the full range of 333 

sediment motion because they impose restrictions on the scales over which these displacements 334 

occur.  335 

The random walk model presented here directly represents the effects of macroscopic 336 

organism motions. Application of the model to specific behavioral classes of organisms requires 337 

the development of rules that relate organism motion to sediment redistribution. For surface 338 

deposit feeders and other species regarded as true biodiffusors
28, 52, 53

, organism motions 339 

homogenize sediments locally, yielding the classical biodiffusion model as an outcome. 340 

However, the general approach proposed here can represent sediment mixing caused by a much 341 

wider range of organism behaviors in a unified, fundamental theoretical framework. The specific 342 

transport rule developed for the oligochaete Lumbriculus variegatus is based on known behavior 343 

of the organism (head-down deposit feeder), as well as direct observations of burrowing events, 344 

mound formation, and tracer redistribution within the sediments. Burrowing statistics were 345 
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obtained via direct visualization, and the fraction of sediments delivered to the SWI was obtained 346 

by measuring the accumulation of sediments on the SWI caused by burrow excavation and 347 

sediment egestion. The model provides a parsimonious description of key sediment mixing 348 

outcomes that are not captured by conventional biodiffusion models, including time-dependent 349 

burial and spreading of the tracer peak, long-term trends in the mean and variance of the tracer 350 

concentration profiles, and nonlocal mixing in deep sediments (Figure 4). This sediment 351 

redistribution rule is expected to apply to the general class of deposit feeding organisms 352 

historically considered surface feeders or conveyor-belt feeders
24, 54-56

,  comprising many 353 

oligochaete and polychaete species
57-60

, as well as gallery diffusers (e.g., Nereis diversicolor) and 354 

predators (e.g., Nephtys caeca) that mix sediments diffusively near the SWI and nonlocally at 355 

depth
52, 60-62

. The transport rule can be reformulated to represent other types of organism 356 

behavior. The model assumes that all sediments are equally likely to be remobilized, which is not 357 

expected to be the case for all organisms or sediments. For example, the oligochaete Tubifex 358 

tubifex is generally considered an upward conveyor (nonlocal transport) of fine (< 63 µm) 359 

sediments, but does not transport larger particles
63

.  360 

The model also assumes that all burrow events are independent and stationary (i.e., time 361 

invariant), implying that organism numbers and behavior do not change over time. These 362 

limitations are expected to be most severe for prediction of deeper and longer-term sediment 363 

mixing. For example, increased probability of organism revisits to existing burrows (as opposed 364 

to the formation of new burrows) and decreases in organism numbers over time will both lead to 365 

decreased mixing of deep sediments at late times. Further model generalization is therefore 366 

required to represent cases where burrowing activity varies with time. Future research efforts 367 

should explore extensions to represent nonstationarity and correlations related to time-varying 368 
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worm populations and other population- and community-level changes in the benthic ecosystem, 369 

including species-pair interactions
64, 65

, burrow network/gallery formation
66, 67

, and behavioral 370 

changes due to environmental cues (e.g., toxicity, temperature)
28, 68, 69

. 371 

 372 

Environmental Implications 373 

The combined experimental and modeling approach introduced here simplifies model 374 

parameterization and improves transferability by relating input parameters to the most critical 375 

measurable system attributes. Future research is needed to elucidate the specific roles of 376 

sediment reworking and other biologically-mediated transport mechanisms (e.g., solute exchange 377 

via bioirrigation
3
) in sediment biogeochemistry

62, 70, 71
. These efforts will inform the proper 378 

coupling between transport and biogeochemical models—a necessary step for predicting 379 

responses to large-scale environmental pressures and designing successful site remediation 380 

strategies
72, 73

.  381 
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