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In this study we extend the Spatial Markov model, which has been successfully used to upscale
conservative transport across a diverse range of porous media flows, to test if it can accurately
upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We
test the model in a well known highly simplified geometry, commonly considered as an idealized
pore or fracture structure, a periodic channelwithwavy boundaries. The edges of the flowdomain
have a layer through which there is no flow, but in which diffusion of a solute still occurs.
Reactions are confined to this region.Wedemonstrate that the Spatial Markovmodel, an upscaled
random walk model that enforces correlation between successive jumps, can reproduce
breakthrough curves measured from microscale simulations that explicitly resolve all pertinent
processes. We also demonstrate that a similar random walk model that does not enforce
successive correlations is unable to reproduce all features of the measured breakthrough curves.
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1. Introduction

Modeling the transport of chemical species through a
porous medium can involve many complex biogeochemical
processes that can be distributed unevenly in space (Dentz
et al., 2011). At the same time the geometry of the flow domain
gives rise to heterogeneous flow fields with fast and slow
regions of potentially converging and diverging flow. Even in
the case of conservative transport, this broad range of scales
can complicate the development of effectivemodels,which aim
to describe transportwithout explicitly resolving all small scale
features (Brenner, 1980; Plumb andWhitaker, 1988; Hornung,
1997). Add to this an additional range of timescales for reactive
transport and the challenge can be even greater (Dentz et al.,
2011).

In the case of conservative transport, the development of
effective models for transport can in many ways be dated back
to the seminal work of GI Taylor and Aris (Taylor, 1953; Aris,
1956), who demonstrated that after asymptotic times, trans-
port of a solute through a cylindrical tube under laminar flow
conditions, can be effectively described by a one-dimensional
advection dispersion equation, with an enhanced dispersion
coefficient. This enhanced dispersion coefficient represents the
enhanced spreading that occurs due to the interplay of the
heterogeneous (shear) velocity field and transverse diffusion.
The arguments developed hold for anypure shear flowwith the
magnitude of the dispersion coefficient depending on the
structure of that flow and the magnitude of the transverse
diffusion coefficient. Building on these ideas a rich suite of
modeling approaches, including the method of moments
(Brenner, 1980), volume averaging (Plumb and Whitaker,
1988) and homogenization (Hornung, 1997), generalized
Taylor's ideas to more complex geometries and the use of
effective dispersion coefficients is widespread across disciplines.

Many of these ideas have been further generalized to the
case of reactive transport. For example, Shapiro and Brenner
(1988), using the method of moments, developed an effective
upscaled equation for macroscopic transport that takes the
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form of an advection dispersion reaction equation, but with an
effective dispersion coefficient, an effective velocity and an
effective reaction rate, each of which depend on the specific
makeup of microscale flow and reaction characteristics. Note
that the effective velocity and dispersion coefficients can vary
significantly from their conservative counterparts. Dykaar and
Kitanidis (1996) used Shapiro and Brenner's method of
moments approach, to calculate the effective dispersion,
velocity and reaction rates for a highly idealized geometry: a
vertically bounded, horizontally periodic channel with sinusoi-
dally varying boundaries and a reactive region of uniform
thickness that separates the flowing fluid and solid boundary.
In particular, they showed that for highDamkohler number, the
effective velocity and effective reaction rate vary greatly with
Peclet number.

While incredibly powerful, these approaches in their
original form, are strictly speaking only valid at asymptotic
times. Throughout this document, by asymptotic times we
mean times greater than the Taylor dispersion timescale, which
is typically given by τD= L2/D, where L is a characteristic length
scale and D the diffusion coefficient. That is, the equation is not
valid at pre-asymptotic times, or times smaller than this.
Depending on one's interests this may be reasonable or not, in
which case a pre-asymptotic model may be desirable. Many of
the aforementioned approaches can be generalized further to
achieve this (Lunati et al., 2002; Wood et al., 2003; Richmond
et al., 2013). However some recent studies have demonstrated
that some of the assumptions required to close these theories
for reactive transport can be quite restrictive and confine their
regime of validity (Battiato et al., 2009; Battiato and
Tartakovsky, 2011).

Here we propose an alternative modeling strategy, based
on the SpatialMarkovmodel (Le Borgne et al., 2008a), which to
date has shown great promise in upscaling conservative trans-
port all the way from pre-asymptotic to asymptotic times
across a breadth of flows relevant to porous media. This
includes transport through highly heterogeneous porous
media (Le Borgne et al., 2008a, 2008b), fracture networks
(Kang et al., 2011), idealized two-dimensional pore networks
(Le Borgne et al., 2011; De Anna et al., 2013; Bolster et al.,
2014), real three-dimensional pore systems (Kang et al., 2014),
unsteady flows through porous media (Sund et al., in press),
andmost recently a field scale application to a fractured aquifer
(Kang et al., 2015). The model is a subclass of themore general
family of continuous time random walk (CTRW) models
(Berkowitz et al., 2006) (indeed the Spatial Markov model
has also gone by the name correlated CTRW). The idea behind
the model is to discretize the concentration field, like any
random walk model, into a large number of particles. These
particles then transition through space and time following
probabilistic rules thatmacroscopically replicate the small scale
dynamics. Often random walks treat successive jumps as
uncorrelated, independent and identically distributed. What
distinguishes the Spatial Markov model is that successive
jumps are correlated, a requirement we argue is needed to
replicate themicroscale behaviors, particularly when advective
effects are dominant relative to diffusive ones (Bolster et al.,
2014). It should be noted that the idea of a correlated random
walk is in itself not a novel idea. Indeed works relating to
correlated random walks date back almost a century; (e.g.
Taylor, 1922), where GI Taylor showed a formal link between a
form of correlated (persistent) random walk and the
Telegraphers equation. Later works further explored these
ideas (Goldstein, 1951; Gillis, 1955) and several more general
reviews discuss correlated random walks (e.g. Haus and Kehr,
1987; Weiss and Rubin, 1983). The novelty of the Spatial
Markov model lies in treating temporal jumps as random and
encoding one step correlations in a numerically efficient
manner via a measured transition matrix (Le Borgne et al.,
2008a).

To date this modeling framework has only been applied to
the case of conservative transport and herewe test its ability to
predict reactive transport associatedwith a thin reactive region
with a first order degradation rate, by applying it to the simple
case proposed by Dykaar and Kitanidis (1996), discussed
above. While incredibly simple, this geometry appears to
capture a rich array of dynamics, representative of important
features of flow and transport in porous media. Multiple
studies, using this or very similar geometries have been
conducted to explore the effects of inertia on upscaling flow
(Chaudhary et al., 2011, 2013) and transport (Bouquain et al.,
2012; Bolster et al., 2014), studying the role of geometry on
asymptotic (Cardenas, 2009; Bolster et al., 2009) and pre-
asymptotic transport (Cardenas, 2008; Le Borgne et al., 2012),
and studying the effects of turbulence on dispersion (Richmond
et al., 2013) to name a few. Thus, while we recognize that the
model geometry is very simple, we consider this simplicity as a
strength and given its historical successes, we believe it is an
ideal initial testbed for application of a SpatialMarkovmodel to
upscaling of reactive transport.

2. Model system

2.1. Geometry

The geometry we consider in this study is depicted in Fig. 1;
the boundaries of the flowing fluid system are described by

h xð Þ ¼ hþ h0 sin
2πx
L

−
π
2

� �
; ð1Þ

where x is the horizontal coordinate, h(x) is the half-aperture,h
is themean half-aperture, h′ is the amplitude fluctuation of the
half-aperture and L is the length of a single cell. A reactive layer
of uniform thickness b lies between the fluid phase and the
solid matrix. In this study, to be consistent with Dykaar and
Kitanidis (1996), we restrict ourselves to the casewhereh ¼ L=
4, h0 ¼ 0:8h and b ¼ 0:4h.

2.2. Flow field

Fig. 1 also depicts the streamlines for the flow, which are
calculated using a semi-analytical solution developed by
Kitanidis and Dykaar (1997); and Dykaar and Kitanidis
(1996). The solution assumes Stokes flow, that is Reynolds
number much less than one, generally accepted as a good
approximation for flow through porous media. For Stokes flow
of an incompressible fluid, the velocity field u follows,

1
ρ
∇P ¼ ν∇2u ∇ � u ¼ 0; ð2Þ



Fig. 1. Schematic of flow domain (top) and the unit cell ‘pore’ (bottom) for flow and transport modeling in this work. Streamlines for the flow are calculated using the
semi-analytical solution for Stokes flow developed by Kitanidis and Dykaar (1997).
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where P is the pressure, ρ is the density, and v is the kinematic
viscosity of the fluid. These equations can be combined and
written in terms of a stream function ψ, the governing equation
of which is the biharmonic equation ∇4ψ = 0. The solution to
this equation is built using a perturbation analysis assuming
small ϵ ¼ 2h=L, which here equals 0.5. While this choice of ϵ is
not extremely small, it is sufficiently so, as the lowest order of
the discarded terms in the expansion is ϵ6. Also it is consistent
with the original work using this geometry by Dykaar and
Kitanidis (1996), who later showed that it compares favorably
with the flow calculated by numerical means (Cao and
Kitanidis, 1998). Details of this solution are available from
multiple sources including Kitanidis and Dykaar (1997);
Dykaar and Kitanidis (1996); Bolster et al. (2009) and so are
not presented explicitly here.

2.3. Simulation of transport at the microscale

We consider reactive solute transport as governed by the
advection diffusion reaction equation

∂C x; tð Þ
∂t

þ u xð Þ � ∇C x; tð Þ ¼ D∇2C x; tð Þ−γ xð ÞC x; tð Þ; ð3Þ

where C(x, t) is the concentration of the solute and D is the
molecular diffusion coefficient, taken to be constant in the fluid
and reactive layer and zero in the solid matrix. γ(x) is the
reaction rate, which is taken as a constant α in the reactive
layer and zero elsewhere. We consider here a first order
kinetic reaction, which can be seen as a small concentration
approximation to a Monod type relationship (Pavlostathis
and Giraldo-Gomez, 1991; Semprini and McCarty, 1992).
Boundary conditions are no-flux at the reactive layer solid
matrix interface. In all cases we consider a pulse initial
condition, flux weighted along the pore throat (C(x, t =
0) ∝ u(x)δ(x)).

To solve this system we implement a numerical Lagrangian
particle based randomwalk method (Risken, 1984), where the
solute plume is discretized into a finite number of N particles.
For a given time step Δt each particle i is moved according to
the Langevin equation

xi t þ Δtð Þ ¼ xi tð Þ þ uiΔt þ ξi
ffiffiffiffiffiffiffiffiffiffiffiffi
2DΔt

p

yi t þ Δtð Þ ¼ yi tð Þ þ viΔt þ ηi
ffiffiffiffiffiffiffiffiffiffiffiffi
2DΔt

p i ¼ 1;…;N; ð4Þ

where xi and yi are the horizontal and vertical position of
particle i respectively and ξ and η are independently distributed
Gaussian variables with zero mean and unit variance. The solid
boundaries in the domain are modeled as elastic reflection
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boundaries, that is, if xi(t + Δt) lies across a solid boundary,
then its reflected position is

xr
i t þ Δtð Þ ¼ 2 xi tð Þ þ projΓ xi t þ Δtð Þ−xi tð Þð Þ½ �−xi t þ Δtð Þ ð5Þ

where projΓ is the projection onto the solid boundary Γ. The
reaction term is implemented probabilistically, as in Kinzelbach
(1988), by determining the probability P that a particle
undergoes a reaction during a given time step, where

P ¼ 1−e−γ xð ÞΔt
; ð6Þ

where P = 0 if the particle is in the flowing fluid and P = 1 −
e−αΔt if the particle is in the reactive layer. This number P is
then compared to a random number U, drawn from a standard
uniform distribution. If U ≥ P no reaction occurs and if UbP the
reaction occurs and the particle is removed from the system.

We choose to use the Lagrangian random walk method for
various reasons, including the following: (i) it allows for easy
and effective calculation of breakthrough curves (BTCs) and (ii)
given the periodic nature of the flow domain it makes it
possible to consider transport through a very large number of
unit cells without requiring a prohibitively large numerical
mesh as only the particle's position relative to the unit periodic
cell is required to calculate its velocity. For all simulations
presented here one million particles were used and time steps
of Δt=10−3 were chosen. The time step was chosen based on
a convergence test (results with a time step 10 times smaller
are virtually indistinguishable in terms of measured BTCs,
discussed below) and is consistent with choices from previous
studies on similar domains (Bolster et al., 2009).

2.4. Dimensionless numbers

The above system can be characterized by several dimen-
sionless numbers given by

Re ¼ 2hu
ν

Sc ¼ ν
D

Pe ¼ 2hu
D

Da ¼ 4h2α
D

ð7Þ

where Re is the Reynolds number, Sc the Schmidt number, Pe
the Peclet number and Da the Damkohler number. ū is the
average velocity in the fluid domain. Dykaar and Kitanidis
(1996) provide typical ranges for these numbers as 10−4 b

Re b 10−1, 500 b Sc b 2500, 0.1 b Pe b 103, 0 b Da b 104. Since
Re ≪ 1 we are in the typical Stokes flow regime where the
semi-analytical solution of the flow, given by Kitanidis and
Dykaar (1997) based on Stokes flow, holds. A Schmidt number
of O(1000) indicates that while advective effects may be
unimportant with regard to flow, they can still be important
with regard to transport as diffusion coefficients for solutes are
typically several orders ofmagnitude less than diffusion of fluid
momentum (viscosity). The range of Damkohler numbers sug-
gests that a range everywhere from where reaction dominates
over diffusion to systems where diffusion dominates over
reaction exists.

In this study we will primarily focus on higher Pe number
cases in the range Pe ≥ 100 since these are known to be more
difficult to upscale and because these can be thought of as cases
where the asymptotic timescales/lengthscales at which Taylor
dispersion ideas hold are the largest.Wewill focus primarily on
larger Damkohler numbers, 10 b Da b 10,000, where
reaction timescales are much faster than diffusion time-
scales and the system is diffusion limited. The desired range
of these dimensionless parameters is obtained by setting
ū = 1, 2h ¼ 1 (in arbitrary units) and tuning D and α to
obtain the correct values of Pe and Da.

2.5. Effective transport models

As discussed in Section 1, one of the goals of Taylor
dispersion is to reduce the fully dimensional transport problem
to a one-dimensional effective model that adequately captures
longitudinal transport through the domain of interest. Our
approach aims to do the same, butwith the goal of developing a
model that is valid at pre-asymptotic times also.

In this section we propose two upscaled models which fall
under the broad family of random walk models and, in the
same manner as the random walk model described above to
simulate transport at the microscale, we discretize the solute
plume into a large number of solute particles. Unlike the
random walk described above, we do not update a particle's
position using a random jump based on a fixed time step, but
rather fix a spatial jump and make the amount of time it
takes for a particle to travel this distance random, much like is
done in certain continuous time random walk frameworks
(Berkowitz et al., 2006). Thus at a given step n a particle's state
is defined by its position xi

(n) and time ti
(n). These can be

grouped into vectors x(n) and t(n), describing the state of the full
particle population. The equation for transport, updating space
and time of each particle, is given by

x nþ1ð Þ ¼ x nð Þ þ Δx nð Þ

t nþ1ð Þ ¼ t nð Þ þ Δt nð Þ
:

ð8Þ

Generally Δt and Δx can both be random with joint
distribution ψ(x, t). In this study, as is commonly done, we
consider them independent such that ψ(x, t) = ψ(t)ϕ(x).
Additionally we assume that the spatial step is fixed, that is
ϕ(x) = δ(x − Δx) or in any step all particles jump an equal
distance Δx. By fixing Δx, we assume that the statistics of the
velocity field are stationary over this length scale. For a periodic
system, such as the one considered here, a natural choice of Δx
is L, the length of a periodic element. To date, there is little
formal development on constraints on the choice of Δx and
more is needed; however, in this work, since L is the smallest
scale over which the statistics of the velocity field are
stationary, choosing Δx b L would likely be problematic. Now
the only random component in Eq. (8) is the time step Δt. ψ(t),
the distribution from which this time step is sampled, is given
by the travel time distribution that it takes particles to traverse
one ‘pore’.

In certain instances it has been common to consider
successive values of Δt to be independent and identically
distributed, a feature that allows the use of generalized central
limit theorems to demonstrate convergence to stable distribu-
tions as well as asymptotic calculations of a plume's spatial
moments (Shlesinger, 1974). However, a growing body of
evidence demonstrates that this assumption can be question-
able in certain systems, particularly at pre-asymptotic times in
large Peclet number systems (Le Borgne et al., 2012; De Anna
et al., 2013; Bolster et al., 2014). Instead it has been proposed
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that successive steps are not independent and that correla-
tion effects must be included, that is that Δt(n + 1) should be
conditioned on the value of Δt(n). Physically for the system
considered here, one can justify this argument as follows: if a
particle sits on a fast streamline at the center of the pore, it
will traverse that pore quickly; in the absence of strong
diffusion, which is what enables particles to hop across
streamlines, it is likely that the particle will continue to sit
on the same or similarly fast streamline (near the center) as
it traverses the next pore. Likewise a particle that sits on a
slow streamline near the reactive region and travels slowly
through the first pore is most likely to traverse the following
pore on a similarly slow streamline and may even get swept
up in a nearby recirculation zone for some time. Thus
successive steps must reflect this correlation. In the case of
zero diffusion, perfect correlation will exist (i.e. successive
jumps will be identical) and as diffusion becomes stronger
this correlation lessens. In terms of the dimensionless
numbers characterizing this system, the larger the Peclet
number, the larger this correlation effect is going to be. For a
detailed discussion on this see Bolster et al. (2014). In this
study we will implement the model described in Eq. (8) in
two forms: (i) a model that does not incorporate correlation
between successive steps, called the uncorrelatedmodel and
(ii) a model that enforces correlation between successive
time steps, called the Spatial Markov or correlated model.

The model as described so far does not explicitly
incorporate chemical reactions. In addition to the random
amount of time it takes a particle to cross distance Δx(n)

there is a probability P̂ that it will react during that transition.
P̂ is distinct from the probability P in the randomwalk model
described above (it depends on the total amount of time a
particle spends in the reactive layer during a transition).
Since when a reaction occurs a particle disappears from the
system, one possible (numerically) practical implementa-
tion is to say that a particle that reacts within the space step
Δx(n) takes an infinitely long time to travel over the next and
all following space steps (Δx(n + 1), Δx(n + 2), …). Thus we
can naturally incorporate the occurrence of reactions into
the transition time distribution by saying that it is the
distribution of times it takes for all particles that make it
across the transition (ψa(t)) plus a delta pulse located at
infinity, appropriately weighted to account for the number
of particles that react during a given transition (ψλ(t) =
Mδ(t − ∞) where M is the proportion of particles that have
reacted out of the systemwithin that step). In this case Δt= ∞
may be considered to be a limbo state (Van Kampen, 1992).
Any particle with the temporal state Δt = ∞ means that it is
no longer in the spatial domain and no longer participates in
the randomwalk process (i.e. it has reacted out of the system).
Thus ψ(t) = ψa(t) + ψλ(t) such that ∫Tψ(t)dt = 1 where the
subscript T denotes integration over the interval [0, + ∞] of the
extended real line.

For the uncorrelated model the only ingredient required
is the transition time distribution (defined with the limbo
state as described above). However, for the Spatial Markov
model we need the transition time distribution, as well as a
manner of imposing the correlation between successive
time steps and the likelihood of reaction. Successive
correlation is imposed via the transition matrix, described
below.
2.6. Inputs for the uncorrelated and Spatial Markov models

Here we define the inputs that must be obtained from the
microscale domain in order to build the macroscale effective
Spatial Markov model. In all cases in order to obtain these
metrics we run the random walk model described in
Section 2.3 with a pulse initial condition at the throat of a
pore, (see Fig. 1) and simulate advection–diffusion-reaction
across two periodic unit cells. The periodic unit cell corre-
sponds to the blown up region in Fig. 1.

2.6.1. Unit cell first passage times
The first key ingredient for the Spatial Markov model is the

distribution of travel times ψ(Δt), which for the system here is
the distribution of times it takes particles to travel across a unit
cell or Δx = L. This is obtained by measuring the first passage
time for particles to cross the first unit cell in our microscale
simulations described in Section 2.3. That is, we measure the
amount of time it takes each particle to first reach a distance
x = L and from this build the distribution ψ(Δt). Note that
particles that do not survive the transition acrossΔx= L, due to
the reaction, are assigned to the limbo state. M, the size of the
limbo state described in Section 2.5, is measured as the fraction
of particles that do not survive the transition. P̂, the probability
that a particle does not survive the transition, is given by M for
the uncorrelated model. For the Spatial Markov model, it is
different and discussed below.

2.6.2. Transition matrix
The second key ingredient to the Spatial Markov model is

accounting for correlation between successive steps, which
requires us to define the conditional probability density r(Δt|Δt
′), which characterizes the probability of having a time
increment Δt given that the previous time step was Δt′. If
correlation were non-existent in the system, the conditional
probability would be independent of Δt′ and the conditional
distribution would equal the distribution of travel times:
r(Δt|Δt′) = ψ(Δt). When correlation is important this is not
true. Quantifying this correlation formally is challenging and so
we adopt the discrete ‘transition matrix’ approach introduced
by Le Borgne et al. (2008a).

We begin by discretizing ψa(Δt) into a finite number n of
discrete classes in the range Ci (1 ≤ i ≤ n); a particle resides in
previous step bin Ci if the transition time associatedwith its last
step lies in the range Δti ≤ Δt′ b Δti + 1. The discretization is
performed such that each class is equiprobable, that is an equal
number of particles reside in each bin (or said otherwise
occupies an equal area under the travel time distribution). We
chose thismethod as it has been shown towork reliably for this
geometry in previous studies on conservative transport (Le
Borgne et al., 2011), although alternative discretizations
distributing particle numbers logarithmically are also possible,
if for example it is desirable to resolve tailing features in amore
detailed manner. To determine the next time step we can
choose from n + 1 bins, which correspond to the same n bins
from the discretization of ψa(Δt) as well as one additional bin,
which indicates that a particle has reacted. Thus, in the Spatial
Markov model P̂i , the probability of reaction during a step is a
vector quantity representing the probability a particle does not
survive the transition given that it began in class i. Thus the
transitionmatrix is of size n× (n+1). Now given these classes
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we can discretize r(Δt|Δt′) into a transition probability matrix
that provides the probability of jumping between classes
between successive time steps. The transitionmatrix is defined
as

Ti j ¼

Z Δtiþ1

Δti

Z Δt jþ1

Δt j
r tjt0� �

ψ t0
� �

dt0 dt:

Z Δtiþ1

Δti
ψ t0
� �

dt0
ð9Þ

Tij represents the probability that a particle will jump from
class i to class j between successive steps. Tij is calculated
numerically by tracking the amount of time it takes a particle to
cross the first pore, assigning its class and then tracking how
long it takes that same particle to cross the second pore (or
react) and assigning that class. In the implementation of the
Spatial Markov model a random number sampled from a
uniform distribution is used in combination with the transition
matrix to determine which new class a particle jumps to, from
which its next transition time is sampled. How to choose an
appropriate number of bins to discretize the transitionmatrix is
still a formally open question, but in Le Borgne et al. (2012) it
was shown that reliable effective models can be built with as
few as 10 classes. In this studywe use 50 bins, whichwas found
to provide virtually identical results to 25 bins, suggesting
convergence. We also ran the model with 100 bins, again with
no appreciable changes.

It should be noted that while the transition matrix here is
created using and then applied to one particular initial
condition, in principle, the transition matrix encodes informa-
tion valid for other initial conditions. To solve for a different
initial condition, one would have to identify which class
particles associated with the initial condition belong to and
then march them through space and time in the same manner
as described above. Another nice feature of the transition
matrix is that it can be used to predict the length scales over
which correlation effects are important in the system (we refer
to Bolster et al. (2014) for a detailed discussion on this).

2.7. Observables to test model

The main observable that we use to validate the perfor-
mance of the Spatial Markov model as an upscaled model is its
ability to predict downstreamBTCs atmultiple distances of x=
5L, 10 L, 25 L and 50 L. Multiple downstream points are chosen
because it is often possible to match one downstream point
well given model flexibility, but it is expected that only a
physically consistent model would match well at all these
locations. Thus high resolution simulations, which resolve the
complete motion and reaction of particles at the microscale,
using Eqs. (4) and (6), are run for all conditions, the results of
which are taken as the ground truth against which the upscaled
model is tested.

3. Results

3.1. Travel time distributions

The travel time distributions for all considered cases are
depicted in Fig. 2. The figure consists of two parts. The top row
depicts ψa(t), the travel time distribution associated with all
particles that make it through without reacting. The bottom
row depicts the strengths of the additional limbo space
ψλ(t) = Mδ(t − ∞), which corresponds to the fraction of
particles that react as they pass through the first pore.

Focusing first on the distributions ψa(t) we note that for
both Peclet numbers the early arrival times up to the peak of
the distribution are essentially the same for all of the
considered Damkohler numbers. This is unsurprising, because
this corresponds to the fastest moving particles in the system,
which are those at the center of the channel, furthest away
from the reactive region and thus with very small, if any,
probability of reacting. Thus we expect them to behave the
same regardless of how fast the reaction, or alternatively how
large the Damkohler number, is.

However, the later times in the distributions clearly reflect
the influence of the Damkohler number. As the Damkohler
number increases (i.e. the relative influence of reaction rates
becomesmore important)more andmoremass is lost from the
tail due to reactions with the cutoff in the distribution
happening earlier for larger values of Da. This is exactly
reflected in the bottom part of the figure where the strength
of the limbo states M systematically increase with Damkohler
number and account for the amount of mass lost during the
transition. We also note that for a given value of Da increasing
Pe leads to a decrease in this strength, reflecting the fact that
when diffusive effects are less important compared to advec-
tive effects, lessmass enters the reactive region and so a greater
number of particles canmake it through the transition without
jumping into limbo.

3.2. Transition matrices

The transition matrices for all of the considered cases are
shown in Fig. 3. Note that the probabilities in the matrices are
plotted logarithmically (log10 Tij) to highlight differencesmore
clearly. The vertical axis of the transition matrices corresponds
to bins in the previous step and the horizontal axis to the bin of
the next step. Bin 1 corresponds to the fastest moving particles
and bin 50 to the slowest moving ones.

To those familiarwith suchmatrices the largest part of them
displays a structure commonly observed in most studies to
date, particularly for the Pe = 1000 case. They are diagonally
banded matrices with the highest values along the primary
diagonal,which physically reflects the fact that a particle'smost
likely transition time is close to its previous one. For the Pe =
100 case this is much less apparent and only subtly detectable,
which reflects the fact that for smaller Peclet number
correlation effects are much smaller and particles can jump
between bins more freely. Similar observations were made by
Bolster et al. (2014), who demonstrated that for conservative
transport correlation effects are only important for Pe N O(100).

Unlike in previous studies, though, there is an additional
column in the transition matrices, the rightmost column,
corresponding to the probability that a particle will react in its
current step given its previous time step (alternatively said –
enter the limbo state), which displays some telling and
interesting features. Given that it is difficult to see the details
of this additional column in the current format of the transition
matrices, a plot showing only this column is provided in Fig. 4.
For the Pe=100 andDa=1000 and 10,000 cases, regardless of



Fig. 2. Transition time distributions for Pe= 100 (left) and Pe= 1000 (right) for Da= 10 (black), Da= 100 (green). Da= 1000 (magenta) and Da= 10000 (blue).
Recall that ψ(t)= ψa(t)+Mδ(t−∞). The top row of the figure shows ψa(t), the travel time distribution for particles that make it through the pore and the bottom row
shows the strength of the delta function corresponding the limbo state, M (i.e. representing particles that react and leave the system). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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a particle's previous time step, it has quite a high probability of
reacting during its next step. This is reflected as strong red
bands in the transition matrices in Fig. 3 and as relatively flat
high probabilities in Fig. 4. Two features are noteworthy in
Fig. 4. First, as Damkohler number decreases we see that the
probability of reaction decreases across all bins (i.e. lower
Damkohler number means that a particle needs to spend more
time in the reactive zone to actually react); second the higher
number bins (slowest moving particles) have greater proba-
bility of reaction than the lower bins (faster particles). The
nonuniform nature of this probability suggests that correlation
effectsmay be important even for the smaller Peclet number, in
a way that they may not be for conservative transport.

This feature is even more apparent in all of the Pe = 1000
cases, alongwith the fact that the probability of reaction for the
fastest moving particles is pretty much zero. This reflects that
due to the larger Peclet number (smaller relative diffusive
effects) the probability of entering the reactive zone, which can
only be achieved by diffusion, is almost zero, thus precluding
the possibility of a reaction occurring. Thus only particles that
traveled slowly across the previous transition have a realistic
probability of reaction in the next one.

3.3. BTCs — a comparison of high resolution microscale
simulations and the effective upscaled models

Results of the BTCs measured from the micro-scale
simulations and as predicted by uncorrelated and Spatial
Markov model are presented in Figs. 5–8. One of the major
aspects to note in these BTCs is the influence of reaction in the
system.Much as in the unit cell transition time distributions, as
the Damkohler number increases (reaction becomes stronger)
less and less mass makes it to each downstream position, with
later time arrivals in particular being cut off the most as these
are the slowest particles that are most likely to have passed
through the slow reactive regions in our system. In fact for the
Pe=100 case in all but the Da= 10 case, virtually none of the
solute makes it to the x = 50L measurement point as diffusive
and reactive effects are strong enough to ensure that solute
moves through the reactive zone for sufficient time for the



Fig. 3. Transitionmatrices (log 10Tij) for Pe=100 (left) and Pe=1000 (right), and for Da= 10000 (top row), Da=1000 (2nd row), Da=100 (3rd row), and Da=10
(bottom row). The rows of the transition matrices correspond to the previous step and the columns correspond to the current step.
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solute to be removed. These are essential features that the
upscaled models must be able to capture.

In all cases, spanning the full range of considered
Damkohler and Peclet numbers, the agreement between
prediction and observations for the Spatial Markov model is
excellent (Figs. 6 and8), suggesting that it is able to successfully
predict the evolution of the tracer under the reactive conditions
considered in this system.

On the other hand, the uncorrelated model (Figs. 5 and 7)
captures some of the essential features, but behaves less
favorably than the SpatialMarkovmodel. Mismatches between
the model and measurements are worse for the higher Pe
number case, which is in line with our intuition that larger
Peclet numbers mean greater need to incorporate correlation.
Nonetheless, even for the Pe = 100 cases, the uncorrelated
model does not accurately capture the early arrival of the
breakthrough curves with a delay in the peak for the x=5 and
10 L cases and a shift in the further downstream breakthrough
curves (for the Da = 10 case). The underprediction of early
arrival concentrations is systematic across all Damkohler
numbers. This reflects the fact that the model does not enforce
correlations among fast moving particles correctly which
allows particles to react out of the system that should not do
so. For the greatest downstream distance the model has



Fig. 4. The rightmost column of the transition matrices for Pe= 100 (left) and Pe= 1000 (right) and Da = 10 (black), Da= 100 (green), Da= 1000 (magenta) and
Da= 10000 (blue). These curves represent the probability of a particle reacting out of the system in the current step given the transition time bin in the previous step.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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allowed most of the mass to react out of the system for all
Da ≥ 100 cases, but the results from the upstreambreakthrough
curves and themismatches of early arrivals, suggest that it may
have reacted out of the system too quickly. These issues are
even more evident in the Pe=1000 cases where early arrivals
and a truncation of the tail concentrations occur throughout.

The above results are consistent with knowledge from
previous studies on conservative transport, that is that
correlation effects are more pronounced and therefore must
be incorporated into an upscaled model as Peclet numbers
become larger, or better said as diffusive effects becomeweaker
relative to advective ones. However, the results also suggest
that the critical Peclet number to adequately capture reactive
effects may be smaller than one estimated for the conservative
case. Bolster et al. (2014) showed for a very similar geometry
that correlation effects were negligible for Pe = 100, while for
the reactive case they appear to play a more significant role.
3.4. Total mass in breakthrough curves

A characteristic in the case of reactive transport is that not
all of the mass injected makes it to each of the downstream
locations. Thus another useful measure of a model's success is
how well it reproduces the total amount of mass in each
breakthrough curve. Fig. 9 depicts this for both Peclet and all
Damkohler numbers. This metric is particularly useful in
highlighting mismatches between the models and observa-
tions, which may be obfuscated in the detailed breakthrough
curves. In all cases we see that the correlated or Spatial Markov
model does an excellent job of matching the observations with
a maximum error of 5% (which is the absolute worst case –
most are less than 0.1%), while the uncorrelated model has
errors as large as 91%, underpredicting the total mass by as
much as an order of magnitude.

In all cases there appears to be an exponential decay ofmass
with downstream distance, suggesting use of an effective first
order rate with distance would be reasonable. This effective
rate systematically increases with increasing Da, in line with
the fact that as Da increases the amount of reaction increases
also. However, neglecting correlation overpredicts this effec-
tive reaction rate and the overprediction becomes worse as Da
increases, suggesting that the higher the Da the more
important it is to include correlation. Indeed, while there are
some mismatches in early arrivals of the breakthrough curves
for the lowest Da cases, the uncorrelated model fairly
accurately predicts the total mass arriving, although the
maximum error is still of order 10%, which is worse than the
correlated model. Likewise as the Pe number increases the
prediction gets worse, much like observations from conserva-
tive transport studies. Thus when considering the importance
of correlation effects in an upscaled model it is important to
consider diffusive effects relative to both advective and reactive
effects, as quantified by a Pe and Da number.
4. Conclusions

We have investigated reactive transport in an idealized
flow, that is a periodic channel with a sinusoidal boundary,
where reactions are confined to a diffusive layer of finite extent
adjacent to the flow channel. Specifically, we have tested the
ability of two upscaled random walk models to effectively
reproduce breakthrough curve observations from fully re-
solved simulations that explicitly resolve the full flow,
diffusion, and reaction dynamics across a range of Peclet and
Damkohler number conditions. Both randomwalk models aim
to describe effective transport by discretizing solute into a large
number of particles that make successive jumps of finite size,
the length of a periodic element, but with random times,
sampled from a measured transition time distribution. One of
the models, the uncorrelated model, assumes that the time
steps between successive jumps are independent and identi-
cally distributed, while the second model, the Spatial Markov
model, enforces correlations between successive transition
times, also measured from the fully resolved simulations.

We demonstrate that the Spatial Markov model is able to
reasonably reproduce the structure and amount ofmass in each
of the breakthrough curves measured from the fully resolved
simulation across the range of considered Peclet and
Damkohler numbers, which were chosen as being physically
representative, as well as in the range where upscaling might
be most challenging. On the other hand, the uncorrelated
model provides less accurate predictions, which becomeworse



Fig. 5. Breakthrough curves for Pe=100 andDa=10 (black dots),Da=100 (magenta plus),Da=1000 (green squares) andDa= 10000 (blue diamonds). Solid lines
correspond to predictionswith the uncorrelatedmodelwhile symbols correspond to observations from the fully resolvedmicroscale simulations. The upper four panels
show the full BTCs, while the lower panels highlight the early arrivals to demonstrate themost significant mismatches. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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as Peclet and Damkohler numbers increase. While it is well
known from previous studies that an increase in Peclet num-
ber will require the enforcement of successive correlations to
ensure better predictions, a previous study (Bolster et al.,
2014) shows that for a very similar setup to the one con-
sidered here, these effects only become important when



Fig. 6. Breakthrough curves for Pe=100 andDa=10 (black dots),Da=100 (magenta plus),Da=1000 (green squares) andDa= 10000 (blue diamonds). Solid lines
correspond to predictions with the Spatial Markov model while symbols correspond to observations from the fully resolved microscale simulations. The upper four
panels show the full BTCs, while the lower panels highlight the early arrivals. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Pe N O(100) for the case of a conservative tracer. In the pres-
ence of reactions, such as is considered here, this restriction
appears tobegreater and the importanceof imposing correlations
in successive jumps is critical to reproducing many perti-
nent features observed in the small scale fully resolved
simulations.



Fig. 7. Breakthrough curves for Pe=1000 andDa=10 (black dots),Da=100 (magenta plus),Da=1000 (green square) andDa= 10000 (blue diamond). Solid lines
correspond to predictionswith the uncorrelatedmodelwhile symbols correspond to observations from the fully resolvedmicroscale simulations. The upper four panels
show the full BTCs, while the lower panels highlight the early arrivals to demonstrate themost significant mismatches. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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While the geometry considered here is incredibly simple, it
and very similar geometries have proven to be valuable case
studies to understand, interpret andmodel transport in porous/
fractured media. As such, while this study by no means
definitely demonstrates the ability of the Spatial Markov
model to upscale reactive transport in the context of a



Fig. 8. Breakthrough curves for Pe=1000 andDa=10 (black dots),Da=100 (magenta plus),Da=1000 (green square) andDa= 10000 (blue diamond). Solid lines
correspond to predictions with the Spatial Markov model while symbols correspond to observations from the fully resolved microscale simulations. The upper four
panels show the full BTCs, while the lower panels highlight the early arrivals. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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heterogeneously distributed degradation rate, it does demon-
strate the promise that such a modeling approach holds and
lays the foundation for future work to test it in more complex
and realistic configurations, where for conservative transport it
has already had significant successes. Additionally, it must be
noted that one of the reasons the Spatial Markov model can



Fig. 9. Totalmass in breakthrough curves at distances x=5L, 10 L, 25 L and 50 L for Pe=100 (top) and Pe=1000 (bottom) and Da=10 (black), 100 (magenta), 1000
(green) and 10,000 (blue).Measuredmass from the high resolutionmicroscale simulations are depictedwith the solid lines, Spatial Markov predictionswith◊, and the
uncorrelated model predictions with •. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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readily be generalized to incorporate the simple type of
reaction considered here is that the reaction rate is linear
with concentration. While reasonable in certain instances,
many reactions of interest are nonlinear and the methods
proposed here cannot be applied without some further effort
and modification. However, by merging the ideas presented
here with recent advances in Lagrangian reactive particle
methods (e.g. Benson andMeerschaert, 2008; Ding et al., 2013;
Paster et al., 2013; Paster et al., 2014), it may be possible to
generalize reactive Spatial Markov methods even further.
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