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Incomplete mixing and reactions in laminar shear flow
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Incomplete mixing of reactive solutes is well known to slow down reaction rates relative to what would be
expected from assuming perfect mixing. In purely diffusive systems, for example, it is known that small initial
fluctuations in reactant concentrations can lead to reactant segregation, which in the long run can reduce global
reaction rates due to poor mixing. In contrast, nonuniform flows can enhance mixing between interacting solutes.
Thus, a natural question arises: Can nonuniform flows sufficiently enhance mixing to restrain incomplete mixing
effects and, if so, under what conditions? We address this question by considering a specific and simple case,
namely, a laminar pure shear reactive flow. Two solution approaches are developed: a Lagrangian random walk
method and a semianalytical solution. The results consistently highlight that if shear effects in the system are
not sufficiently strong, incomplete mixing effects initially similar to purely diffusive systems will occur, slowing
down the overall reaction rate. Then, at some later time, dependent on the strength of the shear, the system will
return to behaving as if it were well mixed, but represented by a reduced effective reaction rate.
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I. INTRODUCTION

Chemical reactions driven by mixing are important pro-
cesses that occur in a wide variety of engineered and natural
flows. Some common examples of practical interest include
atmospheric flows [1], oceanographic flows [2], riverine flows
[3], limnologic flows [4] and industrial reactors [5], to mention
but a few. One of the perhaps most obvious but critical features
to recognize in any reactive system is that in order for reactions
to actually occur, the chemicals involved in the reaction must
physically come into contact with one another. Mixing is the
physical process that enables this contact to occur. In flowing
systems, this is inherently a fluid dynamics problem as flows
can act in such a way as to enhance, or indeed suppress, mixing
and thus chemical reactions.

While it is broadly recognized that nonuniform flows can
enhance mixing, there is increasing evidence that current
models do not adequately characterize these mixing processes,
often overestimating reaction rates relative to what is observed
in field and laboratory experiments [6–13]. This is likely due
to the fundamental difference between the enhanced spreading
and stretching of solutes that nonuniform flows induce, as
quantified, for example, by an effective dispersion coefficient,
and the true degree of mixing that actually occurs [14].
While spreading and mixing are intricately related and indeed
historically the words have been used interchangeably, it is
important to highlight that they are different processes. This is
because spreading may not account for subscale fluctuations
in concentrations that are critical to understanding mixing.
Thus, there is a need for improved models that can accurately
capture the nature of reactive transport. In this work, we argue
that Lagrangian-based approaches are naturally conducive to
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capturing these effects. To understand this issue in greater
detail we focus on the irreversible bimolecular reaction A +
B → P , which can be regarded as the fundamental building
block of more complex reaction chains (see Ref. [15] for a
detailed discussion).

A rich body of literature exists exploring the effects of
incomplete mixing on reactions in purely diffusive systems
[16–21]. Consider the following classical experiment where
a domain is initially filled with equal total amounts of A and
B, such that CA(x,t = 0) = CB(x,t = 0) = C0, where A and
B move by diffusion and react with one another kinetically
with some known rate coefficient k. For this setup, there is
an analytical solution CA(x,t) = CB(x,t) = C0/(1 + kC0t),
which at late times scales like inverse time, or t−1. It is
important to note that this analytical solution relies implicitly
on the assumption that the concentrations are completely
uniform and equal in space, or in other words that they are
always well mixed. If, however, there is some stochastic
fluctuation of the concentration fields around their mean value,
this late-time scaling will break down. For such systems,
it has been shown that the late-time mean concentration of
the species will scale as t−d/4 where d is the number of
spatial dimensions in the system under consideration [18,21].
Stochastic fluctuations are ubiquitous in real systems and so
such breakdowns should perhaps be regarded as the norm
rather than the exception.

Specifically, for such systems, at early times, fluctuations
about the mean concentration are often small enough to be
discarded and the system behaves as is if it were indeed
well mixed. However, due to the fact that reactions consume
mass, as the mean concentrations become smaller, the relative
influence of the fluctuations becomes increasingly important.
Indeed, at late times isolated pockets, or so-called segregated
islands, of each reactive constituent emerge and the reaction
is limited by how quickly reactants can diffuse across the
interfaces of these islands, resulting in the slower t−d/4 scaling
[16–18,21]. This phenomenon often goes by the name of
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Ovchinnikov-Zeldovich segregation and this behavior has
been observed experimentally [19,20].

This problem has also received a great deal of attention in
systems where transport is not by local Fickian diffusion, but
rather by anomalous dispersive transport, including nonlocal in
space superdiffusive systems and nonlocal in time subdiffusive
systems [22–24]. Such nonlocal transport is common in a
broad array of disciplines including transport in porous media
[25–27], streams [28], groundwater systems [29,30], and
biological systems [31], to name a few. In all cases, similar
late-time scalings for the mean concentration that deviate from
the well-mixed t−1 scaling have been predicted and observed.
The specific late-time scaling will depend on the nature of
the transport and the dimensionality of the problem being
considered. However, to our knowledge, this problem has
received limited attention in the context where transport is
by advection and diffusion in a nonuniform velocity field. As
noted above, it is well known that nonuniform velocity fields
can significantly affect the nature of mixing and thus can in
principle strongly impact mixing-driven reactions.

While much focus has been given to mixing in turbulent
flows, it is important to recognize that mixing in nonuniform
laminar flows can also result in very interesting mixing
dynamics [32–38]. In this work, we propose to study this
problem in one of the simplest forms of nonuniform flow,
namely, a pure laminar shear flow. Pure shear flows have
received a great deal of attention in a variety of applications
due to both their simplicity and ability to provide invaluable
physical insight. Okubo [39,40] studied transport in pure shear
flows to better understand solute dispersion in rivers, estuaries,
lakes, and oceans. Novikov [41] used it as a model to study
turbulent dispersion in streams. Others [42–44] highlight it
as an important case in understanding turbulent dispersion.
More recently, it was shown [45] that from purely a mixing
perspective, as quantified by the scalar dissipation rate [46,47]
or dilution index [48], a pure shear flow is incredibly efficient
at mixing. The term hypermixing was used, emphasizing
that the predicted mixing is even faster than conventional
superdiffusion. Reference [49] extended this to more complex
flows using the Okubo-Weiss metric to quantify enhancement
of mixing due to more general locally nonuniform velocity
fields.

The above discussion leads us the ask the following
question: Is mixing in a laminar shear flow sufficient to
overcome incomplete mixing effects on the evolution of mean
concentration in a reactive system or will incomplete mixing
effects still persist? The answer to this question is addressed
in this paper with an application to a nonuniform flow of a
random walk particle tracking method designed for reactive
transport. It was originally developed for purely diffusive
transport [50] and we extend it further. The results of this
paper provide a general understanding of the influence of shear
flows on incomplete mixing, paving the road for more general
nonuniform velocity fields.

The paper is structured as follows. In Sec. II we present
the governing equations for flow, transport, and reaction for
the chosen setup in dimensional and nondimensional forms.
In Sec. III we discuss the initial conditions, focusing on both
deterministic and stochastic initial conditions, which are at
the root of incomplete mixing. In Sec. IV we describe the

Lagrangian random walk particle tracking method for reactive
transport. In Sec. V we present and discuss results obtained
with this method. In Sec. VI we propose a semianalytical
model to interpret observations from Sec. V. We conclude
with a discussion in Sec. VII.

II. GOVERNING EQUATIONS

We consider a bimolecular reactive system that is embedded
in a uniform shear flow. Transport of the species is driven by
a constant diffusion coefficient and advection according to the
uniform shear flow. The two constituents in this system, A and
B, react kinetically and irreversibly with one another, i.e., A +
B → P . At this point, we are not interested in what happens
to the product P , but rather on how A and B are consumed, so
the fate of P is neglected in this work. The flow in the system
is completely independent of the transport, i.e., the flow is not
affected by the concentration of the constituents. For an infinite
two-dimensional space, the governing equation for transport
is the advection-dispersion-reaction equation (ADRE), given
for each of the species i = A,B by

∂Ci

∂t
+ αy

∂Ci

∂x
= ∇ · (D∇Ci) − ri, (1)

where Ci(x,t) is the concentration [mol L−d ], α is the shear
rate [T−1], D is the dispersion coefficient [L2T−1], assumed
constant herein.

The sink term, in our case, is the local rate of reaction, and
is identical for A and B since they are consumed with a 1:1
stoichiometry ratio, i.e.,

rA = rB = r . (2)

We assume the law of mass action prevails for our system,
and write the reaction rate as

r(CA,CB) = kCACB , (3)

where k [Ld mol−1 T−1] is the kinetic rate constant for a given
reaction. Thus, Eq. (1) represents a coupled set.

A. Nondimensional equations

We consider the following dimensionless variables:

C∗ = C/C0, t∗ = kC0t, α∗ = α/(kC0),
(4)

x∗ = x/l, y∗ = y/l,

where l is a characteristic length associated with the initial
fluctuations in concentration (e.g., a correlation length). Using
these nondimensional variables, our governing equation for
transport becomes

∂C∗
i

∂t∗
+ α∗y∗ ∂C∗

i

∂x∗ = 1

Da
∇∗2C∗

i − C∗
AC∗

B, (5)

where Da = kC0l
2

D
is the Damköhler number, which quantifies

the relative importance of reaction to transport by diffusion. In
other words, it quantifies how quickly reactions happen relative
to how quickly diffusion can homogenize a patch of size l.
α∗ is a dimensionless shear rate that quantifies the relative
importance of shear to reaction. For the sake of convenience,
we drop the stars from here on, and all the variables presented
are nondimensional.
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III. INITIAL CONDITIONS

The focus of this work is the emergence of incomplete
mixing of reactants as the system evolves, which is known to
arise due to stochastic fluctuations in the concentration field
[e.g., 18,21–23]. Thus, we focus on the case of a stochastic
initial condition, i.e., the initial concentration comprises a
mean contribution plus a stochastic or noise term. In this case,
the exact concentration at a point is unknown and statistical
information is available instead.

Specifically, we assume that for each of the species A and
B, the stochastic initial concentration field is given by an
average value plus a white noise contribution. Decomposing
the concentration into mean and a perturbation, we write for
i = A,B

Ci(x,t) = Ci(x,t) + C ′
i(x,t), (6)

where C(x,t) is the ensemble mean over all possible realiza-
tions. The perturbation C ′

i has zero mean. The initial condition
for the mean is given in a general manner by

CA(x,t = 0) = CA0(x),
(7)

CB(x,t = 0) = CB0(x).

Assuming that the initial fluctuation term is Gaussian (or
that higher order moments are irrelevant), the initial condition
for the perturbation concentration of species i and j is defined
by the covariance structure

C ′
i(x1,t = 0)C ′

j (x2,t = 0) = μij (x1)δ(x1 − x2), (8)

where μij is the white noise amplitude and δ is Dirac’s delta
function. The white noise or delta-correlated initial condition
is tantamount to assuming a very short range correlation in
the fluctuations. The delta correlation has been shown to be a
good approximation of other short range correlation structures
such as exponential or Gaussian [51,52] and is invoked for
mathematical convenience.

In this work, we assume the system is ergodic and
statistically (space) stationary, so that the mean concentration
and the correlations depend only on relative position. We also
assume that the species have an identical statistical structure,
so that the initial mean concentrations are equal, and are given
(in nondimensional form) by

CA(t = 0) = CB(t = 0) = 1. (9)

Furthermore, we assume that the magnitudes of fluctuation
variances are equal and constant in space,

μAA = μBB = μ, (10)

and assume the species concentration fluctuations are initially
uncorrelated, i.e.,

μAB = 0. (11)

We restrict ourselves to this specific setup for a few reasons.
First, this simple case provides a great deal of physical insight
into the problem at hand. Second, it is straightforward to
implement this set of initial conditions in a particle tracking
algorithm, although more complex structures can readily be
included. Third, a semianalytical approximate solution to this
system, for arbitrary dimension (d = 1,2,3) when shear is

absent (α = 0), is available from previous work [51], and can
be used for comparison with the new results. Additionally, this
approximate solution can, at least qualitatively, be extended to
the shear problem as will be discussed in the following.

IV. NUMERICAL PARTICLE TRACKING SIMULATIONS

In this section, we describe a Monte Carlo based particle
tracking approach to finding numerical solutions for the system
and equations presented so far. The approach is an extension
of previous works [51,53] which were restricted to purely
diffusive transport. Here, we extend the methodology to the
case of uniform shear flow, with the long term goal of
ultimately utilizing it to account for more complex, general
flows.

The fundamental principle behind any particle tracking
numerical method is to represent the concentration field by
a cloud of discrete particles, representing elementary masses
of solute. Time is discretized into finite time steps (not
necessarily equal), and the ADRE is applied using the concept
of operator splitting: in every time step, we first annihilate any
particles that would react as determined by a physically based
probabilistic set of laws, representing reaction in the system;
second, we move all surviving particles in a manner that
represents both advection and diffusion in the system following
classic random walk principles. The annihilation of particles
is determined according to a local reaction probability, which
is made up of two components, one based on the probability
that two particles can collocate, which depends entirely on
transport mechanisms, and the second based on the probability
that reaction occurs given that particles have collocated,
determined entirely by the kinetics of the reaction. The details
are described in the following. Note that in this section we
focus on the evolution of the system within a single time step
�t . Hence, for simplicity, and without loss of generality, we
use t = 0 to denote the beginning of the time step.

A. Advection and diffusion

For the case of a shear flow, consider a numerical particle
that, at the beginning of a time step, is located at x(t = 0) =
x0. The combined effect of shear advection and diffusion is
expressed by a random jump of the particle to a new location
at time t . We define f as the probability density function (PDF)
of the new location, neglecting reaction. By definition, f is the
solution of the advection-diffusion equation

∂f

∂t
+ αy

∂f

∂x
= 1

Da
∇2f, (12)

for natural boundary conditions (i.e., f → 0 and ∇f → 0 as
x → ∞) and initial condition f (x,t = 0) = δ(x − x0). Hence,
f is the fundamental solution of (12). It is given by the
multivariate Gaussian [40,45]

f (x,t ; x0) = 1

(2π )d/2
√

det[κ]
exp

[
−1

2
ξT κ−1ξ

]
(13)

with a covariance matrix given for d = 2 by

κ = κ(t) = 2t

Da

[
1 + (αt)2/3 αt/2

αt/2 1

]
, (14)
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0+ 1 2 4
αt =

FIG. 1. (Color online) Illustration of the temporal evolution of
the spatial PDF (log scale) and the eigenvectors of κ for a passive
particle transported by shear flow.

where

ξ = x − (x0 + αy0t x̂) (15)

is the offset from the mean location, y0 = x0 · ŷ is the initial y

coordinate, and x̂, ŷ are the unit vectors in the x, y directions,
respectively. Isocontours of the distribution are rotated ellipses
with common foci at x0 + αy0t x̂ (see Fig. 1). The principal
axes of the ellipses are aligned with the eigenvectors of
κ , and rotate with time due to shear; one axis is growing
superdiffusively and the other diffusively. Note that when
α → 0, the distribution (13) converges to the 2d axisymmetric
Gaussian (the fundamental solution of the ADE with constant
diffusion). Further details on the implementation of this
method, as well as analytical expressions for the eigenvalues
and eigenvectors κ , are provided in Appendix A.

B. Reaction

Next, based purely on transport, we wish to determine if two
particles that are initially separated at t = 0 will collocate, and
thus potentially react, over the next time step. Consider two
particles, one of species A and the other of species B, that are
are located at xA, xB initially at t = 0. The temporal density of
their probability to collocate over some infinitesimal volume
dx at time t is obtained by the product of their respective
random walk PDFs and dx. Thus, the temporal density of their
probability to collocate in any position in space is given by an
integral over this product,

v =
∫

f (x,t ; xA)f (x,t ; xB)dx, (16)

where integration is taken over the entire space. This expres-
sion is a convolution of two Gaussians, and is itself equal to a
Gaussian with the sum of variances

v(s,t) = 1

2π
√

det[κA + κB]
exp

[
−1

2
sT (κA + κB)−1s

]
, (17)

where s = xA − xB is the distance between the particles at
time t = 0. The convolution in (16) which yields (17) can be
performed in Fourier space via the Faltung theorem [54]. Since
κA = κB = κ we can rewrite (17) as

v(s,t) = Da

8πt
√

1 + (αt)2/12

× exp

{
−Da[|s|2 − sxsyαt + s2

y (αt)2/3]

8t[1 + (αt)2/12]

}
, (18)

where |s| =
√

s2
x + s2

y . We thus see that the collocation
probability density (18) depends on the following parameters:
(1) both components of s, the initial interparticle distance, (2)

the diffusion length scale (2t/Da)1/2, and (3) the characteristic
distance due to shear αt .

Assuming that the pair of A,B particles has survived over
time t (i.e., they have not reacted with other particles), their
probability to react with each other during the infinitesimal
time t ′ ∈ [t,t + dt) is given by

mpv(s,t)dt, (19)

where mp is the nondimensional mass carried by a single
particle, i.e., the number of moles multiplied by l2/C0.
Thus, the probability of survival is given by the conditioned
probability

Ps(t + dt) = Ps(t)[1 − mpv(s,t)dt], (20)

or, in words, the probability they are unreacted at t + dt is
the probability they were unreacted at t and did not react with
each other since then. Hence,

dPs/Ps = −mpv(s,t)dt (21)

and by integration over a time step t , we obtain the overall
reaction probability of the couple during that time step,

Pr (t) = 1 − Ps(t) = 1 − exp

[
−mp

∫ t

0
v(s,t ′) dt ′

]
. (22)

For the degenerate case α = 0, the integral in (22) yields∫ t

0
v(s,t ′) dt ′ = Da

8π
E1

(
Da

8t
|s|2

)
, (23)

where E1 is the exponential integral. Note how this expression
depends only on the absolute value of the interparticle
distance, as the system becomes isotropic when α = 0. For
the general case α 	= 0, Eq. (22) is integrated numerically
(Fig. 2). However, the simplified solution (23) can be useful
for approximating (22) when (αt)2 
 12. Hence, it can be
used if the time steps are small enough (recall that t is the
length of the time step in the framework of this section).

Also, with (23) it is easy to see that if Da
8t

s2 → 0, then the
integral in (22) tends to infinity, and Pr → 1. This comes as
no surprise: when the particles are close by, or when they are
given enough time to diffuse, their colocation probability is
expected to be close to 1. If, on the other hand, t → 0, while
s 	= 0, the collocation probability tends to a delta function in
s, and Pr → 0. Again, this is expected since particles that are
sufficiently far from one another cannot collocate unless they
are given sufficient time to diffuse.

From a practical perspective to reduce numerical costs, the
search for neighbors must be limited to a certain distance
range. We define this range by the ellipse

sT (2κ)−1s = 2a2, (24)

where a > 0 is some predefined constant. Choosing larger a

improves the accuracy of the numerical approach, but has an
increased computational cost; as a rule of thumb, the choice
a = 2 is typically sufficient as any induced error will be
insignificantly small [51]. Note again that when α = 0 the
ellipse converges to a circle of radius a

√
8t/Da.

With this cutoff search distance, the collocation probability
(17) integrates to

η = 1 − e−a2
, (25)
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FIG. 2. (Color online) The integrated nondimensional collocation probability
∫ t

0 v(s,t ′) dt ′ (in log scale) for Da/t = 1 and αt = 0.1,1,10
in (a), (b), (c), respectively.

so the collocation probability needs to be rescaled by the factor
η−1 for consistency to ensure integration over the density to be
unity. Hence, the probability of reaction of a single A particle
during a time step is evaluated by numerical integration of
(22), or by the first order approximation

Pr = η−1mpt

Nnb∑
i=1

v(si ,t), (26)

where Nnb is the number of B neighbors found within the
ellipse. The probability is compared to a random number
generated from a uniform distribution U ∈ [0,1]. If U > Pr ,
the A particle under consideration is annihilated (removed
from the system), and one of the neighboring B particles is
annihilated as well. The choice between neighbors is done
based on their weighted probability of reaction, so that we
randomly choose the B particle based on its relative probability
of reaction. Additionally, if a naı̈ve search is performed to
calculate collocation probabilities between all product pairs in
the system, this can be computationally costly at O(N2), where
N is the number of particles used. To speed up this process,
we use an algorithm from the data mining literature called the
kd tree [55], which accelerates this search to an O(N ln N )
process, providing significant computational savings.

C. Numerical domain and finite size effects

The system we consider is idealized as ergodic and infinite.
Therefore, the total mass in the system is infinite as well. Each
particle represents a finite mass mp. Hence, the number of

particles needed to simulate the system accurately is infinite.
This is clearly unfeasible since the number of particles in a
numerical particle tracking simulation is finite and inherently
constrained by the computational resources. To overcome this
difficulty, we follow the classical approach of simulating the
infinite system over a finite domain with periodic boundary
conditions. At early times of the simulation, the finiteness
of the domain is expected to have a negligible effect on the
results and the domain can be considered infinite. However, at
late times, boundary effects in the numerical simulation will
lead to deviations from this idealization.

Indeed, previous works on purely diffusive transport
[21,23,51] have observed and discussed this effect. For the
case of no shear (α = 0) over a domain of nondimensional size
	d with periodic boundary conditions, the finite size effects
kick in when the typical size of segregated islands grows to
about half of the domain size. This was observed around the
time

tbnd = Da(	/8)2, (27)

which can be thought of as representing the characteristic
time of diffusion of concentration perturbations over the finite
simulation domain. Similar if not more restrictive conditions
will arise when α 	= 0 and will be discussed in greater detail
in the following. In this study, we use a rectangular domain
S : [0,	x] × [0,	y] for the numerical simulation.

D. Implementation of initial conditions

Implementing periodic boundary conditions in a numer-
ical particle tracking method over a rectangular domain is
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straightforward. The initial conditions (9)–(11) were imple-
mented by randomly spreading N0 particles of each species
in the domain S. The number of particles is not arbitrary, but
rather is derived from the initial condition. Let us define the
initial nondimensional density of particles by

ρ0 = N0/(	x	y). (28)

This particle density is inversely proportional to the magnitude
of the initial white noise μ and given by

ρ0 = 1/μ. (29)

This expression is a straightforward extension of the one
derived by Paster et al. [51, Appendix C]. To understand
this result, consider a system where the initial condition for
Ci(x,t = 0) is deterministic, i.e.,

CA(x,t = 0) = CA0(x), CB(x,t = 0) = CB0(x), (30)

such that μ → 0 (zero noise term). By (29), we find ρ0 → ∞.
Hence, even if the domain is finite, an exact representation
of the initial condition (30) necessitates the use an of infinite
number of particles, which is consistent with classical random
walk theory [56]. For such case, a particle tracking algorithm
may be less favorable due the error induced by the finite
number of particles.

In contrast, if we are interested in the case of a noisy or
stochastic initial condition, as is the case with this work, this
method might be regarded as ideal. For such cases, particle
tracking methods require a finite number of particles for an
accurate representation of the initial condition. When the
initial condition contains a considerable noise, the reactive
particle tracking method may be very efficient with regard
to computational resources, due to the small number of
initial particles needed. This may be an advantage over
other numerical methods, such as Monte Carlo simulations
using Eulerian finite difference, volume, or element methods.
Additionally, random walk methods are known to be much
less prone to numerical diffusion, which would lead to greater
mixing and is thus an important factor in mixing-driven
reactions [57].

V. RESULTS

Using the numerical algorithm described in the previous
section, we have performed various simulations to study
the effect of the Dahmköler number (Da) and shear rate
(α) on the evolution of average concentration in the system
(Table I). In Fig. 3, we show representative results for a
specific Dahmköler number, namely Da = 2, spanning a range
of α values (0, 10−4, 10−3, 10−2, 10−1, 1, 10). The figure
also shows two analytical solutions, one corresponding to
the well-mixed case, and an approximate analytical solution
[51] that incorporates noisy initial conditions for α = 0. A
slight discrepancy between the numerical and the approximate
analytical solution for α = 0 is observed. As discussed in
further detail in the following section, this discrepancy is due

TABLE I. Parameters of the numerical simulations. To speed up
runs, the time step size is given by �tj = min{�tmax,�t0(1 + ε)j },
where j is the step number. For all simulations, tbnd = DaN0/64 =
5 × 104, the number of ensemble realizations was Nsim = 8, the
search radius factor was a = 2, and domain size was 	x × 	y =
1 × 4.

Da α N0 �t0 ε �tmax

0 2.5 × 10−3 10−2 50
10−4 2.5 × 10−3 0.01 10
10−3 2.5 × 10−3 0.01 10

2 10−2 6.4 × 106 2.5 × 10−3 0.01 1
10−1 2.5 × 10−3 0.01 1

1 10−3 2.5 × 10−3 0.25
10 2.5 × 10−4 2.5 × 10−3 0.05

0 0.025 0.025 100
10−4 0.025 0.025 100
10−3 0.025 0.025 100

8 10−2 1.6 × 106 0.025 0.025 10
10−1 0.025 0.025 10

1 0.012 0.012 5
10 0.012 0.012 1

to restrictive assumptions involved in developing the analytical
solution, namely, the neglecting of high-order moments of the
concentration fluctuation fields.

A. Pure diffusion: α = 0

First, to elucidate some matters, let us focus on the
previously studied case of pure diffusion and no shear (α = 0).
The mean concentration curve for this case (see Fig. 3) matches
the well-mixed solution at very early times, but clearly diverges
from the well-mixed solution at relatively early times. This is
consistent with the noisy initial condition for concentration,
and has been extensively discussed in previous works (e.g.,
Paster et al. [51] and references therein). For this case, the only
mixing mechanism is diffusion, which strives to homogenize
the concentration field and drive the system to a well-mixed
state. At the same time, reaction occurs in all locations where
A and B coexist, thus annihilating A and B and promoting
the segregation of species, destroying mixing in the system.
Figure 4 depicts snapshots of particle locations at various times
during the course of the simulation. These reveal that at very
early times, A and B particles largely overlap in space and
the system can be regarded as relatively well mixed. At later
times, segregation leads to the formation of the aforementioned
islands of single species, and reactions become restricted to
their boundaries. At times for which island segregation is
clearly visible, the average concentration in the domain scales
with time as t−1/2, in agreement with previous predictions
and observations. As seen in Fig. 4, the total number of
islands decreases with time, and the average size of an island
grows respectively. Islands that contain significant mass of
one species consume neighboring islands with lower mass of
the second species, which in turn disappear from the system.
At very late time, around t � tbnd [see Eq. (27)], the finite
size of the numerical domain starts to affect the simulation.
At this time, the area occupied by a single island reaches
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FIG. 3. (Color online) The evolution of mean concentration with time for Da = 2. The approximate analytical solution for α = 0 and the
well-mixed solution are also plotted. All parameters are nondimensional.

about half the domain area and the infinite-domain behavior
breaks down. As noted above, for a detailed discussion on this
see [51].

B. Diffusion and shear: α �= 0

For the cases where shear effects do exist (i.e., α 	= 0),
we observe a different behavior from the purely diffusive
case, highlighting the role that shear plays in this system.
Up to four discernible time regime scalings in average
concentration emerge, which will be discussed in detail. First,
we qualitatively describe the results.

At very early times, in all cases, there is a close agreement
between the zero shear and finite shear simulations; at these
earliest times diffusion dominates over shear effects and the
latter are not discernible in the mean behavior of the system.
At these times, the solutions break away from the well-mixed
case and, other than for the highest simulated shear cases, all
display the t−1/2 regime. In the largest shear case (α = 10),
shear effects are strong enough to suppress this regime and the
solution closely follows the well-mixed prediction, indicating
that large shear can indeed suppress incomplete mixing effects.
Then, at some α-dependent time, the solutions break away
from this scaling and shift to a faster scaling of t−1. The
larger α, the earlier this transition occurs. During this time
the concentration evolves parallel to the well-mixed solution,
but at higher overall concentrations. Then again at some α-
dependent value the solutions break away from this scaling
and transition to another slower scaling of t−1/4. This is a finite
size effect associated with the horizontal size of the domain,
which is unavoidable in a numerical study and can be explained

theoretically (see Sec. VI), but is not expected in an infinite
domain. All solutions collapse together during this regime,
with deviations for different α values well within the standard
deviation of the Monte Carlo simulation. Not surprisingly, we
observed that increasing the number of realizations to calculate
the average concentrations reduced the magnitude of these
deviations. Since we are primarily interested in infinite-domain
effects, we will focus on the regimes before the shear- and
diffusion-induced boundary effects take place. Nonetheless,
the latter warrant some further discussion.

Figure 4 shows particle locations at various times during
the simulations for the Da = 2 case for multiple values of
α. What is interesting to note is that at early times when the
mean concentrations still match the α = 0 case (see Fig. 3), the
generic shapes of the islands look very similar to the α = 0
case regardless of the specific value of α. However, as the
breakaway from this regime occurs to the faster t−1 scaling,
a noticeable difference appears, whereby the islands take on a
different shape. At these times the islands are more elongated
in one direction, which is tilted relative to the natural y axis,
reflecting the presence of shear in the system and the fact
that there is a superdiffusive growth along one axis and a
diffusive one along the other. This is directly analogous to the
fundamental solution of a point source in a diffusive shear flow
in Eq. (13). It is at these times that the effect of the shear flow
is important in the system.

Next, during the t−1/4 regime (the finite size effect scaling),
all islands now span the full horizontal extent of the domain.
In essence, they have tilted all the way such that the superdif-
fusively growing axis is now closely aligned with the x axis.
Reactions are now mostly limited by vertical diffusion across
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α = 0

α = 10−3

α = 10−1

x

y

FIG. 4. (Color online) Evolution in time of some representative realizations with various shear rates, for Da = 2. Note how the islands
form initially with irregular shape. Later on, for α > 0, they tilt and become elongated due to the shear, and finally lie flat perpendicular to the
x axis. Compare with Fig. 3. Note that, in the above figures, particle numbers were reduced (randomly) to ∼103 to allow a good visualization
of the results, and only the bottom half of the domain is shown.

islands and the system behaves as if it were one dimensional,
which is consistent with an incomplete mixing scaling of t−d/4

with d, the number of spatial dimensions, equal to one. This
is a finite size effect associated with the time it takes for an
island to span the horizontal width of the domain, unavoidable
in a finite size numerical simulation, but not expected in an
infinite domain (see the following section and Appendix B for
more discussion and explanation on the matter).

Finally, at tbnd [see Eq. (27)] another finite size effect, the
same as in the cases with no shear, kicks in. At this point,
the islands occupy half the domain; there is no longer any
space for islands to grow as they would in an infinite domain,
and a complete breakdown occurs. It is interesting to note
that at the latest time in all the shear flow cases the islands are
horizontally elongated, again reflecting the role of shear, while
for the pure diffusion case it is equiprobable that they could
be vertically or horizontally aligned, as there is no preferential
direction for growth in a purely diffusive system.

Figure 5 shows the mean concentration against time for
the same Da = 2 as well as Da = 8. This figure serves to
highlight that qualitatively the behavior for both Da is very
similar and all the observations and scalings discussed above
still emerge. However, the breakaways from the well-mixed
behavior and transitions between each of these scaling regimes
occur at different times, indicating a Da-dependent behavior
also. The emergence of these distinct time scalings is key
to understanding incomplete mixing effects on chemical

reactions, but at this point it is difficult to truly quantify
these scalings from these observations alone. In the following
(Sec. VI), the results will be interpreted using a semianalytical
model that enables a more mechanistic explanation of each
regime.

VI. INTERPRETATION OF SIMULATION RESULTS:
A SEMIANALYTICAL CLOSURE

In this section, we present a semianalytical solution, based
on methods from previous works that look at purely diffusive
transport, to explain each of the time scaling regimes for
mean concentration that were observed in Sec. V. This
semianalytical approach is based on a closure argument.
Similar closures have been invoked in many previous studies,
but it should be noted that it is known to not be exact
[18,21–23]. Rather, it enables one to predict the emergent
scalings with time of mean concentrations, but not the exact
values of mean concentration or time when these occur. Even in
purely diffusive cases it is unable to match observations exactly
without some empirical correction. These discrepancies have
been studied and explained in detail by Paster et al. [51]. This
is due to a problematic assumption behind the derivation of the
closure, discussed in the following. Given these well-known
limitations, our objective here is not to match exactly the
observations from the numerical simulations, but to explore
the emergent scalings with such a closure.
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FIG. 5. (Color online) Same as Fig. 3 with additional solutions for Da = 8. The thin gray lines in the background correspond to the results
for Da = 2.

A. Closure problem for mean concentrations

Averaging over Eqs. (1)–(3) it can readily be shown that the
mean concentration of the reactants in this system will evolve
based on the following ordinary differential equations:

dCA(t)

dt
= dCB(t)

dt
= −CA

2 − C ′
AC ′

B. (31)

Here, we have used the physical requirement that CA(t) =
CB(t) at all times since the initial condition is CA(t = 0) =
CB(t = 0) and the reaction stoichiometry is 1:1. When fluctu-
ation concentrations are small relative to mean concentrations,
the second term on the right hand side of (31) will be negligible
and the system will evolve as is if it were well mixed.
However, when the fluctuations are not small relative to mean
concentrations this term plays an important role, changing the
evolution of the system in a meaningful manner. This presents
a closure problem as it requires a governing equation or model
for the C ′

AC ′
B term.

To close this problem, we rely on previous works in
diffusive and superdiffusive systems, where using the method
of moments it has been shown that a reasonable closure is to
assume

C ′
AC ′

B = −χG(x = xpeak,t), (32)

where G is the Green’s function for conservative transport in
the specified system, xpeak is the location of the peak of the
Green’s function, and χ is a constant. The formal derivation of
closure (32) can be found in Refs. [21,23,58], where exact
expressions for χ are developed. Similar closures without

formal derivation have been proposed [18,22]. However, it
is important to note that it relies on the assumption that
moments higher than third order (i.e., terms that consist of
products of three fluctuation concentrations) are negligible.
While this is a standard assumption in many closure problems
it is inaccurate as highlighted by Paster et al. [51], who showed
that in diffusive systems the semianalytical solution and high
resolution numerical solutions, while qualitatively similar in
the late-time scaling, will behave differently. Indeed, using the
“exact” values predicted by neglecting higher order moments
[21,23] can in some instances yield unphysical results (e.g.,
creating rather than destroying mass of reactants when χ is too
large). This mismatch is reconciled by demonstrating that third
and higher order moments are in fact not negligible, but can
have similar structure to second order moments, manifesting as
a different effective value of χ [51]. This justifies the structure
of closure (32), but not the specific value of χ predicted. Thus,
for now, we keep χ as a free (constant) parameter in our
closure.

B. Green’s function for pure shear flow

The Green’s function for transport in a pure shear flow,
within our dimensionless framework, satisfies the following
governing equation:

∂G

∂t
+ αy

∂G

∂x
= 1

Da
∇2G (33)

with natural boundary conditions at infinity and initial
condition

G(x,t = 0) = δ(x − x0) , (34)
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in full analogy with the problem posed by (12), whose solution
is given by (13). Thus,

G(x = xpeak,t) = 1

2π
√

det[κ]
= Da

2πt
√

4 + (αt)2/3
. (35)

Perhaps most notable in this solution is that for small α or small
times the leading order behavior of G(x = xpeak,t) scales like
t−1, but at sufficiently large times, when the α-dependent term
dominates in the denominator, the leading behavior scales like
t−2, which reflects the hypermixing regime alluded to earlier,
where the plume spreads and the concentration peak decreases
superdiffusively.

C. Solutions with the closure

With the proposed closure (32) and (35), our governing
equation for the mean concentrations of the reactants (31)
becomes

dCA(t)

dt
= −CA

2 + χDa

2πt
√

4 + (αt)2/3
. (36)

While we are not aware of a closed form analytical solution
to this equation for α 	= 0, it is straightforward to integrate it
numerically. Additionally, some useful asymptotic arguments
can be made to understand how the solution evolves in time.
These are discussed in the following subsection. Then, to
show the full emergent behavior and verify our asymptotic
arguments, we present numerical solutions of this equation.
Note that for α = 0, Eq. (36) is a Riccati equation whose
solution can be expressed in terms of Bessel functions [21,23].

Early times. At early times, if the background fluctuations
in concentration are small relative to mean concentration, we
expect the dominant balance in Eq. (36) to be between the term
on the left hand side and the first term on the right hand side.
In this case, the equation can be solved as

CA(t) = 1

1 + t
(37)

which is the solution for the well-mixed system.
Late times. As the concentrations deplete, the term dCA/dt

in Eq. (36) becomes negligible compared to the other terms
in the equation. Then, the dominant balance in the equation
shifts and becomes a balance between the two terms on the
right hand side. Thus,

CA =
(

Daχ

2πt
√

4 + (αt)2/3

) 1
2

=
(

Daχ

4π

) 1
2

(t2 + α2t4/12)−
1
4 . (38)

Late-time scaling 1. Now, if at these times t2  α2t4/12,
or t <

√
12/α, then to leading order the concentration will

decrease as CA ∼ t−1/2, which is the same scaling one would
obtain for a purely diffusive system at late times in two
dimensions. Note that for large values of α, this intermediate
condition is not necessarily met since it may be violated

when the incomplete mixing effects become important. Indeed,
for the α = 10 cases presented in Fig. 5, this scaling never
emerges.

Late-time scaling 2. At larger times when α2t4/12  t2, or
t >

√
12/α, the concentration will scale as CA ∼ t−1, which

is the same scaling as if the system were well mixed. This
suggests that the effect of a pure shear flow can indeed be
strong enough to overcome the effects of incomplete mixing.
However, the overall concentrations in the system could be
considerably larger than the purely well-mixed case, due to
the intermediate CA ∼ t−1/2 regime.

In a well-mixed system, the solution will evolve as 1/(1 +
t), which at late times approaches t−1. Thus, we can define an
asymptotic late-time retardation factor

Rasy =
(

2πα√
3Daχ

) 1
2

, (39)

such that the concentration converges to (Rasyt)−1, i.e., the
influence of shear is to return the system to behaving in a
manner reflective of perfect mixing, but at a later time. This
is equivalent to having an effective (retarded) reaction rate
keff = k/Rasy. While the notion of an effective reaction rate at
these late times is useful, note that it should only be applied at
late times when t >

√
12/α.

Numerical solutions of semianalytical equation

In this section, we solve Eq. (36) numerically, using the
numerical ordinary differential equation solver ODE23 available
in MATLAB. From (36) it is evident that CA(t) is a function of
time depending on Daχ and α. Results varying and showing
the respective influence of these are shown in Figs. 6 and 7.

In Fig. 6, we consider fixed Daχ and vary α over several
orders of magnitude to demonstrate the influence of shear. In all
cases at very early times we observe close agreement between
the α = 0 incomplete mixing solution and the solutions with

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

t

C̄

Perfect Mixing
α=0
α=1
α=1
α=1
α=1

α=1
α=10

t−1

t−1/2

FIG. 6. (Color online) Numerical solution of (36) for various α,
with fixed Daχ = 5 × 10−1. At late times, concentration scales like
t−1/2; at even later times, if α 	= 0, it scales like t−1. The value of α

affects the time of transition between each of the scaling regimes.
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C̄ χ

χ
χ
χ

FIG. 7. (Color online) Numerical solution of (36) for various
Daχ . In this figure, Daχ is varied to show how it affects the transition
between each of the scaling regimes. The solid lines correspond to
the equivalent case with no shear, i.e., α = 0, and the dashed lines to
α = 10−2.

shear. Then, again in all cases the solutions break away
from this to a faster t−1 scaling as anticipated from the
asymptotic arguments presented above. Larger α means an
earlier breakaway to this faster regime. Note that the α = 10
case never seems to follow the intermediate t−1/2 regime,
consistent with the idea that this regime need not occur if
the conditions discussed above are not met.

In Fig. 7, we consider fixed α and vary Daχ . In this figure
the solutions for each Daχ combination and α = 0 are also
shown. Raising Daχ triggers incomplete mixing effects at
earlier times. Larger χ suggests larger noise in the initial
condition, while larger Da means higher ratio of reaction
to diffusion. When the product is larger, this means that
fluctuations in the mean concentration will play an important
role at earlier times. The effect of shear is to return from the
t−1/2 to a t−1 scaling. This is clearly seen for all cases and
seems to occur at the same time, independent of Daχ , which
is again consistent with the arguments in the previous section
since this transition is determined solely by the value of α.

For both Figs. 6 and 7, we do not observe the late-time t−1/4

scalings observed in the numerical simulations. As argued
before, this scaling is a boundary effect due to the horizontal
extent of the numerical domain, which an infinite-domain
solution cannot reproduce. Since our primary interest here is
the influence of the initial conditions on the late-time scaling
of mean concentration in an infinite domain, we do not focus
on the t−1/4 scaling here. However, to demonstrate that it is
truly a finite size effect associated with the limited horizontal
extent of the domain, we extend the current closure to include
finite boundary effect in Appendix B, which consistently
demonstrates this behavior.

VII. CONCLUSIONS

In this work, we have studied mixing-limited reactions in
a laminar pure shear flow to address the question of whether
shear effects can overcome the effects of incomplete mixing on

reactions. We have considered a simple spatial system, initially
filled with equal amounts of two reactants A and B subjected
to a background shear flow. The average concentrations of A

and B are initially the same, but there are also background
stochastic fluctuations in the concentrations. These can lead to
long term deviations from well-mixed behaviors due to spatial
segregation of the reactants, which can form isolated islands
of individual reactants where reactions are limited to the island
interfaces.

To study this system, we adapted a Lagrangian numer-
ical particle-based random walk model, built originally to
study mixing-driven bimolecular reactions in purely diffusive
systems, to the case with a pure shear flow with the long
term goal of developing it for more general nonuniform
flows. Additionally, we studied the system theoretically by
developing a semianalytical solution approach by proposing
a simple closure argument. The results of the two approaches
are qualitatively analogous in that the mean concentrations of
reactants over time scale with the same power laws. An exact
quantitative match, however, is not obtained; it is well known
from previous work on diffusive transport that such closures
are not exact, but that they can match emergent scalings in
mean concentrations, which we demonstrate is also true for
the case with shear considered here.

With both methods, we observed the following behaviors.
At early times, when mean concentrations are much larger
than background fluctuations, the system behaves as it if were
well mixed. Then, when the fluctuations become comparable
in size to the mean concentrations, and the domain becomes
segregated, incomplete mixing slows down the reactions.
Thus, the mean concentrations in the system evolve with
a slower characteristic temporal scaling, consistent with a
diffusion-limited case where shear is absent. Then, at later
times when shear effects begin to dominate, the system
returns to behaving in a manner similar to a perfectly mixed
system, but described by an overall lower effective reaction
rate constant. If shear is sufficiently strong, the diffusivelike
incomplete mixing regime never emerges and the system
behaves as well mixed at all times. It is important to note
that this does not mean that the system is actually well mixed
as segregated islands still occur, but rather that the mixing
associated with the shear flow is sufficiently fast to result in a
scaling analogous to a well-mixed system.

The system is characterized by two dimensionless num-
bers. Da is a Damköhler number that quantifies the relative
magnitude of reaction time scales to diffusion time scales.
Large Da means that reactions happen more quickly than
diffusion can homogenize any background fluctuations; thus,
systems with larger Da will amplify initial fluctuations and
incomplete mixing patterns can play an important role at late
times. Likewise, when Da is small, diffusion can homogenize
fluctuations more quickly and the system will behave as
better mixed. The second dimensionless number is α, a
dimensionless shear rate that quantifies relative influence of
shear to reaction. The Damköhler influences the onset time of
incomplete mixing, while α controls the onset of a return to
well-mixed type scaling.

A key take home message of this work is that, while a
pure shear flow can lead to a behavior that is consistent
with a well-mixed system, if the nature and evolution of
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incomplete mixing in the system is not adequately accounted
for, then predictions of reactant concentrations, particularly at
late times, can be off by as much as orders of magnitude. In
contrast, if incomplete mixing is accounted for, more realistic
predictions can be obtained.
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APPENDIX A: EXPRESSIONS FOR THE EIGENVALUES
AND EIGENVECTORS OF κ

The eigenvalues of κ , the covariance matrix, are given by

λ1,2 = 1
2 {Tr(κ) ±

√
[Tr(κ)]2 − 4 det κ}, (A1)

where

Tr(κ) = κ11 + κ22 = 4t

Da

[
1 + 1

6
α2t2

]
(A2)

is the trace of κ and

det κ = κ11κ22 − κ2
12 = 4t2

Da2

[
1 + 1

12
α2t2

]
. (A3)

Substituting (A2) and (A3) into (A1) one finds

λ1,2 = 2t

Da

{
1 ±

[
1

2
αt

√
1 + 1

9
(αt)2

]
+ 1

6
α2t2

}
. (A4)

The eigenvectors, in turn, are aligned with

v′
1,2 =

[
1

− 1
3αt ±

√
1 + 1

9 (αt)2

]
(A5)

and the normalized unit vectors v1,2 are readily obtained by
normalization of v′

1,2.
When αt 
 1, the eigenvectors are inclined at about ±45◦

relative to the x̂ axis. For larger αt , the eigenvectors tilt
clockwise (see Fig. 1), and for αt  1, they tend to align with
x̂ and −ŷ or, more precisely, with [1,3/(2αt)] and (1,− 2

3αt).
In practice, the new location of a particle can be obtained

by translation of the x coordinate of the particle by αy0t , and a
random walk in two dimensions with jumps along the rotated
eigenvectors of κ with magnitudes

x1 = ξ1

√
λ1,

(A6)
x2 = ξ2

√
λ2,

where xi is the walk length in the direction of the ith
eigenvector, and ξi is a random number, generated from a

normal distribution with zero mean and unit variance. Hence,
the new location is given by

x = x0 + αy0t +
d∑

i=1

(vi · x̂)xi,

(A7)

y = y0 +
d∑

i=1

(vi · ŷ)xi.

APPENDIX B: DOMAIN BOUNDARY EFFECTS

As discussed in Sec. VI, we wish to demonstrate that
the t−1/4 scaling can be attributed to a boundary effect.
Specifically, we will argue here that this scaling is associated
with finite extent of the horizontal boundaries of the domain.
As shown in Eq. (32), the evolution of the mean concentration
depends on the peak of the Green’s function for conservative
transport. For a finite periodic domain this can be be calculated
by the method of images

G(x = xpeak,t) =
∞∑

n=−∞

1

(2π )d/2
√

det[κ]
exp

[
−1

2
ξT
n κ−1ξn

]
,

(B1)

where

ξn = (n	x,0) (B2)

and 	x is the horizontal length of the domain. In essence, this
solution adds every contribution from point plumes located at
equidistant intervals of 	x along the x axis at y = 0 and sums
their contribution to the point x = 0, which is where the peak
of the Green’s function for a point source located initially at
(x,y) = (0,0) will occur. It is convenient to take this point as
one does not have to account for advection-induced drift in
the peak location, but the result is independent of this choice.
We have

G(x = xpeak,t) = Da

4πt
√

1 + α2t2/12

×
∞∑

n=−∞
exp

[
− Da(n	x)2

4t(1 + α2t2/12)

]
(B3)

which at late times converges to

G(x = xpeak,t) =
√

3

2π

Da

|α|t2

∞∑
n=−∞

exp

[
−3Da(n	x)2

α2t3

]
.

(B4)

The term outside of the summation scales like t−2, as for
the infinite-domain case. As t3  3Da	2

x/α
2 when the

boundary effects become important, the infinite sum can be
approximated by an integral which converges to√

π

3Da

|α|
	x

t3/2 . (B5)

Thus, the Green’s function converges to

G(x = xpeak,t → ∞) = 1

2

√
Da

π

1

	x

t−1/2 . (B6)
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FIG. 8. (Color online) Numerical solution for the average con-
centration using the finite-domain Green’s function in Eq. (B1)
for various α, Da = 10, and χ = 0.01. In this figure, α is varied
to show how it affects the transition between each of the scaling
regimes. Note the collapse of all late-time scalings on to the same

line Ci(t) =
√

χ

2	x
( Da

π
)
1/4

t−1/4, in agreement with observations from

numerical simulations.

Hence, the combined effect on the scaling of the peak of the
Green’s function is

G(x = xpeak,t) ∼ t−1/2. (B7)

Since at late times our dominant balance argument indicates
that Ci = √

χG(x = xpeak,t), once the horizontal boundary
effects are felt, the mean concentrations will converge to

Ci(t) = √
χG(xpeak,t) =

√
χ

2	x

(
Da

π

)1/4

t−1/4 (B8)

which is independent of the value of α, and scales like t−1/4.
These results are in agreement with the observations in the
particle tracking simulations. In Fig. 8, we plot the evolution
of the average concentration over time by solving Eqs. (31)
and (32) numerically, using the finite-domain Green’s function
in (B3), instead of its infinite-domain counterpart.

The results in the figure are very similar to those observed
in the numerical simulations, particularly in that at late times
all solutions for α 	= 0 collapse on to the same curve. This
scaling can also be interpreted physically as a boundary effect
as follows. At the relevant late times, the single-reactant islands
span the full width of the domain and the system essentially
becomes one dimensional. The late-time incomplete-mixing
scaling is known to behave as t−d/4, which matches our
findings [18]. This again demonstrates the utility of the simple
proposed closure in interpreting the results observed in the
numerical simulations. As a cautionary note, we would again
like to highlight that the proposed closure is not exact; the good
agreement with simulations is promising, but further work is
required to refine it rigorously.
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