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Power law tails, commonly observed in solute breakthrough curves, are notoriously difficult to measure
with confidence as they typically occur at low concentrations. This leads us to ask if other signatures of
anomalous transport can be sought. We develop a general stochastic transport framework and derive
an asymptotic relation between the tail scaling of a breakthrough curve for a conservative tracer at a fixed
downstream position and the scaling of the peak concentration of breakthrough curves as a function of
downstream position, demonstrating that they provide equivalent information. We then quantify the rele-
vant spatiotemporal scales for the emergence of this asymptotic regime, where the relationship holds, and
validate our results in the context of a very simple model that represents transport in an idealized river.
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1. Introduction

Rivers are the backbone of environmental flows. Distilled rain
water acquires dissolved solutes and suspended particulates as it
travels on hill-slopes. This water discharges into the river network,
where it travels over considerable distances as rivers link
landscapes over continental scales [31]. Rivers also act as filters
by processing and transforming the load they carry, influencing
the biogeochemistry of downstream water bodies [35]. Thus,
understanding the processes responsible for the physical translo-
cation and the biogeochemical transformations of upstream inputs
to downstream outputs is critical to scientists, stakeholders and
decision makers.

Streams and rivers are complex, heterogeneous systems, with
fast surface flow transporting substances quickly in the main
channel and slow boundary layer and subsurface flow retaining
substances for potentially long periods of time. This broad separa-
tion of velocities and associated time scales leads to anomalous
transport, which cannot be adequately described with traditional
one-dimensional Fickian advection dispersion models [33]. The
trapping of solutes in a river’s bed-sediment leads to heavy-tailed
residence times which manifest as power law tails in experimental
breakthrough curves (BTCs) [25]. These heavy tailed BTCs demon-
strate long-term retention of solutes in rivers, which is particularly
important for the many biogeochemical processes that occur in the
slow regions near or inside the river-bed [6,16,26,34].

In traditional tracer tests, a pulse (or drip) of tracer is released
and its concentration over time is measured at some downstream
location(s) to obtain BTCs. The mass of stream-borne dissolved
solutes entering the bed is often only a small fraction of the total
mass and it is further diluted upon return to the open channel.
The signals associated with tracers that have traveled through
the bed therefore appear at very low concentrations in measured
BTCs, often orders of magnitude below peak concentrations [21].
This poses a significant experimental challenge as reliable and suf-
ficiently sensitive measurements can be difficult to obtain. Typical
methods based on electric conductivity resolve only 2 to 3 orders
of magnitude, while fluorescent dies can resolve over 4 orders of
magnitude. Even though isotopic tracers can be very sensitive, up
to 6 orders of magnitude for stable isotopes and 8 or 9 for radioac-
tive tracers, they are seldom used and most experiments only
resolve relatively short timescales [14,40]. Conversely, the peak
concentration of a BTC from a pulse injection is a reliable measure-
ment, because it is typically much larger in magnitude. The change
in peak concentration with downstream distance could therefore
provide reliable evidence of anomalous transport characteristics.

Any apparent mass loss in the BTC of a conservative tracer must
have been retained during transport and should eventually leak
back to the main flow. This would be true for example in flumes,
or rivers on bedrock without connection to a regional aquifer. Even
when there are gains and losses through groundwater exchange,
this concept remains valid so long as a proper mass balance is
enforced [17]. The mass lost from the BTC compared to the mass
actually injected upstream (ignoring the flowpaths bypassing the
sampling location) should thus reappear as a tail if the instruments
have sufficient sensitivity and sampling occurs over sufficiently
long times. We argue that a dynamical relationship therefore exists
between the bulk of the solute, which is transported directly by the
water column in the river, and the solute mass that reenters the
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water column after being retained in the sediment bed. If we con-
sider a BTC measured at a fixed location, the fraction of solute that
has spent a considerable time in the sediment bed will define the
long-time tailing behavior. Since the mass recovered in the tail
was ‘‘lost’’ from the main channel flow, one should expect an
equivalent signal missing from the main pulse, which in turn
should also appear as a faster than expected decay in the peak of
the BTC downstream [4]. Thus, if we consider multiple BTCs mea-
sured at different downstream positions, we may ask the following
question: Given the behavior of the peak value of the BTCs at mul-
tiple positions, can we infer the tailing properties of a single BTC at
a fixed position? This idea is illustrated in Fig. 1. A relationship of
this type would allow one to infer details about the solute trans-
port occurring in the sediment bed from measurements of the bulk
mass transported in the water column. This would provide an
alternative method to assess the behavior of BTC tails through
measurements of peak concentrations.

The present work is structured as follows. Section 2 presents
our model: we derive a general late-time relation between the
scaling of the tail of a BTC for a conservative tracer at a fixed down-
stream position and the scaling of the BTC peak as a function of
downstream position. Section 3 is dedicated to illustrating the gen-
eral results of Section 2 in a concrete scenario, so as to clarify the
roles of the underlying physical processes. For this purpose, in Sec-
tion 3.1 we construct a very simple conceptual model for river
transport, which is deliberately chosen to be simple, yet complex
enough to demonstrate the desired behaviors. We then determine
the relevant spatiotemporal scales for the onset of the asymptotic
scaling behavior in the context of this model, and also discuss the
pre-asymptotic regime. We validate our results using numerical
particle tracking simulations in Section 3.2. An overall discussion
is presented in Section 4.
2. Asymptotic behavior of tail and peak scaling

In order to address the question of the relationship between
peak and tail scaling in BTCs, it is necessary to describe solute
transport in a sufficiently general framework that allows the
Fig. 1. Given the behavior of the peak value of the BTCs measured at multiple
downstream positions (decay exponent b), can we infer the tailing properties in
time of a single BTC at a fixed position (decay exponent d)? Given a number of
stations positioned at different downstream positions along a river or stream (left
panel), the temporal tail scaling at each position is expected to follow some power
law scaling t�d at late times (top right panel). We ask the question of whether this
behavior has a discernible signature in the peak decay as a function of downstream
position, where we expect some asymptotic power law scaling x�b (bottom right
panel).
relationship between retention in the sediment bed and transport
in the water column to come to light. Particle-based random walk
methods, whether from a theoretical or numerical (particle track-
ing) perspective, have been used extensively to represent solute
transport in flows across a diverse range of hydrologically relevant
flows [27,37]. In particular, the related idea of subordination has
been used to derive results on peak, tail and moment properties
of BTCs for solute transport in heterogeneous porous media [5].
The basic premise of particle-based methods is to discretize the
solute plume into a discrete number of individual particles, each
of which then move based on probabilistic rules that aim to cap-
ture microscopic and macroscopic processes of the system of inter-
est in an effective manner. It is important to note that these
pseudo-particles are abstract theoretical (or numerical) devices
and do not aim to represent actual individual solute particles
[10,15]. They are characterized by effective properties that depend
on the specific solute, flow and background medium. These parti-
cles are tracked as they move due to advection by the background
flow and dispersion according to an appropriate stochastic process
representing the dispersive properties of the solute in a particular
medium. From a numerical standpoint, particle tracking methods
have the benefit of being essentially free of numerical dispersion
[13]. From both the numerical and theoretical point of view, these
methods provide a very flexible framework to represent transport
phenomena, ranging from classical (Gaussian) advective–disper-
sive transport [28] to more general processes [8,9]. The present
work builds on this type of approach to explore peak and tail scal-
ing properties in the context of river and stream transport. Impor-
tantly, these methods take into account stochastic properties in a
natural fashion. Furthermore, they allow us to derive our results
without the necessity of imposing overly restrictive assumptions
on the nature of the transport, and they can thus be applied to a
variety of natural systems.

2.1. Theoretical framework

In classical random walk approaches, time is discretized and all
particles move over a fixed time step according to specific stochas-
tic transport process (e.g. Brownian motion [36], Fickian dispersion
[37]). For our theoretical description, we adopt an alternative view
often called the continuous time random walk [9] whereby we fix a
specified spatial distance along the downstream dimension rather
than fixing the time step. We then ask: what is the probability that
a particle takes a certain amount of time to traverse this fixed
length? In this description, the randomness in the movement of
the particles is encoded in the density of waiting times needed to
traverse this fixed length. For example, when modeling river trans-
port, a particle that travels through the water column will take a
much shorter time to travel a fixed distance than one that is
retained in the sediment bed and later released back into the main
channel. Similar approaches, where a random process is modified
by some waiting time distribution that characterizes an inactive
or immobile phase, can be found in [5,8], which rely more explic-
itly on the related concept of subordination. An overview of the
related approaches of fractional advection–dispersion, subordina-
tion and continuous time random walks can be found in [33]. To
our knowledge, the approach presented here is new in the context
of river and stream solute transport and provides a clear picture of
the physical processes and assumptions involved.

Let us formalize our ideas. We wish to describe the motion of a
particle of solute undertaking random motion starting from a
known position x0 at time t0. Let x be position downstream, and
start by fixing a length l. Assuming that we are interested in
length scales over which the movement of a particle is indepen-
dent of previous history, we can describe the motion of our
particle by:



T. Aquino et al. / Advances in Water Resources 78 (2015) 1–8 3
xiþ1 ¼ xi þ l;

tiþ1 ¼ ti þ siðlÞ;

�
ð1Þ

where the random time increments siðlÞ are independent and iden-
tically distributed (i.i.d.). We denote their common density by
psð�; lÞ, where l is our fixed characteristic jump length. This process
should be interpreted in the following way. The ith occurrence for a
particle to travel a distance l downstream takes a time described by
a random variable si, which depends only on the jump length l.
Since the time increments are assumed i.i.d., psð�; lÞ is the first pas-
sage time density for a particle starting from position x ¼ 0 to reach
x ¼ l. In this model, all the particles are assumed identical and inde-
pendent (i.e., they do not interact with each other). Again, alterna-
tive descriptions exist for this system, such as the more classical
approach implemented in the particle tracking scheme discussed
in Section 3.2, or models that include correlation effects between
successive particle jumps [11,18,29,30]. However, the current
description provides a useful framework for deriving the analytical
results that will be discussed in this section.

Consider the process defined by (1). Regardless of the particular
path taken by a solute particle, the time it takes to reach n times
the characteristic length l downstream for the first time is the
sum of n independent random variables, each distributed accord-
ing to psð�; lÞ. Since the density of the sum of independent random
variables is the convolution of the variables’ densities [22], we can
write for the random time it takes a particle to reach the down-
stream position x ¼ nl:

tfpðxÞ ¼
Xn

i¼1

siðlÞ � p�ns ð�; x=nÞ; ð2Þ

where p�n denotes the convolution of p with itself n times, and Y � p
denotes that the random variable Y is distributed according to the
probability density p.

Now if the waiting time densities are determined by the same
physical processes for arbitrarily small scales, then up to rescaling
and centering the p�ns ð�; lÞ are the same. In other words, for two dif-
ferent values of n1 and n2, we can shift and rescale x by two con-
stants a and b, such that p�n1

s ðx; lÞ ¼ p�n2
s ðaxþ b; lÞ; the densities

represent the same physics as manifesting at different scales.
Recall from the Central Limit Theorem that a large number of
finite-variance independent random variables sum to a random
variable with a Gaussian density. This is in essence the foundation
of Fickian diffusion/dispersion models [36]. In the same manner, by
the Generalized Central Limit Theorems, the sum of independent
random variables with infinite variance resulting from heavy tails
(i.e., exhibiting slower-than-exponential decay, as power laws with
decay exponents between 0 and 2) converge to a family of densi-
ties called stable densities (see e.g. [22,32]). Under these condi-
tions, the increments of the stochastic process tfp (representing
the random time it takes to reach the downstream position x) have
a stable density, and tfp is called a stable process. Furthermore,
assuming the heavy tails of the waiting times are due to heavy-
tailed retention times in the sediment bed, the stable density will
exhibit that same tailing behavior for large time. The main sig-
nificance of the density of the first passage time tfpðxÞ for BTCs will
become apparent in the following section.

Naturally, for every physical system there must exist a scale
below which these assumptions do not hold. However, consider
l0, a spatial averaging scale, large enough that all physically rele-
vant processes are captured, and l� l0. Then, the number of terms
n in the convolution above can be made large, and we may expect
the density p�ns ð�; lÞ to be well approximated by a stable density. In
what follows, we will assume l can be chosen large enough so that
this property holds, and omit the l-dependency in ps. In fact, the
assumption of independent increments already implies that the
length scales in question must be larger than the correlation length
of the system [30]. We note, however, that the assumption of a
stable process is quite strong, and is at the root of the necessity
for a large ‘‘basic’’ scale l0 above which the theory becomes valid.
We postpone the discussion of identifying the relevant scale l to
Section 3.1.

2.2. Breakthrough profile and scaling relation

The precise definition of a BTC – i.e., what is actually measured
in the field vs. what is measured in numerical experiments or pre-
dicted by theory – has been discussed in the literature [2]. Depend-
ing on the specific measurement techniques employed, care has to
be taken to ensure correct comparison between theory and experi-
ments. In order to proceed with our discussion of tailing properties
of BTCs, let us first define a BTC in a rigorous way in the context of
our mathematical framework.

Consider particle motion as defined by (1). We consider for sim-
plicity that the particles either move downstream (the x-direction)
with an x- and time-independent downstream velocity vðy; zÞ or
are effectively immobile. This is a reasonable approximation in
the typical scenario where Darcy flow in the sediment bed is much
slower than the flow in the water column. Furthermore, we are
interested in systems which are typically advection-dominated at
the scales of interest. In this context, advection-dominated flow
refers to the idea that the width of the peak of a BTC, that is some
characteristic dispersive scale, at a downstream scale x of interest
is negligible compared to the downstream distance itself. This is
quantified by a high Peclet number, defined in terms of the down-
stream spatial scales of interest and transverse dispersion in the
water column; i.e. Pe ¼ �ux=D where u is the mean velocity, x is
the downstream distance where the BTC is measured and D is a
characteristic longitudinal dispersion coefficient. In this case, diffu-
sive fluxes may be neglected and the first passage time through
x ¼ nl is proportional to the advective flux of mass through x (that
is, through the plane parallel to the yz axes at x ¼ nl).

Consider an instantaneous, cross-sectionally homogeneous
injection of a tracer at the upstream position x ¼ 0 when t ¼ 0.
With ~Cðx; y; z; tÞ the three-dimensional concentration profile at
ðx; y; zÞ and time t (physical units of mass per unit volume), the flux
of mass through x ¼ nl (units of mass per unit time) is given by:

Fðx; tÞ ¼
Z

Ax

vðy; zÞ~Cðx; y; z; tÞdA; ð3Þ

where the integral is over the plane through x discussed above. In
words, the mass flux through a station located at x is the result of
the advection of solute concentration by the water column velocity.
We can now define a cross-section-averaged concentration profile,
that is a one-dimensional concentration (units of mass per unit
length), as:

Cðx; tÞ ¼ Fðx; tÞ
�v ; �v ¼

R
vðy; zÞdA

A
: ð4Þ

For each value of x;Cðx; tÞ represents the BTC at that downstream
position. Here �v is a cross-section-averaged water column velocity,
and A is the cross-sectional area of the river, which must not change
appreciably along the downstream direction since we have
assumed independence of the flow on x. Thus, for each given loca-
tion downstream x, our BTC definition encodes the cross-sectionally
averaged concentration that should be measured at a station at that
location as a function of time. This concentration is a result of the
mass of solute flowing by the station through the water column.
In practice, the experimental measurements of Cðx; tÞ typically rely
on a measurement at a single height that is assumed to be represen-
tative due to cross-sectional turbulent mixing [39].



Fig. 2. Conceptual model for river transport. The physical parameters are discussed
in the text.
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For the case of a conservative tracer, all mass will eventually
flow past any downstream point, so pn integrates to unity for each
n. Then the breakthrough profile at x ¼ nl can be expressed as:

Cðx; tÞ ¼ M0

�v pnðtÞ; ð5Þ

where the initial mass of tracer M0 satisfies for all x:

M0 ¼
Z

Fðx; tÞdt ¼ �v
Z

Cðx; tÞdt: ð6Þ

Eq. (5) shows the intimate relation between BTCs in advection-
dominated flows and the waiting times of our modeling frame-
work. The intuitive interpretation is straightforward: If advection
downstream dominates, then the flow past a certain station is pre-
dominantly due to particles reaching the station for the first time,
so that the concentration can be inferred from the first passage
time of the solute to that location. Note that, in our description,
each particle in the solute plume is taken to have a first passage
time density to x ¼ nl given by pn, and that the large number of
particles comprising the plume essentially sample this density, so
that the BTC reflects pn.

Now we turn back to the assumption of a stable process, as dis-
cussed above. In this case, due to the properties of stable densities,
the first passage time to a location n segments of length l down-
stream is completely determined by the first passage time density
across a single segment of length l. Mathematically from (2) and
the discussion thereafter [22]:

pnðtÞ ¼ n�1=aps n�1=aðt � cðnlÞÞ
� �

; ð7Þ

where 0 < a 6 2, and the function c is determined by the particular
stable density followed by the single-segment first passage time
density ps. For the case of finite-mean waiting times (1 < a < 2),
we have simply cðnlÞ ¼ nl, where l is the mean of ps. However,
for 0 < a 6 1 (which will be seen to apply to the simple case dis-
cussed in the next Section), this relation does not hold since the
mean becomes infinite. The parameter a defines the scaling of the
tail, which decays like t�ðaþ1Þ. Substituting this result into Eq. (5)
we find:

Cðx; tÞ ¼ M0

�v
x
l

� ��1=a
ps

x
l

� ��1=a
½t � cðxÞ�

� �
: ð8Þ

From this central result we can now extract information about tail
and peak behavior. Defining g ¼max ps and t� such that g ¼ psðt�Þ,
the value of the peak of the BTC is given by:

CpðxÞ ¼
gM0

�v
x
l

� ��1=a
ð9Þ

and it occurs at time:

tpðxÞ ¼
x
l

� �1=a
t� þ cðxÞ; ð10Þ

where t� is the time at which the peak occurs over a single stretch l.
Since our waiting time density ps falls off at large times like t�ð1þaÞ

due to retention in the sediment bed, for fixed x and large times we
have from Eq. (8) for late times:

Cðx; tÞ / M0

�v
x
l

� ��1=a
t�ð1þaÞ: ð11Þ

We focus here on the scaling of Cp with downstream distance rather
than the time of the arrival of the peak, which depends on the addi-
tional function c. Note that c need never explicitly be evaluated to
obtain this scaling. The key result is that, given a BTC falling of at
large times like a power law t�ðaþ1Þ, the peak concentration exhibits
a power law x�1=a for large enough downstream distance x.
We have thus found an answer to our main question, the exis-
tence of a relationship between peak and tail scaling for BTCs. We
stress again that these results are quite general and independent of
the precise details of the transport process taking place in a par-
ticular river or stream (so long as power law residence times due
to the sediment bed are present). However, measurements have
to be taken at a sufficiently large downstream distance, and we
have assumed stationarity and homogeneity of the flow along
the downstream direction, so that changes in the flow must be
negligible over the relevant asymptotic timescales. The necessity
of asymptotic scales forcefully arises in the development of an
upscaled theory, such as the one presented here, as sampling and
scale separation arguments play a fundamental role. In the present
model, we require downstream distance x to be greater than the
averaging scale l0 discussed above.

We believe it is instructive to illustrate the application of these
results to a concrete simplified case. For that purpose, the next Sec-
tion is dedicated to the construction of a simple model for river
flow, which allows us to illustrate how these scaling properties
arise in a particular transport scenario.
3. Particle tracking in a simple river model

In this section, we illustrate the general theoretical results
derived in Section 2 in the context of a highly simplified river mod-
el based on 2-dimensional open channel flow coupled with a por-
ous substrate. We stress that the aim of the model presented here
is not to perfectly represent a real system, but rather to elucidate
how the results above can be observed and interpreted in a con-
crete transport scenario. We have thus constructed a highly ideal-
ized model that we believe retains the main ingredients needed to
understand the fundamental properties of the BTCs observed in
natural systems that our general model aims to capture.

In the context of this model, it is possible to identify the spa-
tiotemporal scales that control the different regimes of peak con-
centration scaling. This provides us with valuable insights into
the physical characteristics that are expected to affect the relevant
properties of BTCs in natural systems, and should be seen as a basis
for the design and interpretation of experiments using the general
framework of Section 2. We first describe the model and then pre-
sent particle tracking results.

3.1. Model

A schematic of our conceptual river can be found in Fig. 2. The
flow is assumed to be gravity-driven, and the fundamental physical
parameters are: acceleration of gravity g, slope of the river bed s,
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height of the water column hw, height of the sediment bed (above
impervious bedrock) hb, and sediment grain diameter D50. We
consider two-dimensional flow and neglect variations in the
remaining transverse direction. A similar model is used in [4].

The flow in the water column is governed by standard gravity-
driven open channel flow. The longitudinal velocity profile follows
the log law of the wall [24]:

u ¼ c1
u�
j

log
y� hb

h0

� �
þ uD; ð12Þ

where j � 0:4 is the Von Karman constant, and the dimensionless
constant c1 corrects for effects found in natural systems not
accounted for by the theory. The friction velocity is given by:

u� ¼
ffiffiffiffiffiffiffiffiffiffi
ghws

q
ð13Þ

and h0 is a roughness height where the flow connects continuously
to a standard gravity-driven Darcy flow in the sediment bed. The
(longitudinal) Darcy velocity uD is parametrized as [7]:

uD ¼ c2D2
50s: ð14Þ

Here c2 is a dimensional constant.
The dispersion profile in our model is parametrized so as to

account for turbulent mixing effects. Transverse turbulent disper-
sion in the water column follows a parabolic profile [23]:

Dy ¼ c3ju�hwy0ð1� y0Þ; ð15Þ

where y0 ¼ ðy� hbÞ=hw is a nondimensional height and c3 is again a
nondimensional parameter. Longitudinal turbulent dispersion is
parametrized as [24]:

Dx ¼ 5:93hwu�: ð16Þ

Dispersion in the sediment bed is taken isotropic and parametrized
as:

DD ¼ c4D50uD; ð17Þ

with c4 a nondimensional empirical factor.
In order to obtain velocity and dispersion values in line with

typical systems, we take the values c1 ¼ 0:4; c2 ¼ 10 m�1 s�1,
c3 ¼ 0:1 and c4 ¼ 10 for our empirical constants. These values were
verified by fitting our model to (currently unpublished) real data of
conservative solute injections in rivers. The roughness height is
taken proportional to the grain size, h0 ¼ 0:1D50.

We are interested in the behavior of the BTCs when a homoge-
neous, instantaneous pulse is injected in the water column at
some upstream position. Note that, for reasonable values of the
physical parameters, it is appropriate to consider the downstream
flow in the water column to be advection-dominated at the
asymptotic scales of interest, and the Darcy velocity is much
smaller than the (average) velocity in the water column, so that
residence times in the sediment bed can be thought of as waiting
times (see e.g. [8] for a treatment of immobile states in terms of
waiting times). Thus, our asymptotic peak scaling results should
hold.

Regarding the behavior of the peak of the BTCs as a function of
downstream position, we expect two main regimes to take place.
Before a significant amount of mass has made its way into the
bed and sampled the heavy-tailed waiting time density to make
its way back up, the peak concentration should follow a scaling
equivalent to transport in the open channel in the absence of a
porous bed. Through dimensional analysis, the characteristic
timescale for the loss of mass into the bed should be on the
order of:

s ¼ h2
w

Dy
: ð18Þ
The overbar denotes cross-section averaging over the water col-
umn. Now the corresponding spatial scale is:

l0 ¼ �us: ð19Þ

As the transition to the asymptotic regime derived in Section 2
should happen when a significant fraction of the mass has made it
into the bed and sampled the corresponding residence time, the
scales above should govern the transition from early time scaling
to our asymptotic scaling. Essentially, above these scales all the
physics have been sampled, and so they set the scale over which
the water column can be thought of as mixed, in the sense that
the past history of solute found anywhere on the water column
cannot be traced back.

In this model, the solute particles in the sediment bed follow
Darcy flow and have zero vertical velocity, and thus the waiting
time to come back to the water column once the bed has been
entered is associated with a regular diffusion process with no mean
velocity. The first passage time density for such a process is Inverse
Gaussian [22], which is a stable density with a ¼ 1=2. Since the tail
of our BTCs is governed by the tail of the return time to the water
column once a particle reaches the sediment bed, we expect
a ¼ 1=2 in our asymptotic regime. We also note that at very late
times, due to the finite depth of the sediment bed in the model,
a cutoff scale should exist. Although we do not consider this effect
further, we note that dimensional analysis yields a characteristic

time scale for this phenomenon on the order of sc ¼ h2
b=DD, which

is very large for the parameter values considered in results pre-
sented in the next section. For the same reason, the cutoff scale
is typically not observed experimentally [3].

3.2. Numerical particle tracking results

We implemented the model described in Section 3.1 using a
particle tracking scheme. The scheme solves the Langevin equation
for our model. In each iteration i, time is incremented by a fixed
step Dt, and the position of each numerical solute particle n is
tracked according to [19]:

xðnÞiþ1 ¼ xðnÞi þ uðyðnÞi ÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DLðyðnÞi ÞDt

q
nðnÞi;x ;

yðnÞiþ1 ¼ yðnÞi þ vðyðnÞi ÞDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DTðyðnÞi ÞDt

q
nðnÞi;y ;

8><
>: ð20Þ

where the nðnÞi;x and nðnÞi;y are independent random numbers drawn
from a standard Gaussian density with zero mean and unit variance,
and u;v;DL and DT are the local longitudinal and transverse advec-
tive velocities and dispersion coefficients, which are evaluated at
each particle’s position. Note that the variable transverse dispersion
in the water column induces an effective vertical solute advection
component in the Langevin description, given by Delay et al. [19]

v ¼ @yDy ¼ c3ju�ð1� 2y0Þ: ð21Þ

In the sediment bed, the dispersion coefficient is constant and so
this effective velocity is zero there. As the initial condition we uni-
formly distribute a pulse of solute particles along the height of the
water column at x ¼ 0.

Breakthrough curves at different downstream stations are
defined according to Eq. (5). To obtain the flux past a station, we
record the mean times of passage for each particle. The mean time
is used to account for eventual multiple passages due to disper-
sion; multiple passages usually occur within a short time window,
and taking the average time mimics the averaging process inherent
in any real macroscopic measurement.

In Fig. 3 we illustrate the transition from open channel flow
scaling to the asymptotic scaling for varying hw while keeping all
other parameters fixed. In the left panel we show the BTCs at



Fig. 3. Breakthrough curves at x ¼ 10 m (left), and normalized peak scaling with downstream distance (right) for varying height hw of the water column. The remaining
parameters are s ¼ 5	 10�3; hb ¼ 1 m; D50 ¼ 10�2 m. The number of particles used was 2:5	 105.

Fig. 5. Normalized peak scaling with downstream distance in the absence of a
sediment bed. Parameters are s ¼ 5	 10�3; hb ¼ 1 m; hw ¼ 0:5 m; D50 ¼ 10�2 m.
The number of particles used was 2	 105.
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x ¼ 10 m, normalized to the peak value. The tail scaling follows the
expected behavior of t�3=2, corresponding to a ¼ 1=2. We note here
that even at such small downstream distances, where both the
advection-dominated flow and the stable process assumptions dis-
cussed above are questionable, we still recover the expected tail
scaling. In the right panel we show the peak behavior as a function
of downstream position. Note that the early regime is well
described by a power law with an exponent of approximately
0:65, which is a result of the non-uniform velocity profile in the
water column as discussed in more detail below. The transition
to the peak behavior anticipated by our model begins at x ¼ Oðl0Þ
for each curve, as predicted in the previous section, and at
x � 5l0 we obtain the predicted asymptotic scaling of x�1=a ¼ x�2.
Fig. 4 shows similar results for varying D50 with all other
parameters fixed. Note that in many cases the scaling in the peak
concentration occurs at concentrations that are several orders of
magnitude higher than those associated with the tails in an indi-
vidual BTC, thus highlighting the potential utility of this approach
if concentration measurement at lower concentrations is a barrier
to identifying these tails.

A discussion of the pre-asymptotic scaling is also in order. For
an advection-dominated flow with a uniform velocity profile, the
peak scaling corresponding to the regular ADE follows x�1=2. How-
ever, at short spatial distances our flow is not advection dominat-
ed, in the sense discussed in Section 2.2, and the velocity profile is
non-uniform. In order to verify that the early x�0:65 scaling
observed in our particle tracking data is indeed a consequence of
these effects, we performed simulations where no sediment bed
was present. The results can be found in Fig. 5. We observe the
same x�0:65 at short distances. At large distances, once the flow
Fig. 4. Normalized BTCs at x ¼ 10 m (left), and normalized peak scaling with downs
s ¼ 5	 10�3; hb ¼ 1 m. hw ¼ 0:5 m. The number of particles used was 2:5	 105.
can be considered advection dominated and the water column
has been well mixed by vertical dispersion, we observe conver-
gence to the standard x�1=2 scaling, consistent with the idea of Tay-
lor dispersion at asymptotic times [12,38]. This asymptotic scaling
is never observed in our simulations when the bed is present
because of the loss of mass into the bed that occurs before this
regime emerges.

For the parameters considered here, we find that the transition
into the asymptotic peak scaling occurs at a typical distance
between 1� 10 km. We recognize that this length may be very, if
not prohibitively, long, but note that other studies also suggest
such lengths may be required for proper sampling of all processes
tream distance (right), for varying grain size D50. The remaining parameters are
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[39]. In practice, it must be remembered that the length scales
obtained in this model are illustrative but should not be taken as
exact figures, as the precise mechanisms for mixing and solute
exchange in natural systems are of course much more complex.
4. Discussion and conclusions

As discussed in the Introduction, measuring the tail scaling for
breakthrough curves can be very challenging due to experimental
limitations. Here we have addressed the question of whether the
interplay between water column solute transport and sediment
bed retention can be exploited to obtain a relationship between
this tail scaling and the scaling of the BTC peaks, which represent
the bulk of the solute mass passing through each location along
the river. Our results suggest an alternative method of experimen-
tally determining the tail scaling from peak BTC values measured
at different downstream positions. This method is based on a
general scaling relation between temporal tail and spatial peak
scalings in BTCs measured in river transport.

In Section 2, we obtained the analytical asymptotic scaling rela-
tionship through the use of a theoretical random walk framework.
This framework allowed us to obtain our results in a general con-
text, so that they should hold in principle for a wide class of natural
systems. In Section 3.1 we presented a simple model for river
transport. This highly idealized model has the goal of clarifying
the role of the basic physical processes involved and illustrating
the application of our general results to a concrete case. In the con-
text of this model, we identified the different regimes and respec-
tive spatiotemporal scales for the scaling of the peak of BTCs as a
function of downstream position. We then saw in Section 3.2 that
our theoretical results are supported by numerical particle tracking
simulations.

We argue that, although these scalings were derived in the
context of a very simple conceptualization of river transport, they
identify the fundamental physical mechanisms that underlie the
observed behaviors. Thus, they can inform the estimation of the
relevant scales for a real system and help design appropriate
experiments to validate our results. In particular, we expect that
in typical natural systems scaling exponents for the pre-asymptotic
and asymptotic regimes described here should have values similar
to the ones we obtained, although additional physical properties
may lead to different effective solute transport processes and thus
different scaling behaviors. Specifically, the pre-asymptotic expo-
nent comes from heterogeneity in the velocity profile, as discussed
in Section 3.2, and some deviation from our idealized theoretical
profile is to be expected. The asymptotic exponent is determined
by a, which originates in residence times in the sediment bed,
and thus will depend on properties that impact anomalous trans-
port in the bed (e.g. a sediment bed with fractal structure [1,20]).
In an actual experiment, the relevant scales and exponents may
be estimated from water column flow data.

We stress the importance of careful analysis of upscaled models
such as the one presented here, as they typically require large spa-
tiotemporal limits to be taken. These limitations are often hidden
in the mathematics or disregarded in practice. We have shown that
the relevant scaling may occur only at a considerable downstream
distance. Furthermore, the theory presented here can only be
applied when the flow can be approximated as homogeneous
and stationary over the relevant spatial and temporal scales, even
though it could be generalized to unsteady flows or non-stationary
conditions. In particular, large rivers with a deep water column
would require long downstream distances that may be unattain-
able in practice.

Despite these limitations, the present work highlights that there
exist alternatives to traditional methods of inferring and
measuring anomalous transport. The applicability of each method
is dependent on the physical and experimental setup, and careful
analysis followed by experiment is necessary to verify and validate
modeling strategies.
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