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Passing a fluid through a grid is a well-known mechanism used to study the properties of turbulence. Oscillating
a horizontal grid vertically in a tank has also been used extensively and is considered to be a source of almost
homogenous isotropic turbulence. When the oscillating grid is turned on a turbulent flow is induced. A front
translates into the experimental tank, behind which the flow is highly turbulent. Long predicted that the growth of
such a front would grow diffusively as the square root of time (i.e., d ∼ √

t) and Dickinson and Long presented
experimental evidence for the diffusive result at a low mesh Reynolds number of 555. This paper revisits these
experiments and attempts a set of two models for the advancing front in both square and round tanks. We do not
observe significant differences between runs in square and round tanks. The experiments in water reach mesh
Reynolds numbers of order 30 000. Using some data from superfluid helium experiments we are able to explore
mesh Reynolds numbers to about 43 000. We find the power law for the advancing front decreases weakly with the
mesh Reynolds number. Using a very long tank we find that the turbulent front stops completely at a certain depth
and attempt a simple explanation for that behavior. We study the propagation of the turbulent front into tubes
of different diameters inserted into the main tank. We show that these tubes exclude wavelengths much larger
than the tube diameter. We explore the variation of the position of the steady-state boundary H on tube diameter
D and find that H = cD with c ∼ 2. We suggest this may be explained by saturation of the energy-containing
length scale �e. We also report on the effect of plugging up just one hole of the grid. Finally, we recall some
earlier oscillating grid experiments in superfluid 4He in the light of the present results.
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I. INTRODUCTION

Rouse and Dodu [1] appear to be the first to use oscillating
grids as a source of zero-mean-shear turbulence for studying
turbulent mixing and dispersion in homogeneous, stratified,
rotating, or two-phase fluids. Thompson and Turner [2]
studied scales of velocity and length in the fluid near the
mixing interface. Dickinson and Long [3] and Hopfinger
et al. [4] have measured the speed of propagation of tur-
bulent fronts generated by oscillating grids in homogeneous
fluids with and without rotation. Ivey and Corcos [5] have
used oscillating grids to study boundary mixing in stratified
fluids.

Oscillating grids are considered to be a source of almost
homogenous isotropic turbulence. Careful discussion of the
methods needed to achieve this have been given by De Silva
and Fernando [6] (which includes a thorough literature survey),
Fernando and De Silva [7], and Voropayev and Fernando [8].
When the oscillating grid rig is turned on a turbulent flow is
induced. A front translates into the experimental tank, behind
which the flow is highly turbulent. Long [9] predicted that the
growth of such a front would vary diffusively as the square
root of time (i.e., d ∼ √

t). In this work, which attracted
considerable interest, Long modeled the induced flow as a
system of point source-sink doublets of opposite sign arranged
regularly in the plane of the grid. However, this model flow is
irrotational, which is clearly not true for a turbulent flow.
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The present paper describes the apparatus for visual and
photographic analysis of the experiments in water. This paper
presents two simple models for describing the advance of the
turbulent front after starting the grid into oscillation in both
square and round tanks and for several mesh sizes. It is found
that the advance of the front can be described by a power law
but that the exponent in the long-time decay depends weakly on
the mesh Reynolds number. An earlier power law immediately
followed on starting the grid into oscillation is also reported
and its transition to long-time decay is found to be quite sharp.

We pursue the propagation of the front into a much deeper
tank, and we discover that the front does not continue traveling
down but stops at a definite depth. We advance a simple
explanation for this phenomenon. We also study the motion
of the turbulent front in circular tubes inserted into the tank
with a variety of diameters. We find the circular tubes behave
as a high-pass filter, where the word high refers to eddy
wave numbers. Eddies with wavelengths larger than the tube
diameter are less able to enter. We also describe the effect of
blocking a single mesh hole in an experiment in water. Finally,
we discuss some oscillating grid experiments in superfluid 4He
in the light of the present results.

II. EXPERIMENTAL APPARATUS

The apparatus evolved steadily as experience was gathered.
In the early stages of this investigation we took the view that
since we were studying turbulence the apparatus need not be
of especially precise design. We know now that every attempt
to improve the design yielded better results.
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FIG. 1. Sketch of the experimental apparatus with the drive used
in the early stages of this investigation. This tank had height H =
36 cm and width W = 22 cm. This apparatus was used for the data
in Tables III–V and Figs. 9–12, and 14.

A. The tanks

Three square tanks of heights H = 36, 46, and 122 cm
were constructed from sheets of 0.953-cm thickness acrylic,
solvent welded. A bead of silicone guarded against occasional
water leaks. Each tank had an inside width of W = 22 cm.
We constructed one tank of cylindrical shape with diameter
30 cm. Results with the cylindrical design appeared generally

screw holes×4

M

d

FIG. 2. Sketch of the grid design: M = 1.59 cm and d =
0.318 cm. The screw holes are for the four support rods.

consistent with the square design and are not reported here. The
grid is usually placed 6.5 cm below the surface of the water.
After a data run we waited some time to ensure equilibrium.
We found that evaporation from the free surface drove weak
convective rolls at the top of the tank. Placing a loosely fitting
Plexiglas plate between the surface and the grid eliminated
this problem.

B. The grids

The design of our system is illustrated in Figs. 1, 2, and 3.
The oscillation takes place at a frequency f (circular frequency
ω = 2πf ). The drive system has a stroke s, which is the
distance the grid moves from bottom to top. The amplitude
of the oscillation is ε = S

2 . Oscillating bars are governed by
the Keuligan-Carpenter number NKC and the Stokes number

FIG. 3. (Color online) Sketch of the improved apparatus. Here
the stepper motor and wheel are replaced by a linear motor (not
shown). This apparatus was used for the pictures and data in Figs. 4,
5, 6, and 15.
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TABLE I. NKC numbers for the 1.59-cm mesh grid.

S (cm) NKC

1 11.5
2 20.9
3 31.4
4 41.9
5 52.4
6 62.8
7 73.3
8 83.8

St. For reference, these numbers for the grid bars are given in
Tables I and II. The definitions are

NKC = 2πε

d
, (1)

St = f d2

ν
, (2)

where d is the thickness of the bars as shown in Fig. 2 and ν

is the kinematic viscosity of the fluid.
The characteristic velocity of the grid is Uo = ωε, and the

mesh Reynolds number is

ReM = UoM

ν
, (3)

where M is defined as the distance from the center of one bar
to the center of the next. Our best results (good reproducibility,
relatively stable turbulent front) were obtained with the M =
1.59 cm, d = 0.318 cm mesh as shown in Fig. 2.

The grid edges end in half a mesh in order to reduce the shear
at the walls. The optimum grid design is described by De Silva
and Fernando [6] as follows: “. . .to obtain nearly isotropic
turbulence with zero-mean flow, certain design conditions have
to be satisfied: the grid should have a solidity less than 40%,
the oscillation frequency should be less than 7 Hz, the end
conditions of the grid should be selected to yield low Reynolds
stress gradients and measurements should be taken 2–3 mesh
sizes away.” The spacing between the ends of the grid tines and
the tank wall is quite small, on the order of 0.025 cm. The half
mesh spacing influenced the generation of large-scale motion
in the tank: Typically the turbulent front will become unstable
and speed down one side of the tank, a larger gap resulting
in more unwanted motion. Also, unequal gaps on opposite
sides resulted in greater large-scale motion. Towards the end
of this investigation we used a high-precision grid of the same
dimensions, machined by a numerically controlled mill. It is
illustrated in Fig. 2. It is very important that the support rods

TABLE II. Stokes numbers for the 1.59-cm mesh grid.

f (Hz) St

5 45
6 54
7 63
8 72
9 81
10 90

for the grid are no larger than d. If they are not hidden by the
grid, they will generate their own turbulent flow.

C. The motor drive

The grid support rods are connected as shown in Fig. 1
to a stepper motor with a torque of 2.8 N m turning a wheel
with five holes drilled at various radii to provide a four-bar
linkage to the grid providing variable frequency of oscillation
and strokes s ranging from 1 to 5 cm. The frequency of the
drive can be varied and ranged between 0.5 and 6 Hz.

Recently, we have replaced the stepper motor with a Copley
Controls model STA2510S-104-S-S03X linear motor capable
of 780 N of peak thrust. The grid supports are directly attached
to the magnet rods of the motors, eliminating mechanical
backlash. Also, the motors are brushless and ironless, resulting
in smoother motion due to minimal motor cogging. The motors
provide stroke lengths s anywhere between 0 and 10 cm.

The motor is driven by a Copley model XSL-230-18
Xenus indexer and amplifiers. Since the motors are brushless,
electronic commutation is provided by the Xenus amplifier
via linear Hall-effect sensors mounted on the forcer assembly.
These same sensors also provide positional feedback. The
basic resolution of the motors is 12.5 μm. The Xenus
amplifiers are an entirely digital system, allowing ready
reprogramming of the feedback loop coefficients, and they also
internally generate the motion trajectory based on variables
sent via an RS-232 link.

We found it advisable to attach the grid apparatus to a heavy
platform supported by a concrete pillar to minimize vibration.

D. Visualization, lighting of the flow, and protocol

We found the problem of visualization of the flow of crucial
importance to this experiment. Our first thought was to use the
Baker thymol blue technique for visualization. This proved
to give attractive pictures, but was of little use in tracking
the turbulent front in practice. We finally used Kalliroscope
to study the turbulent motions in water. Kalliroscope is a
commercial product first described scientifically in a paper
by Matisse and Gorman [10]. Exactly what is shown by
light reflection from these anisotropic fish scale particles is
still not entirely clear, although an analytical study by Savas
[11] suggests that the flakes align themselves with stream
surfaces with rapid turnovers and further notes that it is a
useful technique for determining certain flow patterns. These
scales align with the direction of shear and, when illuminated
by a light sheet, give a good contrast between turbulent and
nonturbulent regions. A discussion by Gauthier, Gondret, and
Rabaud [12] is very useful in this respect: In particular, they
show that the observed light cannot be used to reconstruct
the velocity field. However, they do show that Kalliroscope
can be used specifically to visualize vortical flow structures by
comparing numerical predictions to experimental observations
in Taylor-Couette flow.

Different lighting methods were tested for visualization.
Shining white light through the whole tank caused visualiza-
tion of all movement, which blocked the view of the turbulent
front spreading down roughly at the center of the tank. We
finally adopted a vertically collimated slit of light (1.5 cm
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wide) from a slide projector shone through the center of the
tank from left to right. On setting up the apparatus the length of
the rod connected to the grid was adjusted so the grid position
at the bottom of the stroke was 6.5 cm below the top cover.
Since turbulence was measured from the bottom of the stroke,
the stroke s, divided by 2 and subtracted from the 6.5-cm mark
would give the mean position of the grid. We took the view that
the origin of the turbulence was at the bottom of the stroke.
Correcting to the mean position of the stroke did not affect the
results in any significant way.

Distances from the grid were measured and marked with
tape on two sides of the tank to avoid parallax. The grid
would begin its oscillations (always from its lowest position),
creating turbulence which would be revealed by light scattering
from Kalliroscope flakes. The boundary between vortical and
quiescent fluid was sharp and easy to observe. When the
turbulent front reached a given tape mark, the time could
be recorded electronically. Thus we could make a complete
record of the propagation of the front down the tank in a single
run. This efficiency allowed us to complete hundreds of runs
in a reasonable period of time.

E. Photography of the front

Recently, we have implemented a machine vision camera
situated approximately 130 cm in front of the tank. To calibrate

FIG. 4. Photograph of a turbulent front descending toward the
bottom of the tank.

the camera images, a metal scale is taped onto the face of the
tank and photographed beforehand. The rest position of the
grid is about 8 cm from the top of the tank. The grid oscillates
about this point. When the grid oscillation begins, a sequence
of photographs are taken at a fixed frame rate.

The position of the bottom of the turbulence field is
measured off each photograph in the sequence using standard
software tools [13]. Refer to Fig. 4 for a sample photograph.
Note the photo of the metal scale is overlaid on the image
to facilitate the measurement. The machine vision camera
timestamps each photograph from a 100-MHz clock oscillator,
allowing 10-ns timing precision. The result of this process is
a list of position verses time data points which are plotted on
a log-log scale using a standard plotting tool (gnuplot.info).
Figure 5 shows an example of a plot of the advancing front
displaying two power laws.

Repeating several experiments over a considerable range
of variables presented in the tables in Sec. III, we found very
similar results with the photographs.

III. EXPERIMENTAL RESULTS

A. The spreading of the turbulent front

The raw data from our experiment consisted of measure-
ments of the position of the turbulent front in the center of the
tank as a function of elapsed time. Long [9], on the basis of a
theoretical analysis, proposed that the distance D traveled by
the front in time t is given by

D = Do + Ktn, (4)

where n = 0.5. Data analyzed by Dickinson and Long [3] gave
experimental values of n close to 0.5. We attempted to apply
the methods described by Dickinson and Long to our data. In
particular, the location of the artificial origin of the turbulence
Do was found by fitting a power law n = 0.5 to the data to
locate Do, adding Do to the data set, and then finding the value
of n which gave the best fit to the combined data. On carrying
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FIG. 5. Plot of photographic results showing two distinct powers
with the change at approximately 10 cm (6.3 M) below the grid,
at its lowest descent. The respective power laws are b = 0.23 and
n = 0.80. The grid was oscillated with a frequency 5.00 Hz and
amplitude 2.5 cm, providing a mesh Reynolds number of 12 500.
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TABLE III. Data fitted to D = Do + Ktn for the square tank.
Notes: Each set consisted of the average of 10 trials with the results
for the times at each position averaged together. Thus 3 represents 30
trials and 10 represent 100 trials. χ 2 is the usual statistical measure
of goodness of fit.

M (cm) f (Hz) S (cm) n K Do (cm) χ 2 sets

0.36 5.0 2.0 0.42 9.028 −7.70 0.157 3
0.36 5.0 5.0 0.35 24.20 −20.15 0.146 1
0.51 5.0 2.0 0.66 4.73 −3.34 0.059 3
0.51 5.0 5.0 0.57 13.71 −9.20 0.105 1
0.85 5.0 2.0 0.53 7.29 −7.05 0.022 3
0.85 5.0 5.0 0.66 12.93 −8.31 0.101 1
1.59 2.5 2.0 0.47 6.65 −6.59 0.120 10
1.59 3.75 2.0 0.62 4.73 −2.78 0.040 1
1.59 5.0 1.0 0.51 3.76 −3.40 0.018 10
1.59 5.0 2.0 0.45 10.8 −8.94 0.195 10
1.59 5.0 4.0 0.19 39.8 −36.1 0.108 10
1.59 5.0 5.0 0.24 35.8 −31.14 0.128 1
1.59 6.25 1.0 0.48 4.66 −4.02 0.045 1
1.59 6.25 2.0 0.59 7.60 −4.97 0.126 1
1.59 6.25 4.0 0.39 21.12 −17.37 0.071 1
1.59 6.25 5.0 0.24 40.71 −35.31 0.183 1
1.59 7.5 2.0 0.38 18.1 −16.20 0.191 10

this out we, too, found a power law near 0.5. However, using
a power law of 0.4 to find Do gave a fit with n near 0.4, and
using a power law of 0.6 to find Do gave a fit with n near 0.6.
We concluded that this method was not suitable for our data.

The safest procedure, we believe, is to simply fit the data
set directly to (4) and record the best fit values of K , n, and
Do. This has been carried out in Table III for the square tank.
We have a complete set of experiments in round tanks, but
the data did not substantially differ from square tanks and is
omitted here.

Analysis with Eq. (4) showed that the artificial origin of the
turbulence is located above the grid and can be many mesh
lengths long. We therefore tried another simple model,

D = K(t − to)n, (5)

with t > to. The results of this analysis are shown in Table IV
for the square tank. As can be seen (5) gives a much more
reasonable result, with to of order 1 s, compared with a run
duration 10 to 60 s. Indeed, we did two more analyses taking
to to be 1 s and its average to be 1.3 s. This was an attempt
to reduce the number of variables being found by the fitting
routine. We do not reproduce these analyses here, for they did
not appear to have any obvious advantage over the fits shown
in Tables IV and V.

We also display in Table V the mesh Reynolds number
defined in Eq. (3). Examination of some data concentrated
in the first 10 cm or so revealed that the data in this range
are simply linear in time. In order to explore this further we
omitted data in the first 10 cm and reanalyzed the data as shown
in Table V for the square tank.

Comparison of the χ2 values between Tables IV and V
demonstrate that a great improvement in the fit is obtained in
this way. We conclude that something different is going on in
the first few seconds of the experiment, perhaps the jets being

TABLE IV. Data fitted to D = K(t − to)n for the square tank.

M (cm) f (Hz) S (cm) n K to (s) χ 2 Sets

0.36 5.0 2.0 0.52 5.26 1.43 0.074 3
0.36 5.0 5.0 0.53 10.58 0.96 0.084 1
0.51 5.0 2.0 0.70 3.88 0.97 0.044 3
0.51 5.0 5.0 0.66 9.77 0.76 0.074 1
0.85 5.0 2.0 0.62 4.62 1.47 0.006 3
0.85 5.0 5.0 0.78 9.16 0.57 0.158 1
1.59 2.5 2.0 0.57 3.90 1.70 0.196 10
1.59 3.75 2.0 0.67 3.74 0.66 0.057 1
1.59 5.0 1.0 0.57 2.71 1.85 0.037 10
1.59 5.0 2.0 0.58 5.99 1.02 0.311 10
1.59 5.0 4.0 0.45 9.46 0.94 0.441 10
1.59 5.0 5.0 0.49 10.95 0.90 0.212 1
1.59 6.25 1.0 0.48 4.22 4.12 0.123 1
1.59 6.25 2.0 0.68 5.41 0.65 0.172 1
1.59 6.25 4.0 0.62 9.06 0.73 0.215 1
1.59 6.25 5.0 0.50 11.86 0.83 0.323 1
1.59 7.5 2.0 0.57 7.76 1.05 0.358 10

produced by the grid take some time to organize themselves
into a more homogeneous type of turbulence, which is what
we saw in earlier investigations. A paper by Voropayev and
Fernando [8] describes the evolution of the flow from the
multipolar flow in each hole in the mesh to a distance down
the tank where the jets from all the holes interact and start to
make a turbulent flow. The authors cite Hinze [14] as the source
of the transition at about 20M . We have been able to shed some
light on this process by recording the flow photographically.

We show some results in Fig. 5 in which the front moves
down the tank a distance ∼10 cm in about 4 s and has a power
law f (x) = axb with b = 0.23 followed by a distinct change
in power law f (x) = cxn with n = 0.80. This change occurs
at a distance 10 cm or 10/M = 6.3M .

TABLE V. Data fitted to D = K(t − to)n for the square tank
omitting data below 10 cm.

M (cm) f (Hz) S (cm) n K to (s) χ 2 Sets ReM

0.36 5.0 2.0 0.56 4.49 0.51 0.026 3 2300
0.36 5.0 5.0 0.48 11.84 1.22 0.0008 1 5700
0.51 5.0 2.0 0.77 3.10 0.05 0.0005 3 3200
0.51 5.0 5.0 0.59 11.29 1.05 0.022 1 8000
0.85 5.0 2.0 0.64 4.42 1.28 0.006 3 5300
0.85 5.0 5.0 0.65 11.68 0.95 0.035 1 13 400
1.59 2.5 2.0 0.50 5.14 3.66 0.036 10 5000
1.59 3.75 2.0 0.62 4.45 1.41 0.054 1 7500
1.59 5.0 1.0 0.53 3.15 3.57 0.008 10 5000
1.59 5.0 2.0 0.49 7.80 2.08 0.085 10 10 000
1.59 5.0 4.0 0.39 11.15 1.52 0.141 10 20 000
1.59 5.0 5.0 0.43 12.46 1.24 0.095 1 25 000
1.59 6.25 1.0 0.51 3.74 3.11 0.027 1 6200
1.59 6.25 2.0 0.57 7.39 1.62 0.105 1 12 500
1.59 6.25 4.0 0.54 10.79 1.09 0.105 1 25 000
1.59 6.25 5.0 0.42 14.07 1.21 0.029 1 31 200
1.59 7.5 2.0 0.48 9.77 1.75 0.114 10 15 000
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FIG. 6. Results for the power exponent n in Eq. (2) as a function
of mesh Reynolds number from Table V in a square tank. The highest
mesh Reynolds number point is taken from Smith’s thesis [15] using
liquid helium and the range of possible fits is given by the vertical bar.
The experiments of Dickinson and Long [3] were at a mesh Reynolds
number of 555 and are shown as a triangle. The trend line is given by
n = 0.594 − 0.005 05 × ReM .

B. Results for the long-time power law as a function
of mesh Reynolds number

We were unable to reproduce the results of Dickenson
and Long [3] whereby the turbulent front spreads diffusively.
Instead we find the power law described by n is a slow function
of mesh Reynolds number over a great range of Reynolds
numbers as shown in Fig. 6.

The large scatter seen in Fig. 6 reflects the fact that the
propagating front in this type of experiment is often very
unstable. The front tends to move to one side of the tank
and plunge rapidly to the bottom. This behavior is perhaps
the greatest limitation to this type of experiment. The highest
mesh Reynolds number point is described in Sec. VII B.

IV. STATIONARY TURBULENT FRONTS IN SMALLER
DIAMETER TUBES

We report on observations of the steady-state turbulent
boundary in an oscillating grid experiment. We find that in a
sufficiently deep tank the oscillating grid does not completely
fill the tank with turbulence, even after long times. Instead,
there is a boundary between turbulent and nonturbulent regions
at a definite distance from the oscillating grid. We explore the
variation of the position of the steady-state boundary H on
tube diameter D and find that H = cD with c ∼ 2.

To observe the behavior of turbulence in different size
containers, we hang Plexiglas tubes of various diameters D

(0.6 cm < D < 17 cm) in the main tank. The tubes have a
wall thickness of 0.3 cm. They are supported by a simple rigid
harness that spans the width of the tank well below the region
where turbulence exists in the tubes. The harness is suspended
by strings that clip onto the top edges of the walls of the tank.
With this system, we are able to position the tube anywhere in
the tank and at any height. We usually make our measurements
with the tube near the center of the tank. The tubes are typically
50 cm long, with the top end open and the bottom end plugged.
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FIG. 7. Depth of the turbulent front in steady state in an oscillating
grid experiment. The tube used in this experiment was 10 cm in
diameter. This experiment shows that the presence of the tube did not
disturb the turbulence in the main tank.

To illustrate the observations, Fig. 7 shows the steady-state
turbulent boundary as a function of oscillation frequency for
the empty tank and for a 10-cm-diameter tube placed in the
tank. The tube was placed just off center. We measure the
depth simply by estimating by eye the edge of the turbulent
region and measuring with a ruler the distance between this
point and the midpoint of the grid stroke. The measurement
is made difficult by the fact that the boundary is undulating
across the width of the tank, reflecting the wide range of eddy
sizes that make up the turbulence. The boundary advances
and retreats in the tube over time suggesting intermittency.
We attempt to identify the average position of the boundary.
The measurements are made after waiting 10–15 min after
turning on the grid motor to ensure that the boundary is no
longer advancing. We have compared the depths measured
after waiting 15 min to depths measured after waiting 1 h and
found no difference within experimental error. To investigate
this phenomenon further we devised the measurement shown
schematically in Fig. 8.

A tube of diameter D hung a distance L below the grid will
measure a penetration depth h, which is the distance between
the mouth of the tube and the boundary between turbulent and
nonturbulent regions in the tube. We record h for a variety
of values of L and calculate the total depth of the boundary
H = L + h. If the distance that the turbulence propagates in
the tube depends in some way on the interaction with the tube,
then measurements made at different values of L will not
recover the same H . For example, if the turbulent energy in
the tube were primarily generated at the tube mouth, perhaps
by vorticity generation at the edges, then one would expect the
penetration depth h to be a constant, independent of L.

We used hanging heights of L = 4 to 10 cm. The grid was
oscillated at 1, 3, and 5 Hz with a stroke of 1.5 cm. As expected,
the penetration increases with frequency and with closeness
to the grid. Figures 9–12 show the total depth H calculated
by adding h to L. For each frequency a reasonably constant
value of H is measured. A crude measure of the collapse is
given by the dimensionless spread 	H/H ≈ 0.1 in Fig. 9 to
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FIG. 8. Schematic illustration of the measurement of the turbu-
lence front in a tube hung in the tank at different depths L.

	H/H ≈ 1 in the smallest tube in Fig. 12. While the errors are
rather large (∼±10%) and the data do not collapse perfectly,
there does not seem to be any systematic variation with L.

Figure 12 shows rather poor collapse of the H data and
a systematic variation with L, indicating that the tube is
affecting the measurement. We found that for tube diameters
larger than 3 cm there is generally good collapse of the data
and the H measurement was meaningful. For smaller tube
diameters the measurement was not meaningful. It is known
that closer than 2–3 mesh lengths to the grid the flow is
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FIG. 9. Depth of steady-state turbulent front in a tube 5.7 cm
inner diameter for various frequencies. The collapse of H is quite
good for this larger tube. Here 	H/H ≈ 0.1.
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FIG. 10. Depth of the steady-state turbulent front in a tube of
3.17-cm inner diameter for various frequencies. The collapse is still
good for this diameter tube, 	H/H ≈ 0.2.

dominated by jets produced by the grid [14]. Only further from
the grid do the jets merge to form homogeneous turbulence.
Therefore, we should not expect reasonable results closer than
∼5 cm to the grid [14]. In fact our own measurements as
seen in Fig. 5 suggest a distance ∼10 cm might be more
appropriate.

V. ENERGY SPECTRUM: HIGH-PASS FILTER

It is not surprising that the turbulent front reaches a
steady-state depth. As the turbulence travels away from the
generation region next to the grid, the turbulent energy decays
via the energy cascade and viscous dissipation. At some
depth, the turbulent energy should decay to zero and the
front can no longer propagate. The smaller the diameter of
the tubes the less we expect the front to descend as was
observed in the experiments. The reason for this is that
smaller diameters exclude the turbulent energy at larger scales.
Essentially, the tube acts as a filter, excluding eddies larger than
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FIG. 11. Depth of the steady-state turbulent front in a tube of
1.6-cm inner diameter for various frequencies. Here 	H/H ≈ 0.8.
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FIG. 12. Depth of the steady-state turbulent front in a tube of
0.6-cm inner diameter for various frequencies. The data do not
collapse for this small diameter tube, 	H/H ≈ 1.

the tube diameter. The decay of turbulence becomes faster
when the energy containing length scale �e of the turbulence
becomes comparable to the length scale of the container [16].
Therefore, in the oscillating grid experiment we expect the
energy containing length scale to be comparable to that of the
tank or tube, after which accelerated decay of turbulence will
occur,

�e =
(

3π

4

)∫ ∞
2π
D

k−1 E(k) dk∫ ∞
2π
D

E(k) dk
. (6)

We have ignored viscous effects in the above equation by
leaving the upper limit of integration as ∞. We define the
energy containing wave number as ke = 2π/�e. For small
wave numbers (k � ke) we use E(k) = Ak2 and for the
large wave numbers (k � ke) we use the Kolmogorov law
E(k) = Cε2/3k−5/3. This gives

�e =
(

3π

4

) 11
10k2

e − 1
2

(
2π
D

)2

11
6 k3

e − 1
3

(
2π
D

)3 . (7)
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FIG. 13. Energy spectrum in a finite channel after Stalp et al. [16].
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FIG. 14. Measurement of H as a function of tube diameter for
three oscillation frequencies. The solid line represents Eq. (8).

We can determine the depth at which the energy containing
length scale is the same as the characteristic length scale of
the container D. This depth is given by the sole real root of
the cubic equation above,

�e = 2πD

3.429
= 1.83D, (8)

and in this experiment le is identified with H and D is taken
as the diameter of the tube (Fig. 13).

Once the turbulence reaches this depth the energy decays
rapidly. If the faster decay is sufficiently rapid we expect the
turbulent front to be close to this depth. In Fig. 14 we compare
this depth to the depth of the steady-state turbulent front from
the experiments. Overall the data appear consistent with this
hypothesis, except for the largest-diameter tubes at the smaller
forcing frequencies.

VI. ANOMALOUS JET FORMATION

During the initial setup of the experiments we noticed the
formation of a jetlike structure that propagated down well
beyond the turbulent front described in the previous two sub-
sections of this paper. Upon further investigation we noticed
that this structure was formed from a region where the mesh did
not maintain the same structure as elsewhere. By plugging up
one of the holes in the mesh we saw that such a jet was formed,
as illustrated in Fig. 15. This fast-moving plume overtakes the
main turbulent front and one possible explanation is that it is
a vortex street such as we reported coming from an oscillating
pendulum in Ref. [17], except that the street is turbulent. Ref-
erence [17] shows that the damping of a pendulum oscillating
in water is influenced by the emission of vortex rings.

VII. GRID TURBULENCE EXPERIMENTS
IN SUPERFLUID 4He

A. Quantized vortex lines

Liquid 4He above the λ transition (2.1768 K) is a perfectly
classical fluid hydrodynamically and is called helium I. Below
the λ transition helium II obeys a pair of equations: one for the
normal viscous fluid having density ρn and velocity vn and one
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FIG. 15. Photograph of the fast-moving plume generated when
the central hole in the grid is plugged and is much wider than the
mesh size M . The rapid motion of this flow suggests that it might
arise from a street of vortex rings such as we reported in Ref. [17],
except that the rings are turbulent. The mesh used to generate this
image is as described in Fig. 2. The top of this image shows a total
width of 13M ≈ 20.7 cm.

for the superfluid, an absolutely inviscid fluid, having density
ρs and velocity vs . The total density ρ is the sum of the normal
and superfluid densities which are separately strong functions
of temperature. The equations of motion for the velocity fields
depend on the entropy S of the fluid and the Kelvin temperature
T . The equations of motion yield two forms of “sound,” an
ordinary wave having density fluctuations and another wave
called “second sound” exhibiting entropy fluctuations. More
detailed experiments at Leiden showed that under certain

circumstances an extra term was needed to couple the velocity
fields of the two fluids which was called “mutual friction.” The
underlying physics of mutual friction was investigated later by
W. F. Vinen and H. E. Hall in Cambridge (see, for example,
Ref. [18]).

When helium II is set into rotation at angular velocity �

the superfluid cannot rotate in the classical sense because
the superflow is irrotational in a simply connected region.
Nevertheless, the entire fluid does rotate, seemingly classically,
but the reason is that the superfluid generates a uniform array
of quantized vortices each with circulation κ = h/m where h

is Plank’s constant and m is the (bare) mass of the helium atom.
The vorticity of the rotating superfluid is ω = 2�, the same as
the vorticity in a classical fluid in a rotating container. While
quantized vortices were suggested theoretically by Onsager
and Feynman [19] no experimental evidence appeared until
Vinen and Hall did their thesis work in Cambridge in the
mid-1950s.

The pioneering experiments in the turbulent flow of helium
II were carried out at Cambridge in helium II by W. F. Vinen
and reported in a series of four papers which appeared in 1957
[20–23]. When turbulence is present, which Vinen induced
using a heater at one end of a channel, quantized vortex lines
are generated and can tangle together but remain quantized
with circulation κ = h/m, where h is Planck’s constant and
m is the mass of the helium atom. It was only during this
investigation that the role of quantized vortex lines was realized
and experiments by Vinen and Hall provided insight into their
behavior. The remarkable thing is that in a turbulent flow,
in contrast to turbulence in ordinary fluids such as water
and air, all vortices have the same size and same quantized
circulation. This makes a major simplification in the study
of turbulence. Unfortunately, when turbulence is present, the
quantized vortices interact with the normal fluid. The only way
to get around this problem is to take advantage of the fact that
the normal fluid density decreases with temperature and seek
to use the lowest temperatures available. For many years this
study was called “superfluid turbulence,” but on realization that
if Planck’s constant were zero, the field would not exist, and
the name “quantum turbulence” is now in common use [24,25].

When turbulence is present in helium II in the form of a tan-
gle of quantized vortex lines, second sound is attenuated, and
by measuring the attenuation one can deduce the magnitude of
the vorticity in the superfluid [18]. Vorticity in the superfluid
couples the two velocity fields, and the two fluids act as one
by mutual friction; indeed the kinematic viscosity above 1 K
and at larger scales is approximately the viscosity divided by
the total density.

Experiments with towed and oscillating grids in superfluid
4He have been carried out for a number of years at the
University of Oregon. In particular, Michael Smith presented
a Ph.D. thesis in 1992 with observations on the vorticity of
the superfluid induced by a towed grid and an oscillating grid
[15]. Steven Stalp then took over the apparatus, presenting
his thesis in 1998 [26]. Normally, we would be reluctant to
compare data taken below the λ transition to experiments
in water because the hydrodynamics of helium II require a
two-fluid set of equations. However, Smith reports that his
results are independent of temperature and viscosity, so as a
guess we take the kinematic viscosity of liquid helium at 2.13 K

053016-9



HONEY, HERSHBERGER, DONNELLY, AND BOLSTER PHYSICAL REVIEW E 89, 053016 (2014)

pump

square channel

grid

sliding seal

motor

transducer pair

channel thermometer

liquid helium

FIG. 16. (Color online) Sketch of the apparatus used by Smith to
study towed grid experiments in helium II [15]. The second-sound
transducers are directly across from each other: one generates second
sound and one detects it. The thermometer was fed to an electronic
temperature controller.

(his highest temperature), which is approximately ν = 1.38 ×
10−4 cm2/s. Smith had f = 3.75 Hz, M = 0.20 cm, and
ε = 1.25 cm, giving, finally, n = 0.435 at ReM = 4.27 × 104.

Smith’s apparatus is sketched in Fig. 16, and one of his grid
designs is shown in Fig. 17.
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Rod

FIG. 17. Sketch of one of the sliding grid configurations used by
Smith [15], where the dimension is millimeters.
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FIG. 18. Typical averaged signal for the oscillating grid. The three
values of x illustrate the effects of varying x and the steady-state
vorticity. Note that the sharp front does not look like a diffusive
process [15].

The sliding grid apparatus has been described in detail
in Smith’s and Stalp’s theses [15,26] and in other papers
[27]. Briefly, the channel is a 1 cm × 1 cm brass channel,
40 cm long. The grid is actuated by a stepping motor mounted
outside the cryostat. Most of the experiments were initiated by
sweeping the grid the full length of the channel and monitoring
the decay by attenuation of second sound, which can be
interpreted as giving the vorticity averaged over about 1 cm3.
This averaging results in a quiet signal which can be followed
over about 6 decades of vorticity.

B. Oscillating grid experiments in helium II

Once the first results with this apparatus were understood,
it seemed sensible to try an oscillating grid. Our experiments
could be conducted down to about 1.2 K. Oscillating grid
experiments in the difficult range below 1 K, and indeed to
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 1  1.5  2  2.5  3

T
im

e,
 t0.

43
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FIG. 19. Smith’s data fitted to x ∼ tn with the best fit yielding
n = 0.435. But Smith also states that a fit to n = 0.333 looks just
as good. The results were found to be independent of temperature,
suggesting the two fluids are locked together [15].
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FIG. 20. Steady-state vorticity for the oscillating grid as a
function of distance in helum II. The channel was 1 cm × 1 cm.
The abscissa is the mean distance the second-sound tranducers
are from the oscillating grid. For ω > 4 Hz the solid line ω(x) =
113 exp(− x

1.39 ) describes the data fairly well, but we do not understand
the physical basis for this behavior [15].

millikelvin temperatures have been reported in a series of
papers from McClintock’s group at the University of Lancaster
[28–31].

The oscillating grid was driven by a roughly triangular
waveform. Results at three different distances from the grid to
the transducers are shown in Fig. 18. The sharp leading edge
of the received signal suggests a propagating pulse and not a
diffusive process, as suggested by Long [9] for classical fluids.
Taking the averaged vorticity as a function of x resulted in the
data of Fig. 19. Like the experiments in Sec. III, the turbulent

front ceases to spread after a finite distance (Fig. 20). However,
the channel size is 1 cm, so the front is reaching about five
channel widths instead of the one or two that we see in Fig. 9.
At first we speculated that the central post in the grid seen in
Fig. 17 might be sending a fast-moving plume such as we see
in Fig. 15. However, if that were true we should see two fronts
arriving at different times. There is no such phenomenon in
the data of Fig. 18, so no definite conclusion can be reached at
this time.

VIII. DISCUSSION

Turbulence generated by grids is now quite an old subject
starting in the 1940s and continuing ever since. The newer
study of quantum turbulence has greatly extended our knowl-
edge of the subject. Turbulence decay experiments in helium
II can be followed over six orders of magnitude of vorticity,
providing information that would have needed a wind tunnel
1000 km long. Oscillating grid experiments described in this
paper including one measurement in helium II have extended
mesh Reynolds numbers from a few hundred to about 43 000.
The long decay exponent is a weak function of mesh Reynolds
number in contrast with the diffusive claim in Dickinson et al.
[3] and Long [9].
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