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Abstract. Particle tracking algorithms are very useful methods to model11

conservative transport in surface and subsurface hydrological systems. Re-12

cently, a novel ad hoc particle-based method was proposed to account for multi-13

component reactive transport by Benson and Meerschaert [2008]. This one-14

dimensional particle method has been shown to match theoretical predictions,15

but to date there has been no rigorous demonstration that the particle method16

actually matches the governing equations for chemical transport. We gen-17

eralize this particle method to two-dimensional and three-dimensional sys-18

tems and rigorously demonstrate that this particle method converges to the19

diffusion-reaction equation at the limit of infinitely small time step. We also20

investigate the numerical error associated with the method.21
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1. Introduction

Water that flows through aquifer and surface water bodies typically changes in chemi-22

cal composition along a flow path. One of the mechanisms for this is chemical reaction,23

either with neighboring solids and biota, or with other dissolved constituents. An ac-24

curate prediction of the chemical evolution of a system requires models (for example,25

governing equations) that correctly describe the chemistry and physics of the reactions26

across many spatial and temporal scales. Examples of these systems include radionuclide27

transport [Ma et al., 2010; Greskowiak et al., 2010; Hammond and Lichtner , 2010], CO228

sequestration [Strazisar et al., 2006; Audigane et al., 2007; Han et al., 2010], ore body gen-29

eration [Raffenspreger , 1997; Schardt et al., 2001], hydrothermal systems [Lichtner , 1985;30

Steefel and Lasaga, 1994], chemical and biochemical remediation of contaminated aquifers31

[Molz and Widdowson, 1988; Knutson et al., 2005, 2007; Steefel et al., 2005; Mayer et al.,32

2001, 2002, 2006], and basin-scale diagenesis, reservoir rock and petroleum generation33

[Lee, 1997; Morse et al., 1997; Wilson et al., June, 2000; Jones and Xiao, 2006] to name34

a few, but the problem is not restricted to aqueous environments [Searle et al., 1998a, b;35

Monson and Kopelman, 2000]. In many natural systems, the rate of reactions between36

the chemical species is limited by their mixing, because the molecules can only react when37

they come into physical contact. In systems that are well-mixed, like a stirred laboratory38

beaker, the fluctuations in concentrations of the chemical species are negligible and the39

rate of reaction is spatially uniform. However, if the mixing is slow in comparison to the40

rate of the reaction, a mixing-limited regime will emerge. In this regime, the fluctuations41

in concentrations possess a significant magnitude, and gradually we may begin to observe42
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areas of the domain where one reacting species is depleted relative to the others. From43

a mathematical point of view, the fluctuations of concentrations become anticorrelated44

[Bolster et al., 2012; Tartakovsky et al., 2012].45

This segregation of the system into such “islands”, in which the overall reaction rate46

is dictated by the reduced area of contact between reactants, was described from theo-47

retical and numerical viewpoints several decades ago [Ovchinnikov and Zeldovich, 1978;48

Toussaint and Wilczek , 1983; Kang and Redner , 1984]. These authors showed that, in a49

simple chemical system that was dominated by diffusive transport, the segregation into50

islands was self-generated. The depletion of one of the reacting species inside the islands51

largely limits the reactions to island interfaces. As a result, the overall reaction rate52

is slower than the one anticipated for a well-mixed system. A small-scale experiment53

confirmed these results [Monson and Kopelman, 2004]. The slow-down of reaction rate54

has practical importance, especially in the groundwater remediation context, where the55

choice of remediation strategy is based on accurate modeling of the anticipated decay rate56

of the contaminants. To this end, a Lagrangian technique was proposed that could be im-57

plemented at any scale [Benson and Meerschaert , 2008]. The algorithm accounts for the58

increased probability that nearby particles will have for co-location (mixing) and reaction.59

It is the exact calculation of reaction probability that allows explicit simulation of poor60

mixing and reactant segregation. These numerical results were shown to correspond to61

perturbed continuum reaction-diffusion equations [Bolster et al., 2012; Tartakovsky et al.,62

2012]. However, to date the Lagrangian method has never been shown to converge to a63

specific governing equation. It is therefore a phenomenological procedure: the particle64

methods can be used to solve for diffusion-limited reaction, but exactly what is being65
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solved? And what do changes in the numerical parameters represent in terms of physical66

properties and numerical error? Our goal here is to show that the Lagrangian method67

proposed by Benson and Meerschaert [2008] does correspond to a continuum equation of68

transport and reaction, and that the numerical errors can be quantified and controlled by69

the user.70

The classical (continuum) approach to describe the fate and transport of a chemical71

species is the advection-diffusion-reaction equation. In the special case of constant advec-72

tion, the system can be transformed by a Galilean transformation and described by the73

simpler diffusion-reaction equation (DRE)74

∂Ci/∂t = ∇ · (D∇Ci)− ri (1)

where Ci is the concentration of the chemical species i [mol/Ld], D is the diffusion co-75

efficient [L2/T], and ri is the net rate of decay of the species [mol/LdT]. Here, d is the76

dimension of the system (d = 1, 2, 3).77

For the case of radioactive decay, A → C, the rate is typically described by the linear78

rate ri = kdCA, and the equation can be solved by means of Lagrangian particle tracking in79

a straightforward manner [Sherman and Peskin, 1986; Kinzelbach, 1987]. In the context of80

this paper we are interested in more complicated case of a bi-molecular reaction described81

by82

A+B → C (2)

For this type of reaction, the rate is usually modeled by the (nonlinear) law of mass83

action, i.e.84

ri = kCACB (3)

where i = A,B, and k is the constant rate coefficient [Ld/ mol T].85
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The modeling of coupled advection-diffusion-reaction equations with bi-molecular reac-86

tion rate (3) is the subject of extensive research [Dentz et al., 2011]. Benson and Meer-87

schaert [2008] described a novel particle tracking (PT) approach for bi-molecular reactive88

flow in a one-dimensional case with zero advection and a constant diffusion coefficient, and89

demonstrated that the PT approach is capable of capturing the continuum of well-mixed90

to incomplete mixing regimes. In short, within each time step, the PT approach moves91

particles by random walk and then annihilates part of them at a probability related to92

their distance apart. A novel feature of the PT approach is that it is purely Lagrangian93

and grid-less. As such, it can accurately model incomplete mixing at all scales. This is94

in contrast with approaches that assume complete mixing within the domain [Gillespie,95

2000] or within volume elements [Isaacson, 2008]. In addition, the PT approach has an96

advantage over the particle-grid approach of Tompson and Dougherty [1992], because the97

latter involves calculation of the concentrations at grid points at every time step in order98

to compute the reaction term. This is no longer needed within the purely PT scheme,99

and the interpolation error involved with such a calculation is avoided. The analogy100

between a random walk and the diffusion equation is well known [e.g., Einstein, 1906;101

Chandrasekhar , 1943; Kinzelbach, 1987]. It remains to be shown that the addition of the102

particle annihilation within the PT approach reflects the reaction term correctly. In other103

words, we need to show that there is a mathematical analogy between the PT approach104

and the DRE (1) in the limit of an infinitely small time step. Furthermore, we generalize105

the PT approach to arbitrary dimension d and try to clarify some of the aspects of the106

PT approach, with special care regarding numerical errors and the meaning of the initial107

condition, namely the initial particle numbers.108
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2. Description of the PT simulation

The PT approach purports to solve (1) for a specified domain with appropriate initial109

and boundary conditions. In the PT approach, the particles of species A represent the110

concentration of that species, CA, in a statistical manner. In other words, the specific111

locations of the particles in a specific simulation are usually meaningless; it is the ensemble112

average and other spatial and temporal statistical properties that are investigated.113

2.1. Initialization of the PT

The primary advantage of the PT approach over deterministic approaches is in cases114

where the initial condition is non-deterministic and is given in terms of statistical param-115

eters. A good example for this case is a system with an initial condition of a uniform116

mean concentration with some noise around it. Suppose that the mean concentration is117

equal for both species and given by118

⟨Ci(x, t = 0)⟩ = C0 (4)

where ⟨· · · ⟩ denotes the ensemble average, i = A,B, and C0 is a uniform prescribed initial119

concentration over the entire domain Ωd. Initially, the concentration fluctuations over the120

ensemble average, i.e. C ′
i = Ci − ⟨Ci⟩, are assumed to have a short-range correlation that121

can be mathematically described by a Dirac-delta function,122

⟨
C ′

i(x, t = 0)C ′
i(y, t = 0)

⟩
= σ2ldδ(x− y). (5)

We note that the cross-correlation of the fluctuations is determined by the constant σ,123

denoting the magnitude of the concentration fluctuations [mol/Ld], and the constant l,124

denoting the length scale of these fluctuations [L]. The use of Dirac-delta function is known125

to be a good approximation of short-range correlations, such as Gaussian correlation and126
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exponential correlation [Neuweiler et al., 2003; Bolster et al., 2009; Tartakovsky et al.,127

2012].128

For a domain of volume Ωd, this initial condition is modeled in the PT system by129

spreading N0 particles in the domain in a random manner. It has been shown by statistical130

analysis [Paster et al.] that the initial condition ((4)–(5)) dictates the initial density of131

the particles,132

N0

Ωd
=

C2
0

σ2ld
. (6)

In other words, the total number of particles is correlated to the initial condition: the133

more noise in the initial condition, the less particles need to be spread. Note that if the134

system is always completely smooth (i.e., perfectly mixed), then σ → 0, and the problem135

may not be satisfactorily solved using the PT approach, because the large number of136

particles can be impractical. We define the mass of a single particle (the amount of moles137

described by a single numerical particle) by mp [mol/particle]. As all particles carry the138

same mass, it is given by the total mass in the system divided by the number of particles,139

mp = C0Ω
d/N0. (7)

Because we spread N0 particles for each species, we end up with a total number of 2N0140

particles in the domain. Due to the random nature of the spread of the particles, there141

is no correlation initially between the locations of the A particles and the B particles,142

reflecting the initial condition143

⟨C ′
A(x, t = 0)C ′

B(y, t = 0)⟩ = 0. (8)
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2.2. Description of PT steps

A single simulation time step in the PT approach describes the change of state of the144

system between t to t+∆t. It is composed of two sub-steps: random walk and reaction.145

The random walk is an implementation of a Langevin equation,146

xj(t+∆t) = xj(t) + ξj
√
2D∆t (9)

where xj is the j-th component of the particle location (j = 1, . . . , d), and ξj is a random147

number of standard normal distribution, with zero mean and unit variance, i.e. ξj ∼148

N (0, 1). Thus, for each particle, its location is updated in all d dimensions by random149

values that account for the diffusion in this time step.150

The reaction is then implemented by sequentially looping through all possible AB cou-151

ples of particles in the system. Here, an AB couple is any combination of one A particle152

and one B particle (order being immaterial). For each such couple, a probability of153

forward reaction during the time step between those particles is then given by154

pf = kmp∆t v(s) (10)

where s is the distance between the particles, and v(s) is the co-location probability density155

function (pdf). This is the pdf for two particles to co-locate over the time step, which for156

Brownian motion diffusion with coefficient D is given by [Benson and Meerschaert , 2008]:157

v(s) =
1

(8πD∆t)d/2
e−

s2

8D∆t . (11)

The probability of reaction, calculated by (10), is the probability of the AB couple to158

annihilate in this time step. Technically, this is done by producing a random number of159

uniform distribution ξ ∼ U(0, 1), and comparing these probabilities. Then, if pf > ξ, the160

D R A F T August 24, 2012, 1:42pm D R A F T



X - 10 PASTER ET AL.: PARTICLES AND DIFFUSION-REACTION

particles are annihilated, i.e. removed from the system. The choice of time step must be161

such that pf < 1 is assured.162

If one is interested in the fate of the product of the reaction (or in the case of backward163

reaction), a single C particle is placed into the domain. The location of this particle is164

randomly distributed, with the mean location at the mid point between the annihilated165

A,B particles, and with a variance ofD∆t. It may be advected and diffused by a Langevin166

equation just as the A,B particles, and, depending on the reversibility of reaction, have167

a certain probability to decay back into A,B particles in some future time step.168

The PT steps are repeated until the time for simulation end is approached, or, in169

the case of irreversible reaction, until all particles are consumed by the reaction. The170

PT simulation is repeated in a Monte Carlo fashion, so that results can be statistically171

analyzed with any specified degree of confidence. Typically, one would be interested in172

determining the average concentration in the system as a function of time, but other173

parameters, such as the concentration variance, or higher moments, can be computed as174

well.175

3. The analogy of the PT approach with the DRE

We now show the analogy between the numerical PT scheme and the DRE equation.176

Start by defining WA(x, t)dx as the expected number of A particles in the infinitesimal177

volume dx centered at x. The expected density of particles is then given by WA(x, t),178

such that
∫
Ωd WA(x, t)dx = N(t), where N is the total number of the A particles. For179

t = 0, N(t) = N0.180

An initial distribution WA(x, t = 0) in a specific simulation is the sum of N0 delta181

functions, positioned randomly in the domain Ωd. At later times, the distribution is182
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smeared by the diffusion and reduced by the reactions. It is worth noting that the density183

distribution is similar in essence to a probability density function, in the sense that it is184

non-negative, but different in the sense that the integration over the distribution does not185

sum to unity, but rather to N(t).186

After the particles have moved by the random walk, the expected particle density is187

the sum of the densities of all particles multiplied by the probability that they jump to188

location x. This sum, neglecting boundary effects, is given by189

W ∗
A(x, t+∆t) =

∫
WA(y, t)

1

(4πD∆t)d/2
e−

(x−y)2

4D∆t dy (12)

where the star denotes the resulting intermediate distribution, before the reaction sub-step190

takes place. A similar expression is found for W ∗
B, by replacing A by B in (12).191

Next, the reaction takes place and is expected to annihilate a fraction of this particle192

density, such that the new distribution is given by193

WA(x, t+∆t) = W ∗
A(x, t+∆t)−∆W ∗

A(x, t+∆t) (13)

where ∆W ∗
A(x, t + ∆t) is the annihilated density. To express this density, we consider194

∆W ∗
A(x, t+∆t)∆x, the number of particles in the volume [x,x+∆x) that will be anni-195

hilated. Clearly, if one A particle existed in this segment, and only one B particle would196

have been in its proximity, this probability would have been simply pf , the forward reac-197

tion probability between two particles (10). However, neither the number of A particles198

in this segment, nor the number of nearby B particles, is necessarily unity. Therefore we199

need to multiply pf by the actual number of A and B particles, and sum over the whole200

domain by means of integration. We can now write201

∆W ∗
A(x, t+∆t) = W ∗

A(x, t+∆t)

∫
pf (x− x′)W ∗

B(x
′, t+∆t)dx′ (14)
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with pf (x− x′) = kmpv(x− x′)∆t. Substituting (12) and (14) into (13), we get202

WA(x, t+∆t) =

W ∗
A(x, t+ dt)

[
1− kmp∆t

∫
W ∗

B(x
′, t+∆t)v(x− x′)dx′

]
=∫

WA(y, t)
1√

4πD∆t
e−

(x−y)2

4D∆t dy

×
[
1− kmp∆t

∫
v(x− x′)dx′

∫
WB(y

′, t)
1√

4πD∆t
e−

(x′−y′)2
4D∆t dy′

]
(15)

Expanding in a Taylor series for WA(x, t) we get, for the one dimensional case203

WA(y, t) = WA(x, t) + ∆x
∂WA

∂x
+

(∆x)2

2!

∂2WA

∂x2
+ . . . (16)

For the two-dimensional case, we get204

WA(y, t) = WA(x, t) + ∆x1
∂WA

∂x1

+∆x2
∂WA

∂x2

+

1

2!

[
(∆x1)

2∂
2WA

∂x2
1

+ 2∆x1∆x2
∂2WA

∂x1∂x2

+ (∆x2)
2∂

2WA

∂x2
2

]
+ . . . (17)

where ∆x = y − x = (∆x1,∆x2). For the three-dimensional case,205

WA(y, t) = WA(x, t) + ∆xj
∂WA

∂xj

+
1

2!

[
(∆xj)

2∂
2WA

∂x2
j

+

2∆x1∆x2
∂2WA

∂x1∂x2

+ 2∆x1∆x3
∂2WA

∂x1∂x3

+ 2∆x2∆x3
∂2WA

∂x2∂x3

]
+ . . . (18)

where Einstein notation is applied and ∆x = (∆x1,∆x2,∆x3) = y − x. Substitution of206

the appropriate Taylor expansion (16-18) into the integral in (15) yields207

∫
WA(y, t)

1

(4πD∆t)d/2
e−

(x−y)2

4D∆t dy = WA(x, t) + D∆t
∂2WA

∂xj∂xj

+ O((D∆t)2) (19)

and similarly208

∫
WB(y

′, t)
1

(4πD∆t)d/2
e−

(x′−y′)2
4D∆t dy′ = WB(x

′, t) + D∆t
∂2WB

∂xj∂xj

+ O((D∆t)2). (20)
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By substituting (19) and (20) into (15) we get209

WA(x, t+∆t) =

[
WA(x, t) +D∆t

∂2WA

∂xj∂xj

+ . . .

]
×{

1− kmp∆t

∫
v(x− x)dx′

[
WB(x

′, t) +D∆t
∂2WB

∂xj∂xj

+ . . .

]}
=

WA(x, t) +D∆t
∂2WA

∂xj∂xj

− kmp∆tWA(x, t)

∫
v(x− x′)WB(x

′, t)dx′ +O((∆t)2) (21)

Taking the integral on the RHS of (21), expanding WB once more in a Taylor series as210

in (16-18), and using (11), we find211

∫
v(x− x′)WB(x

′, t)dx′ =∫
1

(8πD∆t)d/2
e−

(x−x′)2
8D∆t WB(x

′, t)dx′ =

WB(x, t) + 2D∆t
∂2WB

∂xj∂xj

+ . . . (22)

Substituting (22) into (21), subtracting WA(x, t) from both sides, and dividing by ∆t,212

we find213

WA(x, t+∆t)−WA(x, t)

∆t
= D

∂2WA

∂xj∂xj

− kmpWA(x, t)WB(x, t) + O(∆t) (23)

As ∆t → 0, this equation becomes214

∂WA

∂t
= D

∂2WA

∂xj∂xj

− kmpWAWB. (24)

Finally, we recognize that the density of the particles WA (of units [L−d]) can be ex-215

pressed in terms of concentration of the species (of units [mol/Ld]) by simply multiplying216

it by the mass of a single particle mp, i.e.217

CA = WAmp. (25)
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Hence, multiplying both sides of (24) by mp we get the one-dimensional DRE for con-218

stant D,219

∂CA

∂t
= D∇2CA − kCACB. (26)

Thus, we have shown that the PT approach, at the limit of ∆t → 0, converges to the220

DRE.221

4. Discussion and Conclusions

The utility of the PT approach for non-reactive particles is clear: the approach does not222

suffer from numerical dispersion and is potentially highly parallelizable. The problem of223

using the approach for reactive particles was first addressed by Tompson and Dougherty224

[1992], who discretize space into bins, count particles, convert to concentrations, calculate225

classical reactions, and re-convert concentrations to particles. The PT method of Benson226

and Meerschaert [2008] obviates the particle/concentration conversion at each time step,227

and eliminates the assumption of perfect mixing at the bin (or Eulerian block) scale. On228

the other hand, the PT approach had not been linked definitively to a differential equation229

of transport and reaction. In this work we were able to show the analogy between the230

diffusion-reaction equation (DRE) and the PT approach. This was done at the limit of231

∆t → 0, i.e. an infinitely small time step. To this aim, we defined a density function232

of the particles, and described its evolution over time due to random walks and reaction233

between particles. Using Taylor series expansions and basic mathematical concepts we234

were able to show that the density is described by the DRE at the ∆t → 0 limit. This235

was done for an arbitrary physical dimension (d = 1, 2, 3). We also showed that the error236

induced by the scheme is O(∆t).237
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This analysis strictly speaking is limited to zero (or spatially constant) advection,238

whereas transport in natural porous media is typically characterized by a velocity field that239

can vary in space. Derivation of a particle tracking approach for solving the advection-240

diffusion-reaction in porous media is therefore a very important next step that is beyond241

the scope of this paper. It appears that the appropriate approach for this problem is to242

perform operator splitting, i.e., take the advective, diffusive, and reactive steps sequen-243

tially. As shown theoretically and experimentally by Taylor [1953], advection, even when244

heterogeneous, does not cause mixing of solutes, only diffusion does. Therefore, as long as245

the time step is sufficiently small that any errors induced by operator splitting are small,246

it should be sufficient to show that the reaction-diffusion part of the particle approach is247

correctly modeling the equation. This remains to be proven.248
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