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Abstract15

We use a particle-tracking method to simulate several one-dimensional bi-16

molecular reactive transport experiments. In our numerical scheme, the17

reactants are represented by particles: advection and dispersion dominate18

the flow, and molecular diffusion dictates, in large part, the reactions. The19

particle/particle reactions are determined by a combination of two proba-20

bilities dictated by the physics of transport and energetics of reaction. The21

first is that reactant particles occupy the same volume over a short time22

interval. The second is the conditional probability that two collocated par-23

ticles favorably transform into a reaction. The first probability is a direct24

physical representation of the degree of mixing in an advancing interface be-25

tween dissimilar waters, and as such lacks empirical parameters except for26

the user-defined number of particles. This number can be determined ana-27

lytically from concentration autocovariance, if this type of data is available.28

The simulations compare favorably to two physical experiments. In one,29
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the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB)30

from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and ani-31

line (AN), was measured at the outflow of a column filled with glass beads32

at different times. In the other, the concentration distribution of reactants33

(CuSO4 and EDTA4−) and product (CuEDTA2−) were quantified by snap-34

shots of light transmitted through a column packed with cryolite sand. These35

snapshots allow us to estimate concentration statistics and calculate the re-36

quired number of particles. The experiments differ significantly due to a37

∼ 107 difference in thermodynamic rate coefficients, making the latter ex-38

periment effectively instantaneous. When compared to the solution of the39

advection-dispersion-reaction equation (ADRE) with the well-mixed reaction40

coefficient, the experiments and the particle-tracking simulations showed on41

the order of 20% to 40% less overall product, which is attributed to poor42

mixing. The poor mixing also leads to higher product concentrations on the43

edges of the mixing zones, which the particle model simulates more accurately44

than the ADRE.45

Keywords: Lagrangian Particle Method, Chemical Reactions46

PACS: 02.50.Ey, 02.50.Ga, 02.70.Ns, 05.10.Gg47

1. Introduction48

As groundwater moves through an aquifer, it often undergoes chemical49

reaction as it mixes with chemically dissimilar water or encounters reactive50

solids. The reactions are local phenomena, but predictions of reactive trans-51

port are often made at much larger scales. This mismatch of scales has52

been found to degrade the predictions of reaction. In particular, the reaction53

rates at the larger scale are found be be much less than those measured in54

the laboratory [1, 2, 3, 4]. To make predictions, a Fickian transport equation55

is typically coupled to a chemical reaction equation to form the advection-56

dispersion-reaction equation (ADRE):57

∂Ci/∂t = −∇ · (uCi −D∇Ci)− ri (1)

where Ci(x, t) is the concentration, t is time, u(x, t) is the Darcy scale58

pore water velocity, D(x, t) is the hydrodynamic dispersion tensor, and59

ri(x, t, C1, C2, ...) is the reaction rate of species i. The reaction rate, a cru-60

cial term in ADRE, is commonly estimated from batch tests under perfect61

2



  

mixing conditions of the same reaction [5, 6, 4, 7, 8, 3]. When this reac-62

tion rate is used in Eq. (1) to predict miscible displacement and reaction63

in column- and field-scale tests, the observed reaction rate is generally much64

smaller [6, 9, 10, 11]. An effective reaction coefficient (< 1), is commonly65

applied to the last term of ADRE to account for the over-estimated reaction66

[12, 7, 6, 13]. Unfortunately, the coefficient value is difficult to determine67

and varies from case to case (and scale to scale) [6, 8].68

Laboratory and numerical experiments (e.g., [8, 5, 12]) revealed that69

incomplete mixing is primarily responsible for the reduced reaction rates.70

The dispersion term in Eq. (1) simultaneously describes both spreading of,71

and mixing among, solute fronts between dissimilar water. But in real-world72

and synthetic tests, the spreading rate is found to be greater than the mixing73

rate [14, 11, 15, 16, 17, 18, 19]; therefore, an equation that correctly simulates74

spreading will overpredict the mixing of the water. For example, Kapoor et al.75

[8] theorized (and showed numerically) that the simple bimolecular reaction76

(A + B → C) for Poiseuille flow and Taylor dispersion within a single tube77

would result in reduced reaction relative to the well-mixed rate. In a series78

of numerical and laboratory experiments, Raje and Kapoor [5] constructed a79

glass bead-filled column and showed that the product concentration in the80

column was approximately 40% less than what was predicted by Eq. (1) in81

one-dimension (1D). Gramling et al. [12] found overall product production82

of approximately 20% less in their column than predicted by Eq. (1) based on83

experiments at different flow velocities. These observations point to several84

deficiencies of the ADRE: i) the deterministic concentration neglects small-85

scale fluctuations [5, 12, 7, 20]; ii) the reactants are assumed to be well-mixed,86

which is unusual under natural conditions [6, 20, 21], and iii) the dispersion87

term is forced to account for both the spreading and the dilution, or mixing,88

of the species [22, 23].89

The mixing that leads to reaction is often limited to transverse dispersion90

and diffusion. In porous media, these mechanisms are orders-of-magnitude91

lower than longitudinal dispersion [5, 24, 22, 14]. In recent studies, both92

Edery et al. [20] and Tartakovsky et al. [21] noticed that the slow diffusion93

of the reacting species into and out of plume boundaries determines the re-94

action rate and explains why averaged concentration models over-predict the95

amount of reaction. A variety of studies (e.g., [25, 26, 27, 28]) demonstrate96

that reactants are not perfectly mixed and diffusion is a limiting process even97

in free fluid flow without the structure imposed by porous media.98

A series of theoretical studies [6, 29, 9] showed that the upscaled equations99
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of reaction in the presence of diffusion are different from the perfectly-mixed100

equation and uniquely defined by the transport mechanism, These studies101

showed that it not necessarily proper to arbitrarily combine transport and102

reaction equations. Various reactive transport models have been proposed103

[30, 31, 32, 10, 33, 4, 21, 34] and a variety of laboratory (e.g.,[5, 12, 35]) and104

field studies (e.g., [36, 37, 38, 39, 40]) have been conducted to test the validity105

of various modeling approaches that separately account for mixing, reaction,106

and transport. One approach is a Lagrangian particle tracking (PT) method.107

The general Lagrangian framework has given rise to several algorithms that108

represent smaller-scale physics in different ways. For example, the smoothed109

particle hydrodynamics method simulates a given partial differential equation110

(PDE) on moving particles instead of on a fixed grid [41, 42, 10]. This method111

rests on the assumption that the chosen PDE for transport and reaction is112

the correct one at some smaller scale.113

A different Lagrangian model from Benson and Meershaert [29] makes no114

assumption about the form of the governing equation for reaction. Their PT115

method simulates chemical reactions through probabilistic rules of particle116

collisions, interactions, and transformations. The method is based on an117

explicit calculation of the probability that any two particles will be co-located118

in any time interval, in combined with the independent probability that two119

particles, upon co-location, will react. The second probability is the well-120

mixed reaction rate scaled appropriately by the number of particles and the121

volume associated with that rate. Benson and Meerschaert’s [29] method122

is an extension of Gillespie’s [43], which uses a well-mixed assumption to123

calculate the probability of particle co-location (and leads to the classical124

mass-action reaction equations [44]). It was shown recently by Paster et al.125

[45] that at the limit of infinitely small time step and infinite number of126

particles, the PT method converges to the well-mixed ADRE (1) using the127

classical law of mass action for a bimolecular reaction.128

Other approaches have also been proposed, such as different forms of129

underlying transport [9, 46, 47], time dependent reaction rate coefficients130

[48, 49], stochastic perturbation models [7], and multi-rate mass transfer131

[50, 51]. These models can be calibrated to simulate the reactive transport132

successfully by reproducing anomalous flux-averaged breakthrough curves133

[52, 21]. However, as indicated by Tartakovsky et al. [21], these approaches134

require additional effective parameters, which can only be obtained from135

calibration with experimental data.136

In this study, we test the hypothesis that the bulk of the experimental137
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observations can be explained by the application of simple, physically-based138

rules of transport and reaction within a Lagrangian framework. The trans-139

port algorithm is based on Fickian dispersion with a mean advective drift, and140

the bimolecular reactions use the PT method from Benson and Meerschaert141

[29], in which the reaction probability only depends on the thermodynamic142

rate of the chemical reaction and the distribution of particles in both space143

and time.144

2. Methods145

2.1. Summary of Column Experiments146

We consider the column experiments conducted by Raje and Kapoor [5]147

and Gramling et al. [12], which are widely regarded as benchmarks of reac-148

tive transport in porous media [53, 20, 49, 46]. Raje and Kapoor [5] used149

a spectrophotometer to obtain the outflow concentrations of product from150

the transport and reaction of 1,2-naphthoquinone-4-sulfonic acid (NQS) and151

aniline (AN) in a column filled with glass beads. They ran two experiments,152

each with different flow rates and concentrations of reactants. Gramling et153

al. [12] took images of light transmitted through a colorimetric reaction be-154

tween aqueous CuSO4 and EDTA4− within a translucent chamber packed155

with cryolite sand to observe the concentration distribution of compounds156

within the column. They ran three experiments at three different velocities157

with all other parameters held constant. The physical setup of all of the ex-158

periments considered here was similar. Initially, the columns were saturated159

with one species at concentration C0, and the other reactant was introduced160

at the inlet at a constant rate and the same constant concentration C0.161

Peclet numbers of both experiments were high, but Reynolds numbers were162

sufficiently low to ensure laminar flow.163

Before performing the column experiments, the reaction rate constants164

were obtained with high confidence from well-mixed batch experiments. Dis-165

persion coefficients at each velocity were measured via conservative tracer,166

and diffusion coefficients were gathered from the literature. Hydrodynamic167

dispersion dominated over diffusion in spreading the inert tracer at all veloc-168

ities. The parameters from the two experiments under different flow condi-169

tions are summarized in Table 1.170

Primarily because of the different reactions rates, different solution meth-171

ods were used to evaluate the experimental results in these two studies, even172

though both assumed one-dimensional flow. For a well-mixed system, the173
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law of mass action for the irreversible reaction A + B → P can be expressed174

as rA = rB = −rP = dCA/dt = −kfCACB. Both groups used this law175

in the ADRE (1) to compare to experimental results. Raje and Kapoor [5]176

solved the ADRE (1) at the outflow using the finite difference (FD) scheme.177

Gramling et al. [12] used an analytical solution by assuming the reaction was178

instantaneous and the boundaries remote. Their solution is179

CP

C0

=
1

2
erfc

( |x− ut|√
2Dt

)
, (2)

where CP (x, t) is product concentration, and C0 is the constant flux concen-180

tration of the injected reactant at the inlet boundary [12]. We also use an FD181

solution to compare to Raje and Kapoor’s [5] data and the analytic solution182

(2) for Gramling et al.’s [12] data.183

Simulation Gramling et al. Raje and Kapoor
Length (cm) 30 30 30 18 18

Rate Constant (M−1s−1) 2.3× 109 2.3× 109 2.3× 109 4.38× 102 4.38× 102

Flow Rate (mL/s) 0.0445 0.267 2.5 - -
Pore Velocity (cm/s) 0.0121 0.0832 0.670 0.096 0.070

Dispersion Coeff. (cm2/s) 1.75× 10−3 1.45× 10−2 1.75× 10−1 3.17× 10−2 2.31× 10−2

Diffusion Coeff. (cm2/s) 7.02× 10−7 7.02× 10−7 7.02× 10−7 4.6× 10−6 4.6× 10−6

Concentration (M) 0.02 0.02 0.02 5.0× 10−4 2.5× 10−4

Table 1: Experimental parameters.

2.2. Methodology of Particle Reaction and Transport184

Our particle tracking algorithm separately simulates transport and reac-185

tions in any given time step. For reaction, the model assumes that molecular186

diffusion dictates the probability that reactants can mix and react at the187

pore-scale. The probability density for particle co-location is calculated as188

v(s) =
∫

fA(x)fB(s + x)dx, where fA(x) and fB(x) denote the densities of189

the motions of A and B particles away from their current positions, and190

s is the initial particle separation distance [29]. For a time step of dura-191

tion ∆t, the Gaussian local diffusion has variance 2Dm∆t, where Dm is the192

molecular diffusion coefficient, and the co-location density is a convolution193

of two of these Gaussians, which is also Gaussian but with variance 4Dm∆t.194

For computational efficiency, Benson and Meerschaert [29] approximated the195

Gaussian with a piecewise linear “tent” function with the same variance:196

v(s) = max

{
0,

−|s|
24Dm∆t

+ (24Dm∆t)−1/2

}
. (3)
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The differential co-location probability v(s)ds is approximated with a197

finite volume v(s)∆s and combined with the thermodynamic probability to198

find the total probability of reaction using199

200

Prob(react) = kf∆tΩC0v(s)/N0 (4)

where kf [M−1LdT−1] is the reaction rate constant, ∆t is the time interval, Ω201

[Ld] is the column size in d-dimensions, C0 is the initial concentration of the202

resident (say B) species [ML−d], and N0 is the initial number of B particles203

[29]. The rate kf is the rate associated with a reaction volume, taken here to204

be the volume associated with a particle (discussed more in section 2.3). At205

every time step, each A particle is selected sequentially to see if it will react.206

B particles that are sufficiently close are searched, and the probability of207

co-location is calculated, one B particle at a time. The combined probability208

is compared with a random number between 0 and 1. If the probability of209

the reaction is larger than the random number, the two particles are removed210

from the domain and a P particle is placed randomly between the initial A211

and B particle locations.212

The advection-dispersion process for each particle is simulated over a time213

step of duration ∆t using the approximate Langevin equation [15, 54, 55, 56]214

215

X(t + ∆t) = X(t) + u∆t + Z ·
√

2D∆t, (5)

where X(t) is the location of a particle at time t, u is the average pore water216

velocity, Z is a standard Normal random variable, and D is the reported dis-217

persion coefficient. We substitute a shifted and scaled uniform [0,1] random218

variable
√

24D∆t(U(0, 1) − 1/2) for the last term [6, 29]. The selection of219

∆t is based on two criteria: i) the maximum reaction probability (Eq. (4)220

with s = 0) is less than unity to fulfill the definition of a probability, and221

ii) the time interval is relatively small compared to total residence time, so222

that a sufficient number of random motions are completed to agree with the223

analytical solution of (1) for ri= 0 (Fig. 1).224

The initial conditions and boundary conditions are based on the experi-225

mental setup. They can be expressed as: CB(x, 0) = C0 and CA(x, 0) = 0 for226

x ≥ 0 (species B occupies the domain uniformly and there is no A species227

initially); CA(0, t) = C0 for t ≥ 0 (constant concentration of A species input228

at the upstream end); and ∂CA,B(L, t)/∂x = 0 for t ≥ 0 at the column end229

L.230
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C
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0

Figure 1: Verification of particle tracking for non-reactive transport. The red dots are
experimental column-width averages of snapshots of CuEDTA2− at 1023 seconds from
[12]. The blue and black solid lines are analytical solutions of the ADE for two species
flowing through a column in which one species saturates the column initially, and the other
enters at constant concentration from the upstream (x = 0) end. The red and magenta
lines with error bars represent the simulations using PT method.
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For every time step, the particles move in the column based on Eq. (5),231

and the reaction of each A particle in the domain is checked with possi-232

ble B particles through Eq. (4). This process is repeated for every trans-233

port/reaction time step. Computation of the distances between every A and234

B particle is costly if a large number of particles are simulated. To improve235

efficiency, we apply the KD-tree technique of Bentley [57] as implemented by236

Tagliasacchi [58]. A KD-tree (short for K-dimensional) is a binary tree for237

efficient storage of neighbor information to be retrieved by searches [57]. The238

KD-tree algorithm partitions space into K-dimensional blocks with particles239

along edges, and maps the adjacent blocks in a tree structure so that a search240

can march orderly through adjacent blocks. For N particles at any time step,241

creating the tree takes O(N ln N) operations, and each search takes O(N)242

operations so that each reaction time-step goes like O(N ln N) instead of243

O(N2) for a naive search.244

2.3. Methodology of Instantaneous Reaction Simulation245

A cursory look at Eq. (4) would suggest that instantaneous reactions246

(kf →∞) would require ∆t → 0 to keep the probability less than unity. This247

is clearly impossible for the numerical method, so we seek an approximation.248

Benson and Meerschaert [29] showed that the coefficient kf incorporates both249

the thermodynamic (well-mixed) rate and the volume associated with that250

rate. Perfect mixing (say, by stirring a beaker) eliminates concentration251

fluctuations by physical homogenization [59]. At some small volume in an252

un-stirred system, the point-wise law of mass action is assumed to be valid,253

and we may interpret this as the finite volume associated with a particle,254

with the rate kf is tied to that volume. Therefore, we require that coincident255

particles (s = 0) will react with probability one for essentially instantaneous,256

or high-kf reactions. In this case, plugging Prob(react) = 1 and v(s = 0)257

into Eq. (4) leaves:258

kf (∆t)1/2 = N0(24D)1/2/(Ω[B]0). (6)

All of the parameters on the right hand side are known; therefore, this equa-259

tion gives a constraint on the combination of effective kf and ∆t that may260

be used to simulate an instantaneous reaction.261

To determine whether a given reaction fits within this “instantaneous”262

criteria, we may check the Damkohler number, which compares the timescales263

of reaction relative to transport processes (e.g., dispersion, diffusion). Dentz264
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et al. [48] stated that the effective rate can be virtually any fraction of265

the local rate depending on the Damkohler number, and the conclusion is266

consistent with the fact that laboratory measured kinetic rates can be orders267

of magnitudes larger than their field measured counterparts (e.g., [60, 61]).268

The diffusive Damkohler number is a dimensionless ratio of diffusion time269

scale (tD = l2/2Dm) over reaction time scale (tr = 1/C0kf ) [59, 23, 21, 56],270

so that Da = tD/tr = C0kf l
2/2Dm, where l is the size of concentration271

perturbations (e.g., [59, 23, 21]). The length l is typically taken as the size of272

a pore, but may be as large as the domain size [59, 6, 21]. If the Damkohler273

number is very large, the time scale of diffusion is much longer than that274

of the reaction and the reaction can be deemed as instantaneous. The Da275

values range from 250 to 500 for Raje and Kapoor’s experiments, and 9×105
276

to 5 × 108 in Gramling et al.’s experiments, assuming the length of l is the277

size of porous media particle [5]. Based on these numbers, we simulate the278

latter experiments with the instantaneous criteria defined by Eq. (6).279

3. Results and Discussion280

We simulated the two experiments by Raje and Kapoor [5] and three by281

Gramling et al. [12] by reproducing the two breakthrough curves (BTC)282

from the former and six concentration profiles from the latter. To help dis-283

tinguish the experiments from the two groups, we use different symbols for284

the experimental results in the following plots. In addition, because there is285

randomness in the initial positions, movements, and reaction locations for the286

particles, each simulation will have some randomness in the particle densities287

at any time. To translate the particle numbers to concentrations for compar-288

ison to experiments, the particle numbers are counted at a length interval of289

approximately 0.5 cm (half the length of movement due to dispersion within290

a time step,
√

6D∆t) in each simulation. Then each PT simulation is run291

from 10 to 100 independent times to calculate the concentration ensemble292

means and standard deviations (error bars in the graphs). This procedure is293

similar to simulating conservative solutes with the PT method [54].294

Figure 2 shows the PT simulations and measurements from Raje and295

Kapoor’s [5] experiments. We use an initial number of particles in each296

simulation of N0 = 1000 and a time step of ∆t = 1 second. All other297

parameters are the same as those reported for the experiment, as shown298

in Table 1. The number of initial particles was not rigorously optimized,299

but rather chosen by visual fit. Concentration spatial covariance data was300
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not available to allow a priori estimation (see section 3.3). The agreement301

between the simulations and the data is quite good considering that the only302

parameter with any flexibility is the initial particle number N0.303

In our simulation of the experiments by Gramling et al. [12], the reaction304

is assumed to be instantaneous. Figures 3 and 4 illustrate simulation results305

and observations for two series of the experiments. The snapshots of the306

sand columns were taken in 2-D and the concentrations were averaged across307

the column to give a single concentration in the longitudinal (transport)308

direction. The first series (Fig. 3) is a sequence of snapshots of a single309

experiment run with a constant flow rate of 2.67 ml/min. The second series310

(Fig. 4) are single snapshots from three experiments conducted at different311

flow rates. Our simulations here differ only in that the time step sizes used312

(∆t =1, 0.1, and 0.01 seconds) correspond to the different flow rates (2.7313

ml/min, 16 ml/min, and 150 ml/min, respectively). All time step lengths314

follow the time step rules described above in Eq. (6). For simulations, the315

initial particle number is N0 = 600. The simulation of the instantaneous316

reaction and the a priori determination of particle numbers are discussed317

more specifically in Sections 3.2 and 3.3.318

Most of the experimental data are very close to the simulated means and319

nearly all are within one standard deviation (Figs. 2, 3, and 4). One can also320

discern the over-prediction by the ADRE (1) in product production, because321

the analytic solution (2) has a peak concentration at all times of CP /C0 = 0.5322

[12]. In addition, we reproduce the results of Figure 6a in Gramling et al.323

[12] depicting the cumulative mass of product formed in one experiment and324

simulated mass from the PT method, as well as the analytical solution of325

a well-mixed system (Fig. 5). The graphs of cumulative product mass in326

experiments at all three velocities look very similar. To be consistent with327

previous simulation work (e.g., [53], [49]), we only present the results for328

the flow rate of 2.7 mL/min. All of our simulated rates of accumulation of329

reaction product are in close agreement with the experimental measurements.330

The variability of the simulated concentrations, reflected in the standard331

deviations, is directly linked to particle numbers and incomplete mixing. As332

the number of particles goes to infinity, concentration variability goes to zero333

and the simulated reaction is perfectly mixed [29]. As the number gets very334

small, all of the reactant mass is in a few particles that are unlikely to come335

together. For a reasonable number of particles, reactions occur preferentially336

at interfaces, leading to increased segregation and poorer mixing. Reactions337

can only progress by diffusion or dispersion to the interface. In these column338
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Figure 2: Simulations of product breakthrough curves from Raje and Kapoor [5]. Black
squares are observations from the experiments, blue lines with error bars (mean values and
plus/minus one standard deviation) are simulations using the PT method. a) Run 1: initial
concentration of 0.5 mM, pore velocity = 0.096 cm/s. b) Run 2: initial concentration of
0.25 mM, pore velocity = 0.07 cm/s.
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simulations, the fluctuations are thought to arise from non-uniformity in339

the pore-scale flow field [5]. Conceptually this is similar to a system where340

diffusion is the sole mode of transport [59], in which growing “islands” of341

reactants arise due to initial areas that have fluctuations in the initial reactant342

concentrations. The initial number of particles codes the spatial structure of343

the fluctuations and the decrease in particle numbers as a reaction progresses344

simultaneously leads to an increase in island size (chemical heterogeneity)345

and poorer levels of mixing.346

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Length (cm)

P
ro

d
u

ct
 C

/C
0

t = 619 s

flow rate = 2.67 ml/min; u = 0.0121 cm/s 

t = 916 s t = 1510 s

Figure 3: Simulations of the first series of experiments from Gramling et al. [12]: product
concentration snapshots at different times. Red dots are measurements, blue lines with
error bars are simulations using the PT method. The symbols (diamond, square, and tri-
angle) are the mean values of one hundred runs, the error bars are the standard deviations
of those runs.

3.1. Reaction Zone Tails347

Besides the subdued peak product concentrations, another important348

finding from Gramling et al.’s [12] experiments is the larger reaction zone349

widths relative to the solution of the ADRE (1). In the concentration pro-350

files (concentration vs. length), heavy leading and trailing edges are seen in351
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Figure 4: Simulations of the second series of experiments from Gramling et al. [12]:
product concentration snapshots from experiments at different flow rates. Red dots are
measurements, blue lines with error bars (mean values and standard deviations of ten
runs) are simulations using the PT method. a) measurements at 1114 seconds at the flow
rate of 2.7 ml/min; b) measurements at 157 seconds from experiments with flow rate of
16 ml/min; c) measurements at 20.23 seconds with a flow rate of 150 ml/min.
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Gramling et al. experiment [12]. The solid line represents the complete mixing theoretical
model results, the points are measurements, and the dashed line denotes the results from
our PT model.
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the product concentration that are not evident in the analytic solution (see352

also [46]). A closer examination of this experiment and our PT simulations353

using a logarithmic concentration axis (Fig. 6) reveals greater measured354

product concentrations in both tails than the analytical solution (2), as well355

as the ability of the PT method to model this phenomenon.356
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Figure 6: Semi-log plot of spatial concentration profiles from Gramling et al. [12]. Ex-
perimental measurements are red dots, PT simulations are blue lines through ensemble
means, along with plus/minus one standard deviation, and the analytic solution of well-
mixed ADRE (1) is plotted as black continuous line. These data are the same as shown
in Figure 4b.

The product zone tails of these experiments already have generated some357

discussion. Edery et al. [20] reviewed models using a Fickian advection-358

dispersion equation (ADE) along with their PT reaction method based on359

an empirical effective radius of reaction [53], as well as the empirical kinetic360

reaction rate method used by Sánchez-Vila et al. [49], and concluded that361

these methods were unable to capture the forward and backward tails of the362

spatial concentration profiles. To overcome this issue, Edery et al. [20] used363

a continuous time random walk (CTRW) for the particle transport instead of364

the classical Brownian motion with the ADE governing equation. The time365

for each motion in CTRW is random and the heavier weights on the long-366
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time probability cause some particles to delay their migrations relative to the367

mean, hence there is a broader spread of both reactants and products. Zhang368

and Papelis [46] extended this concept by using both random times and non-369

Gaussian particle migration distances to match product concentration near370

the tails. Both of these approaches require several additional parameters. It371

is unclear if these methods, invoked to account for the tails in the reactive372

case, were calibrated from a conservative tracer, because simulations of the373

non-reactive tracer test were not displayed in [20] or [46]. The traditional374

(Fickian) ADE appears to match the conservative tracer quite well, i.e., a375

heavy trailing edge was not evident in the original analysis (see Fig. 1 and376

Figures 6 and 7 in the original [5]).377

Luo and Cirpka [52] posited that material heterogeneity leads to the ex-378

tended tailing behavior in breakthrough curves. Taking a similar view, the379

tails in the reaction product may be due to the reaction itself: if poor mixing380

or small-scale diffusion limits the reactions, then the reactants could venture381

farther into “enemy territory” before reacting, and the tails of the product382

distribution would be enlarged relative to the tails of well-mixed reaction.383

This is a significant and somewhat counter-intuitive finding. If heterogeneity384

was thought to (uniformly) reduce reaction rates, then the measured product385

concentrations would be everywhere lower than the well-mixed solution. This386

clearly is not the case. Our PT simulations give some insight into the heavier387

product tails. Conceptually, some A particles may move into the displaced B388

particles like fingers rather than a smooth, well-mixed front. The calculation389

of reaction based on local diffusion allows some probability of longer particle390

excursions, which is consistent with the conceptualization of Cao and Ki-391

tanidis [62], who showed that the slow rate of diffusion allows concentration392

gradients to be sustained at the small scale and a mass of reactant can cross393

the interface and interact with the other reactant only through diffusion.394

3.2. Instantaneous Reactions395

The reaction in Gramling et al.’s [12] experiments has a very high kf396

and the Damkohler numbers are many orders-of-magnitude larger than unity397

given the range of possible correlation lengths. Here we use expression (6)398

to investigate the effect of different combinations of kf and ∆t (Fig. 7).399

Various studies have provided quantitative criteria to classify a reaction400

as instantaneous. For instance, in a derivation of transport-controlled reac-401

tion rates, Sánchez-Vila et al. [63] showed that for a Da = 100 or larger,402

the system reaches local equilibrium practically instantaneously, and results403
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using an approximation for the reaction rate are almost indistinguishable404

from those using an equilibrium reaction. From their point of view, to simu-405

late the instantaneous reaction, the reaction rate constant can be arbitrarily406

chosen as long as the Da is larger than 100. Tartakovsky et al. [21] reached407

a similar conclusion. They found that the deterministic solutions of the408

diffusion-reaction equation are all the same if Da > C−1
v0 , where the initial409

coefficient of variation, Cv0 = σC/C0 < 1, where σC is the concentration stan-410

dard deviation. For Gramling et al.’s [12] experiments, taking a conservative411

characteristic length value as the size of pore space, 0.13 cm, a value of reac-412

tion rate constant larger than 0.42M−1s−1 satisfies the criterion of Da > 100.413

We test this by using the reaction rate over an order of magnitude larger to414

satisfy instantaneous reaction “criteria” (Fig. 7). While there is residual415

effect of increasing the rate coefficient, it appears that the thermodynamic416

part of the probability is not the determining factor in these simulations.417

Similarly, Edery et al. [53] indicated that the reactions in the experiments418

of [12] were more controlled by concentration fluctuations than by reaction419

rate.420

3.3. Particle Numbers421

It may appear that the number of particles used to represent the reac-422

tants is a free parameter. However, Benson and Meerschaert [29] showed423

that the number of particles is directly related to the time of onset of reac-424

tant self-segregation and reduced reaction rates in simple diffusion systems.425

Using more particles means that the reactant concentrations are smoother426

functions of space, i.e., more perfectly mixed. We may test the sensitivity427

to this estimate by varying the numbers of particles while holding all other428

parameters constant in the simulation. Because of the similarity of the exper-429

iments, we present the simulation of the second experiment (flow rate of 16430

mL/min) from [12] as an example. Three simulation runs are shown in Figure431

8. When using one-tenth the number of particles to represent the reactants432

(N0 = 60), the ratio of product concentration over initial concentration is433

only around 0.25; when using ten times more particles (N0 = 6, 000), the434

predicted product profile (C/C0) is approximately 0.40. As the number of435

particles increases to infinity, the product profile would approach 0.5, which436

is the maximum value in a well-mixed system (i.e., the analytic solution to437

the 1D ADRE (2)). From this point of view, the PT model applied in this438

study is capable of simulating the incomplete mixing that is characterized by439
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Figure 7: Simulations of instantaneous reaction using different combinations of reaction
rates and time steps. Maintaining a maximum probability of reaction of unity in Eq. (6),
we have kf and ∆t values, in units of M−1s−1 and s, respectively, of 4.08 and 1 (line with
squares); 12.9 and 0.1 (line with diamonds), and 40.8 and 0.01 (line with triangles). The
same experimental data shown in Figure 4b is reproduced here.
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high variance and/or larger concentration fluctuations by choosing a suitable440

number of particles.441

A recent study by Bolster et al. [59] enables a method to determine442

the number of particles that should be used to represent the reactants in the443

columns. Based on the continuum reaction equation, the authors showed that444

the pseudo-kinetic slowdown due to diffusion-limited mixing is directly pro-445

portional to the covariance of initial concentration perturbations, which they446

approximated with a Dirac delta function C ′
A(x, 0)C ′

A(y, 0) = σ2
C ldδ(x − y),447

where σ2
C is the early-time concentration variance and ld is the d-dimensional448

correlation length representative of concentration perturbations. It has long449

been known for conservative solutes that the number of particles in a PT450

simulation is inversely proportional to the variance of concentration [64, 65].451

Therefore, the numbers of particles representing the same amount of mass452

should, in part, dictate the rate of reactions. As a first approximation, Paster453

et al. [66, 45] considered each particle individually as a delta function of con-454

centration, and showed that the covariance of the concentration, upon initi-455

ation of the simulation, is C ′
A(x, 0)C ′

A(y, 0) = (C2
0Ω/N0)δ(x − y). Equating456

the particle and continuum concentration covariance gives457

N0 =
C2

0Ω

σ2
C ld

. (7)

We can estimate the size and variance of concentration perturbations us-458

ing the high-resolution snapshots given in Figure 3b of [12]. The original459

raw images of light transmission are no longer available [C. Harvey, personal460

communication] so we use the color images for t = 619 [s], which have in-461

teger values of red, green, and blue (RGB) saturations from 0 to 255. For462

a perfectly mixed experiment, any vertical transect of pixels would be the463

same color and have no variability in any color saturation. On the contrary,464

the measured vertical transects have systematic changes in the variance of465

the RGB components, from the lowest value far in front of the invading fluid466

(Fig. 9), to the greatest in the zone of equal reactant concentrations. Us-467

ing the fact that V AR(aX) = a2V AR(X) for a constant a and assuming468

for this estimate that the RGB variances are additive, then the variance of469

concentration in the mixing zone can be estimated. This assumption is best470

in those areas where one color dominates the color map. The range of con-471

centration is on the order of 0 to 0.02 M, while color saturations are between472

0 and 255, or 104.1 greater. In the area of greatest concentration contrasts,473

the variance of color saturation is on the order of 2000 above background474
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noise (Fig. 9b), so that the variance of concentration is approximately on475

the order of σ2
C ≈ 2000/108.2M2.476

Furthermore, the color fluctuations have some coherent structure upon477

visual inspection (Fig. 9a) that can be deduced with a fast Fourier transform478

(FFT) (Fig. 9c). Each vertical column of pixel colors, upon FFT, has several479

frequencies that dominate, revealing some coherent structures. These (spa-480

tial) frequencies are typically in the range of 2 to 4 times the inverse of the481

column width of 50 pixels. Note that the mean value of each color, which is482

irrelevant here, is removed before each FFT so that the zero frequency value483

is zero. This has no effect on the other frequencies. We automated the identi-484

fication of spatial structure in the column’s transverse direction by selecting485

the single dominant frequency (in terms of power spectrum) for each verti-486

cal trace for each color and plotting those for the entire column length after487

conversion to wavelength (Fig. 10). It appears that the dominant frequen-488

cies have wavelengths between 25% to 100% of the column’s 5.5 cm width489

(Fig. 10). This corresponds to fingers or “blobs” (half wavelength) of widths490

l ≈ 0.9 to 2.5 cm. Using l = 1.4 cm (wavelength of 25 pixels, see Fig. 10)491

and plugging the other numbers into Eq. (7) gives an estimate of the num-492

ber of particles of roughly 680, compared to the 600 we used to visually fit493

the reaction zones. This is a qualitative demonstration that the theoretical494

number of particles is consistent with the number we used. A more concrete495

estimate would require more detailed measurement of concentration variance496

and spatial correlation.497

4. Conclusions and Recommendations498

In this study, we implement a novel particle tracking method that calcu-499

lates the probability that any two particles under general conditions of ad-500

vection, dispersion, and diffusion occupy the same position. When combined501

with the thermodynamic probability manifested in the well-mixed rate coeffi-502

cient, the combined effects of transport and mixing-limited reaction are accu-503

rately simulated. Simulation results are tested against breakthrough curves504

reported by Raje and Kapoor [5] and concentration profiles from Gramling et505

al. [12]. Not only do the simulation results match the cumulative and peak506

product concentrations, but also agree with the forward and backward tails507

of the reaction zone. The agreement between simulations and laboratory508

observations shows that this particle tracking method is able to successfully509
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Figure 8: Effect of particle numbers, using the second experiments from [12] as a base case,
shown as Figure 4b. For all runs simulating instantaneous reaction, using the higher num-
ber of particles (N = 6, 000), the model predicted that the product concentration over ini-
tial reactant concentration was around 0.40, which over-predicts experimental observations
(red dots). The simulation with the lower number of particles (N = 60) under-predicted
the measurements, the ratio was around 0.25.
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Figure 9: a) Example color map (after [12]) of product concentration at t = 619 s for
flow rate Q = 2.67 mL/min; b) variance of red, green, and blue color components in
vertical transects; c) example power spectrum of blue component in columns 50 through
56, showing dominant spatial frequencies of 2/50 to 4/50 pixels−1.
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simulate observations without invoking any additional parameters or coeffi-510

cients.511

The only flexible numerical parameter in our model, the number of par-512

ticles, represents fluctuations in concentrations, i.e., the product of concen-513

tration (spatial) variance and correlation length. This information may be514

gained by direct measurement of the concentration field on either small [12]515

or large scales [67], or by stochastic means [68, 69, 70, 6]. Using visual data of516

transmitted light in the experiments of [12], we derived particle numbers that517

matched the best-fit numbers very closely; however, the estimate is likely to518

have fairly large variability, the magnitude of which we do not endeavor to519

quantify at this point.520

The particle transport and reaction algorithm presented here has yet to be521

extended to more complex reaction chains. This is not a theoretical problem522

as reactions with multiple reactants or uneven stoichiometry as a series of523

two-particle interactions (see Gillespie [71]), though it may present numerical524

difficulties. The particle reaction algorithm also has not been coupled to525

detailed 3-d velocity fields for the purpose of validating, for example, Molz526

and Widdowson’s [1] conjecture that poor mixing is primarily responsible for527

pseudo-kinetic reactions in heterogeneous flow fields at the field scale.528
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Application of Lagrangian particle tracking model to reactive transport 

No empirical parameters or assumptions in simulation 

Accurate simulation of physical experiments on Diffusion controlled, mixing-limited 
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