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Hyper-Mixing in Linear Shear Flow

Diogo Bolster1, Marco Dentz2 and Tanguy LeBorgne3

Abstract. In this technical note we study mixing in a two-dimensional linear shear flow.
We derive analytical expressions for the concentration field for an arbitrary initial con-
dition in an unbounded two dimensional shear flow. We focus on the solution for a point
initial condition and study the evolution of (i) the second centered moments as a mea-
sure for the plume dispersion, (ii) the dilution index as a measure of the mixing state
and (iii) the scalar dissipation rate as a measure for the rate of mixing. It has previously
been shown that the solute spreading grows with the cube of time and thus is hyper-
dispersive. Herein we demonstrate that the dilution index increases quadratically with
time in contrast to a homogeneous medium, for which it increases linearly. Similarly, the
scalar dissipation rate decays as t−3, while for a homogeneous medium it decreases slower
as t−2. Mixing is much stronger than in an homogeneous medium and therefore we term
the observed behavior hyper-mixing.

1. Introduction

Mixing is a fundamental process in many fluid flows. Un-
derstanding and predicting mixing is a critical first step to
understanding and predicting chemical reactions. Mixing
drives many chemical reactions by physically bringing re-
actants into contact [e.g. Rezaei et al., 2005; Cirpka and
Valocchi , 2007; Tartakovsky et al., 2008; de Simoni et al.,
2005]. As such it is a topic that has attracted attention
across a wide range of disciplines. In the context of geo-
physical flows with application to water resources it has been
an important topic of research in porous media flows [e.g.
Kapoor and Kitanidis, 1998; Tartakovsky et al., 2008] as well
as higher Reynolds number turbulent flows associated with
surface water flows [e.g. Ghisalberti and Nepf , 2002] and geo-
physical flows in the atmosphere and the ocean [e.g. Weiss
and Provenzale, 2008; Rees, 2006].

In this study we quantify the mixing properties of linear
shear flow in terms of global measures of mixing. Mixing can
be characterized in a variety of ways. Second centered mo-
ments of the solute distribution measure the plume extent.
Entropy based measures such as the dilution index [Kitani-
dis, 1994] characterize the volume occupied by the solute
and thus quantify the mixing state. Mechanical mixing mea-
sures such as the scalar dissipation rate [Pope, 2000] describe
the degradation of concentration contrasts and quantify the
mixing dynamics. These measures are commonly used to
study mixing in porous media [e.g. Rolle et al , 2009; Luo
et al., 2008; LeBorgne et al., 2010]

For transport in a uniform flow field, mixing processes
are driven by local diffusion. However, many geophysical
flows are not truly uniform and the velocity field varies in
space. Spatial heterogeneity can significantly change mixing
patterns observed for homogeneous media [e.g. Kapoor and
Kitanidis, 1998; LeBorgne et al., 2010]. In heterogeneous
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flows, two competing mechanisms drive mixing. Local shear
action of the flow field (stirring), leads to the creation of
concentration gradients, which are smoothed out by local
dispersion and diffusion and, thus enhances mixing.

In this Technical Note, we study these mechanisms for
the particular case of linear shear flow (i.e., a velocity field
that varies linearly with distance normal to the direction of
flow, see Fig 1). It is often deemed representative in the
context of turbulent vortical flows [e.g. Zhiang and Glimm,
1992] and has previously been used as a simple representa-
tion for a heterogeneous velocity field in a porous medium
[e.g. Carleton and Montas, 2009]. In fact, flow in a spa-
tially heterogeneous medium can be approximated locally
as a linear shear flow. Linear shear flow may be consid-
ered a simple subset of flows through stratified media [e.g.
Matheron and de Marsily , 1980; Bolster et al., 2011]. For
horizontal miscible displacement of freshwater by saltwater,
a linear shear regime can develop for diffusion dominated
scenarios [e.g., Dentz et al., 2006; Bolster et al., 2007]. En-
hanced contaminant mixing under such conditions has been
observed by Dror et al. [2003a, b].

In the following, we present a derivation of the Green’s
function for transport in a linear shear flow using the method
of characteristics. Other forms equivalent to this solution
have been presented previously by Okubo [1968]; Okubo and
Karweit [1969] and Monin and Yaglom [1971]. Based on
this explicit analytical solution, we study the mixing dy-
namics caused by the interaction of shear action and local
dispersion.

2. Mixing in Linear Shear Flow

We consider transport in a d = 2 dimensional linear shear
flow far from domain boundaries. Transport is given by the
advection-dispersion equation

∂c(x, t)

∂t
+ [q + αx2]

∂c(x, t)

∂x1
−∇ · [D∇c(x, t)] = 0. (1)

for initial condition c(x, t = 0) = ρ(x) with natural bound-
ary conditions at infinity. The x1-axis of the coordinate sys-
tem is aligned with the flow direction. The dispersion tensor
is diagonal with Dij = Diδij . The flow velocity is composed
of the constant contribution q and the shear contribution
αx2, in which α is the shear rate.

1



X - 2 BOLSTER, DENTZ & LE BORGNE: HYPER MIXING IN SHEAR FLOW

x
2 u(x   )=αx2 2

Figure 1. Schematic of the shear flow considered in this
paper.

The solution c(x, t) of (1) reads in terms of the associated
Green function g(x, t) as

c(x, t) =

∫ ∞
−∞

dx′ρ(x′)g(x, t|x′). (2)

The Green function g(x, t|x′) satisfies (1) with initial condi-
tion g(x, t = 0|x′) = δ(x − x′). In Fourier space, g̃(k, t|x′)
satisfies

∂g̃(k, t|x′)
∂t

− αk1
∂g̃(k, t|x′)

∂k2
− [k · (Dk)− iqk1] g̃(k, t|x′) = 0,

(3)

with initial condition g̃(k, t = 0|x′) = exp(ik·x). This equa-
tion can be solved by integration along the characteristics
k2(t) = k2(0)− αk1t. Thus, we obtain

g̃(k, t|x′) = exp[ik1(x′1 + qt− αtx′2) + ik2x
′
2]

× exp

[
−k · κ(t)k

2

]
(4)

where κ(t) is the variance matrix

κ11(t) = 2D1t+
2

3
D2α

2t3, κ21(t) = D2αt
2

κ12(t) = D2αt
2, κ22(t) = 2D2t. (5)

The principal axes of the variance matrix (5) are not aligned
with the axes of the coordinate system, but rotate clockwise
due to the shear action of velocity field as quantified by the
shear rate α. The typical time scale associated to the shear
rate is denoted by τs = α−1. The inverse Fourier transform
of (4) and thus the Green function is given by the Gaussian

g(x, t|x′) =

exp

[
−ξ(x,x

′, t) · κ−1(t)ξ(x,x′, t)

2

]
2π
√

det[κ(t)]

(6)

with ξ(x,x′, t) = x− x′ + (αtx′2 − qt)e1.
In the following, we consider a solute plume evolving from

a point-like initial distribution at x = 0, ρ(x) = δ(x). Fur-
thermore, we set q = 0. Note that a non-zero q merely
translates the center of mass of the plume and does not af-
fect spreading or mixing, which are the focus of this work.
The plume extends in the direction transverse to the flow
due to dispersion. The shear action then leads to an en-
hanced horizontal spreading and mixing of the solute. The

main axes of the plume rotate in clockwise direction with
increasing time. The concentration distribution is obtained
from (6) by setting x′ = 0 and q = 0,

c(x, t) =
exp

[
− 1

2
xTκ−1(t)x

]
2π
√

det[κ(t)]
. (7)

Figure 2 illustrates the concentration distribution (7) for
D1 = D2 = D = 1 at t = 10−1τs and t = 10τs. For
t � τs, the main axes of the variance tensor are aligned
with (1, 1)t and (1,−1)t, where the superscript t denotes
the transpose. With increasing time, the axes rotate and
for times t � τs, they are in leading order aligned with
[1, 3/(2αt)]t and [−3/(2αt), 1]t.

Figure 2. Concentration fields for D1 = 1, D2 = 1,
α = 1 at t = 0.1τs (top) and 10τs (bottom). The initial
condition is a point-like distribution at the origin and the
mean flow is q = 0.

2.1. Dispersion

Dispersion in the x1- and x2-directions is quantified by
κ11(t) and κ22(t), respectively. Plume spreading in the lon-
gitudinal direction is hyper-dispersive and for times αt� 1
and scales as κ11(t) ∼ t3, while spreading in the transverse
direction is dispersive and scales as κ22(t) ∼ t, see (5).

As noted above, the main axes of the variance tensor ro-
tate with time and are in general not aligned with the axes
of the coordinate system. The plume dispersion along the
main axes of the variance matrix (5) is quantified by the
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eigenvalues of κ(t), which are given by

Λ1/2(t) = (D1 +D2)t+
α2t2

3
D2t±

t

√
(D1 −D2)2 +

α2t2

3

[
2D1D2 +D2

2

(
1 +

α2t2

3

)]
. (8)

For illustration we show in Figure 3 the dispersion behav-
ior along the main axis of the variance tensor in the limit of
D1 = 0. In this case the eigenvalues for αt� 1 behave as

Λ1(t) = 2D2t, Λ2(t) = D2t(αt)
2/6. (9)

For late times, αt� 1, the eigenvalues to leading order are

Λ1(t) = 2D2t(αt)
2/3 + 3D2t/2, Λ2(t) = D2t/2. (10)

The cross-over between the early and late time regimes is
marked by the shear scale τs = α−1.

In this analysis we consider the approximation of an infi-
nite domain. It is worth noting that for a vertically bounded
domain, the spreading behavior is asymptotically given by
Taylor-Aris dispersion, which is characterized by a constant
effective dispersion coefficient in flow direction [e.g. Taylor ,
1953; Aris, 1956; Brenner and Edwards, 1993; Young and
Jones, 1991; Bolster et al., 2009; Porter et al., 2010].

Next we consider the impact of the interaction of shear
and transverse dispersion on the mixing within the plume.
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Figure 3. Spatial Variance along the main axes of the
variance tensor for D1 = 0 in (8). The behavior of Λ1(t)
is shown by the solid blue line, while the behavior of Λ2(t)
is shown by the dashed red line. The dash-dot black lines
illustrate slopes of t and t3.

2.2. Dilution Index

The dilution index [Kitanidis, 1994] is a measure of the
volume that is occupied by a solute. Thus, it characterizes
the mixing state of the system. The dilution index for an
unbounded system is defined as

E(t) = exp[−H(t)], H(t) =

∫
dxc(x, t) ln[c(x, t)], (11)

in which H(t) is the entropy of the system under consider-
ation. For the point-like injection considered here it can be

shown that [Kitanidis, 1994]

E(t) = 2πe
√

detκ(t). (12)

Using (5), the dilution index for linear shear flow is

E(t) = 2πe

√
4D1D2t2 +

1

3
D2

2α
2t4. (13)

For diffusion only, α = 0, the dilution index evolves lin-
early with time, E(t) ∝ t as pointed out by Kitanidis [1994].
In the presence of shear, its long time behavior is E(t) ∝ t2,
that is, the volume occupied by the solute increases quadrat-
ically with time. For D1 = 0 the dilution index E(t) ∼ t2

scales hyper-dispersively at all times. This demonstrates
that a pure shear flow causes a dramatic increase of the
mixing state relative to the pure diffusion case. From Ki-
tanidis [1994] we know that for a homogeneous system the
dilution index scales as E(t) ∼ td/2 where d is the number of
spatial dimensions. Here we see that the dilution index in a
two dimensional system with a pure shear scales even faster
than for a d = 3 dimensional homogeneous case. The actual
long time scaling of t2 would be equivalent to a homogenous
system in d = 4 spatial dimensions. This means, in order to
obtain such a rapid rate of increase in the dilution index for
a homogeneous environment one would require four spatial
dimensions. It is also noteworthy that for large shear rates
α, the dilution index increases linearly with α.

2.3. Scalar Dissipation Rate

Here we study the impact of linear shear action on the
mixing dynamics as quantified by the scalar dissipation rate

χ(t) =

∫
Ω

dx∇c(x, t) ·D∇c(x, t). (14)

It measures the degradation of concentration variability
within the plume [e.g., Pope, 2000; Kapoor and Kitanidis,
1998]. It quantifies the basic mixing mechanisms, which are
the creation of concentration contrasts by shear action and
their dissipation by local dispersion. Similar expressions can
be identified in equilibrium reaction rates for mixing limited
reactions [e.g. de Simoni et al., 2005; Luo et al., 2008; Don-
ado et al., 2009; LeBorgne et al., 2010]. A concentration
weighted form of the dissipation rate is closely linked to the
growth rate of the entropy in an advection-dispersion trans-
port system [Kitanidis, 1994]. Using (7) in (14), the scalar
dissipation rate is

χ(t) =

√
3

2π
√
D2t2

α2D2t
2 + 6D1

(12D1 + α2D2t2)
3
2

. (15)

For asymptotically large times we obtain the scaling χ(t) ∼
t−3. For a homogenous velocity field it can be shown that
the scalar dissipation rate depends on the dimensionality
of space as expressed by the scaling χ(t) ∼ t−d/2−1. The
t−3 behavior observed for linear shear flow corresponds to
a d = 4 dimensional homogeneous flow, which is consistent
with the dilution index calculation. This is unsurprising
since as noted above a concentration weighted form of the
scalar dissipation rate can be related to the growth rate of
entropy H(t).

Observations for the scalar dissipation rate in d = 2
dimensional heterogeneous velocity fields from simulations
[LeBorgne et al., 2010] and theory [Bolster et al., 2011], as
well as from effective nonlocal models [Bolster et al., 2010]
scale somewhere in between values associated with d = 2 and
d = 3 spatial dimensions, suggesting that the heterogeneity
causes the system to behave as if it had a dimension be-
tween these two limits, but not as high as for the pure shear
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flow. In a real heterogeneous flow field shearing occurs at
the small scale. However, the shearing can be interrupted
or altered, resulting in the fact that the hyper-dispersive
regime may be interrupted too. As for the case of the di-
lution index, setting D1 = 0 results in the hyper-dispersive
scaling χ(t) ∼ t−3 from t = 0 onwards at all times.

3. Conclusions

Linear shear flow is a very efficient driver of mixing that
greatly enhances mixing relative to a homogeneous flow.
The origin of such hyper mixing is the hyper-dispersive
growth of longitudinal dispersion that creates a rapidly
growing interface for diffusion to act. The temporal scaling
of the mixing measures are in this case directly related to the
temporal scaling of dispersion. In fact, both the solutions
for the dilution index and scalar dissipation rate predict that
the late time scaling for these measures corresponds to an
equivalent homogeneous system in d = 4 spatial dimensions.
Previous studies in two dimensions predict that mixing in
heterogeneous velocity fields may scale like a system between
d = 2 and d = 3 dimensions. Linear shear flow acts as an
efficient mixer, which can for example explain the enhanced
mixing observed in variable density flows at low Péclet num-
bers [e.g. Dror et al., 2003a, b; Dentz et al., 2006; Bolster
et al., 2007].

Stretching of the plume in heterogeneous flow fields can
be linked to shear regions due to correlation of the flow
field in both longitudinal and transverse directions [e.g. Le
Borgne et al., 2008]. This phenomenon is expected to occur
at small scales, at which the heterogeneous flow fields can
be approximated as a linear shear flow [Tennekes and Lum-
ley , 1972]. The behavior observed for linear shear cannot
persist at large times because the shear rate varies spatially
and thus the plume is in general exposed to different shear
regimes as it travels through the heterogeneous medium.
How one can link small scale hyper-mixing to large scale
mixing is an area of active research.
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