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Aquifer artificial recharge from surface infiltration ponds is often conducted to replenish depleted
aquifers in arid and semi-arid zones. Physical and bio-geochemical clogging decreases the host soil’s
infiltration capacity, which has to be restored with periodic maintenance activities. We develop a
probabilistic modeling framework that quantifies the risk of a pond’s infiltration capacity falling below
its target value due to soil heterogeneity and clogging. This framework can act as a tool to aid managers
in optimally selecting and designing maintenance strategies. Our model enables one to account for a
variety of maintenance strategies that target different clogging mechanisms. The framework is applied
to an existing pond in Barcelona, Spain as well as to several synthetic infiltration ponds with varying
statistical distributions of initial infiltration capacity. We find that physical clogging mechanisms induce
the greatest uncertainty and that maintenance targeted at these can yield optimal results. However, con-
sidering the fundamental role of the spatial variability in the initial properties, we conclude that an ade-
quate initial characterization of the surface infiltration ponds is crucial to determining the degree of
uncertainty of different maintenance solutions and thus to making cost-effective and reliable decisions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Artificial recharge ponds, alternatively called surface infiltration
ponds (SIPs), are a popular approach to managed aquifer recharge
(MAR) in arid and semi-arid regions [41,47]. The effectiveness of
SIPs is controlled in large part by the infiltration capacity of the
host topsoil, denoted as I. The infiltration capacity affects the total
volume of water that can infiltrate into the subsurface and thus the
residence time of water within the pond. Since residence time con-
trols important chemical and biological reactions, it plays a signif-
icant role in the quality of water being recharged. Spatio-temporal
variability of the infiltration capacity at any given site is uncertain
due to both soil heterogeneity and pore clogging. To complicate
matters further, I is often estimated either directly (e.g., with infil-
trometers [42]) or indirectly (e.g., from pore- or grain-size distribu-
tions [12,48]), introducing measurement and interpretive errors as
well as a multiplicity of support volumes that can range from a few
centimeters to several meters. In the present analysis, we quantify
uncertainty in local I by treating it as a spatio-temporal random
field.
ll rights reserved.
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Inherent uncertainty in estimates of a SIP’s infiltration capac-
ity and predictions of its temporal evolution introduces signifi-
cant uncertainty into decisions about SIP management, with
important economical and environmental implications. Manage-
ment under uncertainty can be properly formulated within a
probabilistic framework context [25,35,50,53]. This in turn can
form the core of a probabilistic risk analysis, which while a
relatively new discipline in hydrogeology [5,9,43,44,22,51,23],
forms standard practice in other engineering disciplines (e.g.
[34]).

Although the infiltration capacity I(x, t) generally varies in space
x and time t, typically the variable of true interest in managing
operations is its spatially-averaged counterpart IðtÞ. The latter is
related to the former by

IðtÞ ¼ 1
V

Z
X

Iðx; tÞdx; ð1Þ

where X is the area of the infiltration pond, and V is the correspond-
ing infiltration area.

At a given time, IðtÞ can be estimated either statistically from
small-scale local measurements if a sufficient amount of spatially-
distributed data are available, or experimentally with large-scale
infiltration tests [1,4]. The temporal evolution of IðtÞ, typically its
reduction, is caused by a combination of physical, biological and
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Nomenclature

Convention for symbols
hXi stochastic average of X
x = (x,y)T horizontal coordinate vector [L]
X spatial average of X
t time [T]
X0 X taken at time t = 0
z vertical coordinate [L]

Symbols
j soil permeability [LT�1]
keff effective decay (clogging) rate [T�1]
kb biological clogging factor [T�1]
ks characteristic microbial growth parameter [T�1]
kz filtration coefficient [L�1]
q the flow velocity of water [LT�1]
lw dynamic viscosity of water [ML�1T�1]
X area occupied by the infiltration pond [L2]
/ soil porosity [–]
/b porosity occupied by biomass [–]
qb biomass density [ML�3]
qk the bulk density of the soil [ML�3]
qw density of water [ML�3]
r2

Y variance of Y [L2T�2]
A geometrical coefficient for the Hazen formula [–]
C volumetric concentration of particles [ML�3]
dg characteristic grain size of the soil [L]

dm percentile of the cumulative distribution of the soil
grain sizes [L]

ds mean diameter of suspended particles in the water dur-
ing the flooding stage [L]

d10 tenth percentile of the cumulative distribution of the
soil grain sizes [L]

g gravity acceleration constant [LT2]
h hydraulic head [L]
I infiltration capacity [LT�1]
Ic the smallest acceptable IðtÞ [LT�1]
IS correlation length for local Y values (in pixels) [–]
K saturated hydraulic conductivity [LT�1]
Kb Boltzmann constant [L2MT�1K�1]
Mb relative biomass attached to the soil [–]
n geometrical parameter for clogging interception mecha-

nisms [–]
R reduction factor for gas clogging [–]
T water temperature [K]
va average particle’s attachment velocity to the soil matrix

[LT�1]
Y natural log transform of K [LT�1]
kp physical clogging factor [T�1]
mp coefficient of proportionality between d/// and dC/C [–]
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chemical processes, which modify the properties of both the water
and the soil. At a typical SIP site, one observes a significant
reduction in porosity / and intrinsic permeability j within the
first few centimeters of the soil due to clogging [10,39]. Water
temperature can also play an important role [18]. Seasonal vari-
ations in the density and viscosity of water may contribute to
the temporal variability of I, but these effects are expected to
be secondary and act on much larger time scales (months) than
those relevant to clogging (days).

Depending on the overall intensity of the clogging mecha-
nisms, SIPs can suffer from ‘‘aging’’ [33], which is an appreciable
reduction in the infiltration capacity IðtÞ, in the first few days
after flooding. To meet designed infiltration rates, SIPs must be
periodically maintained with either preventive or corrective
measures [2,14]. The speed with which IðtÞ approaches or drops
below some critical threshold value Ic is the primary variable
indicating when and what type of corrective measures should
be taken.

The goal of our analysis is to provide a framework to evaluate
the engineering risk of making decisions in regards to optimal
maintenance of SIPs, when spatio-temporal distributions of local
hydraulic properties of the topsoils are uncertain. We adopt a
probabilistic approach that treats the relevant hydraulic parame-
ters as random fields and renders the governing equations sto-
chastic. Section 2 provides a justification for adopting this
probabilistic approach. The main factors and their modeling for-
mulations are described in Section 3. Section 4 contains a gen-
eral sensitivity analysis of the selected models. In Section 5,
this methodology is applied to one real and a few synthetic
examples.
2. Operation of SIPs under uncertainty

The complexity of modeling soil clogging and the corresponding
reduction in infiltration capacity, coupled with ubiquitously
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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insufficient site characterization and soil heterogeneity, renders
predictions of an infiltration pond’s performance fundamentally
uncertain. This challenge is partially alleviated by the fact that this
performance is determined by the integrated infiltration capacity
IðtÞ rather than the actual distribution of local infiltration values
I(x, t).

Empirical evidence from several operating SIPs [38] suggests an
exponential decay behavior in the overall infiltration capacity,

IðtÞ ¼ I0 e�keff t; ð2Þ

where the initial capacity I0 and the effective decay (clogging) rate
keff are highly uncertain fitting parameters that are difficult to pre-
dict prior to the SIP’s operation. Actually, in general, the infiltration
rate tends asymptotically to a non-zero value [37], but is most cases
this asymptotic value is very small compared to the initial one and
can thus be approximate by a zero value.

A variety of maintenance activities with different scheduling
plans can be applied to SIPs to control the reduction of IðtÞ with
time [10,39]. These can be subdivided into preventive or corrective
measures [8]. Preventive or maintenance activities are performed
during the operation period in order to extend the system’s life.
Examples include pre-filtering input water to eliminate particles,
scraping the soil surface before infiltration, using disinfectants to
control algal growth, designing a large settling pond to remove or-
ganic matter, and controlling entry water temperature to avoid gas
bubbling. Corrective measures must be taken if and when IðtÞ
reaches its minimally acceptable level Ic. For these the operation
of the SIP must be temporarily stopped. Examples include scraping
the bottom surface when the basins are dried out after specific re-
charge cycles, supplying additional disinfectants or chemicals to
the water, or using underwater robots to scrape the soil surface
during infiltration.

Regardless of the maintenance strategy, a SIP’s operating life is
highly uncertain. Maintenance decisions have to be made under
uncertainty, calling for a probabilistic approach. However, current
aintenance and operation of artificial recharge ponds. Adv Water Resour
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practice is to schedule corrective measures based on experience
and monitoring [14]. An optimal scheduling and selection of main-
tenance measures affects the operational costs of SIPs. Forecasting
these costs is subject to uncertainty and depends on many factors,
such as the optimal performance of the chemical products, the in-
put water quality and the performance of scraping machines.
3. Processes contributing to SIP failure

We define a ‘‘system failure’’ at time t as the event ‘‘water infil-
tration capacity IðtÞ falls below a design value Ic’’. Among a large
number of events that can lead to system failure are interruptions
in water supply to the pond, deposition of extraneous imperme-
able materials at the pond’s bottom, bad design and/or improper
use of the pond, and its complete breakdown due to embankment
slides, earthquakes, and acts of vandalism [24]. These and other
similar events should be included into a complete probabilistic risk
assessment of SIPs, but lie outside the scope of the present analysis.

Instead, we focus on system failures due to reduction in the
soil’s infiltration capacity caused by clogging. A mathematical
model capturing the relationship between infiltration capacity
and the soil hydraulic parameters is presented in Section 3.1. Var-
ious clogging mechanisms are discussed, modeled, and combined
together for an effective model of clogging in Section 3.2.

3.1. Infiltration and hydraulic parameters

In a well designed SIP, infiltration is controlled by the top soil
layer. (A counterexample would be the occurrence of a very low-
permeable layer with horizontal continuity, at some depth, limit-
ing infiltration. The presence of such a layer is not considered
here.) When the top soil layer controlling the infiltration capacity
is (nearly) fully saturated and the infiltration can be described by
the one-dimensional Darcy law, we can write

Iðx; tÞ ¼ �Kðx; tÞ @hðx; z; tÞ
@z

; ð3Þ

where x = (x,y)T is the vector of horizontal coordinates, z is the ver-
tical coordinate, h is the hydraulic head, and K is the saturated ver-
tical hydraulic conductivity. The latter is defined as K = jqwg/lw,
where j is the soil intrinsic permeability in the vertical direction,
qw and lw are the density and dynamic viscosity of water, respec-
tively; and g is the gravity acceleration constant.

To account for changes in hydraulic conductivity due to pore
clogging, we adopt the Kozeny–Carman law [32,13] according to
which permeability j varies with the soil porosity / as

j ¼ dm

180
/3

ð1� /Þ2
; ð4Þ

where dm is the percentile of the cumulative distribution of the soil
grain sizes.

The Kozeny–Carman law is applicable within a range of / that
includes soil grains coarser than fine sands. Such soils are typical
for artificial recharge facilities, which typically are built in (highly
permeable) coarse sandy sedimentary environments. However it is
important to note that the Kozeny–Carman law is known to suffer
from severe limitations that the user should be aware of prior to
application (e.g. [15]). When such limitations occur, alternative
models can be integrated into this framework.

Assuming that the water properties and hydraulic gradient do
not change over time, it follows from (3) that any reduction in infil-
tration capacity is linearly related to the reduction in K, i.e.,

Iðx; tÞ
I0ðxÞ

¼ Kðx; tÞ
K0ðxÞ

; ð5Þ
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
(2011), doi:10.1016/j.advwatres.2011.07.008
where I0(x) = I(x, t = 0) and K0(x) = K(x, t = 0) are the initial values of
the infiltration capacity and the hydraulic conductivity, respec-
tively. Combining (4) and (5), we obtain an equation relating the
reduction in infiltration capacity to the reduction in porosity,

Iðx; tÞ
I0ðxÞ

¼ /3ðx; tÞ
/3

0ðxÞ
½1� /0ðxÞ�

2

½1� /ðxÞ�2
� /3ðx; tÞ

/3
0ðxÞ

; ð6Þ

where /0(x) = /(x, t = 0) is the initial porosity before clogging
started to occur. The approximation in (6) is valid as long as tempo-
ral changes in / remain small.

3.2. Mathematical models of clogging

A number of physical [52], biological [7,21] and chemical [29]
processes can contribute to clogging. Their complex interplay com-
plicates the development of fully comprehensive mathematical
models of clogging even though individual mechanisms are rela-
tively well understood [16,19,20,46]. Representative models of
the three clogging mechanisms are discussed below.

3.2.1. Physical clogging
Physical clogging typically refers to filtration processes that re-

duce porosity / through sedimentation and dragging of suspended
particles [31,52]. Following [31], we employ a first-order mass
transfer model,

@Cðx; zÞ
@z

¼ �kzðxÞCðx; zÞ ð7Þ

to describe the vertical profile of the volumetric concentration of
particles, C, that are removed from the suspension in the SIP by
trapping within the soil. The filtration coefficient kz combines volu-
metric and surface forces [38]. An exhaustive review of various
forms of the filtration coefficient can be found in [52].

In a typical model, e.g., [11], kz is a combination of the following
mechanisms:

� filtration induced by inertial forces, kine / d1:5
s ;

� filtration due to interception mechanisms, kint = (ds/dg)n/dg;
� filtration caused by molecular (van der Waals) forces, kmol / d2

s ;

� filtration due to diffusion, kdif = [/0KbT/(lwdsdgjqj)]0.66/dg;

� filtration due to sedimentation, ksed ¼ g/0ðqk � qwÞd
2
s =ð18lw

dg jqjÞ.

ds is the mean diameter of suspended particles in the water dur-
ing the flooding stage, dg is the characteristic grain size of the soil, n
is the geometrical parameter for clogging interception mecha-
nisms, Kb is the Boltzmann constant, T is the water temperature,
q is the flow velocity of water, and qk is the bulk density of the soil.

Empirical relationships can be used to relate the characteristic
grain size dg to the soil permeability j. In the present analysis,
we choose the Hazen formula [30],

j ¼ Ad2
10; A � 100 ð8Þ

in which dg = d10, the grain size corresponding to the tenth percen-
tile in the cumulative distribution of grain sizes. The Hazen formula
(8) is most appropriate for clean sands, which are typical in SIPs. It
is worth emphasizing that the Hazen formula is used here for illus-
trative purposes, and can be replaced by other textural relations. Fi-
nally, we assume that d10 remains constant during an SIP’s
operation, i.e., that the clogging material does not change the grain
size distribution over time. This is deemed reasonable as clogging
materials are typically an order of magnitude smaller (in the case
of suspended particle) or have lower density (in the case of
biomass) than the original material.
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Let va denote an average particle attachment velocity to the soil
matrix. Typical values of va can be obtained from the literature or
from laboratory experiments. The experiments reported in [38]
yield va � 10�5 m/day, which is in agreement with reference values
suggested in [45]. Setting t = z/va in (7) and integrating in time
yields

Cðx; tÞ ¼ C0ðxÞe�k�pðxÞt; k�p ¼ kzva; ð9Þ

where C0(x) is the initial concentration of particles in the soil col-
umn. Changes in the particle concentration, dC, cause changes in
the porosity, d/. We postulate a linear relation between the two,
d/// = mpdC/C, where mp is the coefficient of proportionality. It fol-
lows from (9) that

/ðx; tÞ ¼ /0ðxÞe�kpðxÞt ; kp ¼ mpk
�
p; ð10Þ

where kp can be seen as the characteristic physical clogging factor.
Substituting (10) into (6) yields a model describing the exponential
reduction in the infiltration capacity due to physical clogging,

Iðx; tÞ ¼ I0ðxÞe�3kpðxÞt: ð11Þ
3.2.2. Biological clogging
Biological activity, such as biomass growth and biogas genera-

tion, obstructs the pores and reduces both porosity and pore connec-
tivity [7]. Biological clogging is typically described with one of the
three approaches: macroscopic models, micro-colony-based mod-
els, and biofilm-based models. Macroscopic transport equations
resulting from all three are identical if biofilms and micro-colonies
are fully penetrating [6]. Furthermore, the three approaches yield
acceptable predictions for coarse-textured materials (which are
typical in SIP operations), while poor predictions arise in fine-
textured materials [49].

Bio-clogging manifests itself through a combination of factors:
formation of a thin impermeable layer at the soil surface, biofilm
formation on the soil grains, and precipitation of biomass that oc-
cludes the pores. We focus on the last two phenomena that act to
reduce porosity. Specifically, we adopt a macroscopic approach and
assume that all biomass growth leads to a direct reduction of
porosity, /(x, t) = /0(x) � /b(x, t), so that

/ðx; tÞ
/0ðxÞ

¼ 1� /bðx; tÞ
/0ðxÞ

: ð12Þ

The fraction of the pore volume occupied by the biological mass,
/b(x, t), can be expressed in terms of Mb, the relative biomass at-
tached to the soil, and the biomass density qb, [21], such that

/bðx; tÞ ¼
qkðxÞ
qb

Mbðx; tÞ: ð13Þ

In general, biomass growth occurs in four stages: time-lag (adapta-
tion), exponential growth (microbes have acclimated), stationary
(limiting substrate), and decay (substrate exhausted) [54]. While
assessing the performance of SIPs, one is concerned with the initial
stages of bio-clogging in which biomass grows exponentially,

MbðxÞ ¼ M�
bðxÞ½eksðxÞt � 1�; ð14Þ

where M�
bðxÞ is the initial distribution of biomass and ks(x) is the

microbial growth parameter. Combining (12)–(14) yields

/ðx; tÞ
/0ðxÞ

¼ 1� qkðxÞM
�
bðxÞ

qb/0ðxÞ
½eksðxÞt � 1�: ð15Þ

For kst� 1, (15) can be approximated by

/
/0
� 1� qkM�

bks

qb/0
t � e�kbðxÞt ; kb ¼

qkM�
bks

qb/0
: ð16Þ
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This approximation implicitly assumes the variation in porosity due
to biofilm growth to be small relative to the initial biomass. It is
adequate for risk assessment purposes, since a large reduction in
porosity and permeability would make the SIP operation not viable.
In other words, standard SIP operations would not allow clogging to
develop beyond the exponential growth phase.

Substituting (16) into (6) yields a model describing the expo-
nential reduction in the infiltration capacity due to biological
clogging,

Iðx; tÞ ¼ I0ðxÞe�3kbðxÞt: ð17Þ
3.2.3. Chemical clogging
During the initial filling of a pond, gas can be generated within

pores by a number of chemical processes, including microorganism
activity, temperature effects, and the release of trapped bubbles
[17,27]. As the air continues to occupy some pores (mainly large
ones), water saturation and consequently hydraulic conductivity
and infiltration rates decrease. Degassing can be rapidly reversed
if the proper water temperature conditions are met [38]. The rela-
tionship between moisture content and conductivity is also char-
acteristic of the grain size (i.e. type of soil); when this is similar
to the pore distribution, the heterogeneous distribution of gas clog-
ging factors would also show a spatial variability similar to the one
of the grain size. However, direct measurements of the character-
istic curves are challenging and costly. We take advantage of the
fact that clogging due to gas formation takes place at small time
scales (much smaller than those associated with physical and bio-
logical clogging). This allows us to employ an instantaneous reduc-
tion model of gas clogging,

Iðx; tÞ ¼ RðxÞI0ðxÞ; ð18Þ

where the reduction factor R(x) 2 (0,1] is treated as an uncertain
(random) fitting parameter.

3.2.4. Effective model of clogging
Although a few studies examining the interaction between pro-

cesses exist (e.g. [26,40,3] for physical and biological clogging),
most scarcely provide quantitative information about the cumula-
tive effect on reducing the infiltration capacity. For modeling pur-
poses, we obtain the overall reduction in the infiltration capacity
by linearly combining (11), (17) and (18), such that

Iðx; tÞ ¼ RðxÞI0ðxÞe�3½kpðxÞþkbðxÞ�t : ð19Þ
4. Dependence of SIP Performance on Soil Parameters

Predictions of clogging and the corresponding reduction in infil-
tration capacity depend on a number of parameters, whose values
are highly uncertain due to soil heterogeneity. We adopt a proba-
bilistic framework both to predict the effects of clogging on a SIP’s
infiltration capacity and to quantify the predictive uncertainty.

Specifically, we focus on the impact of soil texture, as incapsu-
lated by the grain size parameter dg, on the reduction in the SIP
infiltration capacity due to various clogging mechanisms. Recall
that dg can be directly related to the initial infiltration values I0

using (3) and (8), so that we could alternatively have selected
I0(x) or K0(x). In Section 3, we demonstrated how the reduction
in the infiltration capacity I(x, t) in (19) can be related to the soil
texture and to the soil particle size dg. The following sensitivity
analysis is used to explore further the question of how this soil
parameter affects various clogging mechanisms and, via (19), the
SIP infiltration capacity.

The following grain sizes and soil densities were chosen to rep-
resent three different types of soils:
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Table 1
Selected values for model entry parameters used for sensitivity analysis.

Parameter Value Unit

ds 2 � 10�3 cm
qs 1.5 g/cm3

n 2 –
T 298 K
qw 1 g/cm3

lw 1.002 � 10�7 N � s/cm2

qb 2.5 � 10�3 g/cm3

ks 2.5 � 10�3 1/day
/0 0.3 –
jqj 0.1 m/day

Fig. 2. A satellite image of the surface infiltration pond (SIP) in Sant Vicenç dels
Horts (SVH), near Barcelona (Spain). The image corresponds to pre-infiltration
conditions (November, 2007).
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� dg = 1.5 � 10�2 cm and qk = 1.8 g/cm3 for soils of type (a),
� dg = 1.5 � 10�3 cm and qk = 1.5 g/cm3 for soils of type (b),
� dg = 1.5 � 10�4 cm and qk = 1.2 g/cm3 for soils of type (c).

The other parameters used for these simulations are reported in
Table 1, taken as typical values encountered in the literature cited
within this work. Note that the use of ks = 2.5 � 10�3 1/day renders
the approximation (16) applicable for t on the order of hundreds of
days. Finally, we fix /0 = 0.3 and jqj = 0.1 m/day even though these
parameters are expected to vary with dg. This is done to isolate the
relative importance of the physical and biological clogging, both of
which depend exclusively on the grain size dg.

Fig. 1 illustrates the temporal evolution of the infiltration capac-
ities, normalized by the corresponding initial values, considering
individual and joint clogging process. We observe that biological
processes play the dominant role in the overall clogging (kp + kb)
for soils of type (a) (the coarser soils in our selection), while phys-
ical clogging is dominant in type (c) (the finer soils). For mid
grain-sized soils, both mechanisms have similar impact on the
overall clogging.

5. Applications

We demonstrate the applicability of the proposed approach
with two examples. The first deals with field data collected at a pi-
lot SIP site (Section 5.1). The second considers several synthetic
examples that enable one to analyze the approach accuracy and
robustness, and to quantify predictive uncertainty (Section 5.2).

5.1. Pilot SIP in Sant Vicenç dels Horts, Spain

We use the mathematical framework developed in Sections 3
and 4 to predict soil clogging and the corresponding reduction in
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Fig. 1. Reduction of the infiltration capacity of the SIP topsoil (normalized with the initial
different location of a SIP characterized by locally uniform grain size distribution, corresp
soils, physical clogging (stars) and biological clogging (points) practically overlap.
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the pond’s infiltration capacity at a SIP site located in Sant Vicenç
dels Horts (herein, SVH) near the city of Barcelona, Spain. The site
(Fig. 2) lies in the prodelta region of the Llobregat river, whose
geology is a sequence of fine- and coarse-grained facies of silico-
clastic materials, deposited according to the evolution of the pa-
leo-river. The hydrogeological setting consists of sandy-gravel or
gravelly-sand (depending on the proportion of the average grain
sizes), separated by non-continuous fine-grained horizons. The
SIP size is 45 m � 100 m, with an excavation depth ranging from
4 to 6 m below the ground surface.

From Fig. 2, spatial heterogeneity of the pond’s surface material
is clearly visible, and a series of double ring experiments [36] show
that infiltration rates at different locations throughout the pond
vary by orders of magnitude. Since the color of the ground depends
closely on the soil texture, which in turn is correlated with the
infiltration capacity, the ground color of Fig. 2 was used to indi-
rectly infer the initial infiltration capacity at the local (point) scale
I0(x) throughout the pond (Fig. 3A) [36]. The authors found the lo-
cal measured infiltration rates to be linearly correlated with the
logarithm of the pixel intensity of the satellite image in Fig. 2
(which happened to have approximately the same measurement
support, on the order of dm2). The data analysis in [36] provides
a rare example of SIPs, in which the initial local infiltration capac-
ities are known with sufficient certainty. In general, this is not the
case, and uncertainty (randomness) in I0(x) should be accounted
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Fig. 3. (A) Reference map of initial infiltration capacity distribution (modified from
[36]), and (B) relative grain-size distribution predicted with the Hazen formula (8).
The size of the image is 286 � 694 pixels. Coordinates are also in pixels.

Fig. 4. Spatial distributions of (A) the physical clogging rates kp and (B) the
biological clogging rates kb, inferred from the spatial distribution of dg in the
reference domain. As such, each value has a pixel-size support volume. Notice
scales are different in both plots.
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for in decision-making. In the analysis below, we explore both
scenarios.

In this work we use Fig. 3A as our reference raster of initial infil-
tration capacities (I0(x)). The map is a rectangular domain of
286 � 694 pixels, which was obtained by sampling and transform-
ing the central domain of Fig. 2. This geometry allows us to apply
the method described in [36] (the careful reader will note that the
image here is a mirror version of the one use by these authors).

Fig. 3B exhibits the characteristic grain size distribution dg(x)
inferred from the distribution of I0(x) in Fig. 3A by means of the Ha-
zen formula (8). The logarithmic color scales in Fig. 3 highlight the
high degree of spatial variability of the parameters considered in
this study at the local (i.e., pixel) scale (�102 cm2). The parameters
are inferred, and assumed to be constant, on a pixel basis.

The estimates of the grain-size distribution dg(x) in Fig. 3B rely
on the relationship between the pixel intensity and the infiltration
rate and on the Hazen formula (8), both of which are likely to intro-
duce estimation errors. The impact of uncertainty on predictions of
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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the SIP infiltration capacity is quantified in Section 5.2 by conduct-
ing a series of Monte Carlo simulations. In the remainder of this
subsection, we treat the grain-size distribution dg(x) in Fig. 3B
deterministically, i.e., as a realization of the corresponding random
field.

Fig. 4 shows the estimates of physical clogging rates kp(x)
(Fig. 4A) and biological clogging rates kb(x) (Fig. 4B) obtained from
the estimates of the characteristic grain sizes dg(x) by following the
procedure described in Sections 3.2.1 and 3.2.2. Note that the val-
ues of kp span four orders of magnitude, while kb is relatively uni-
form. In these calculations, we adopt the same default values for
entry parameters as in Table 1. qk was related to dg according to
the relationship established in Section 4.

To simplify the presentation, we take the reduction factor R due
to gas clogging to be spatially homogeneous and set it to R = 0.9.
Spatially-varying R(x) can be obtained by invoking physical models
combined with field measurements. Substituting kp(x) and kb(x)
from Fig. 4 into (19), we compute the infiltration capacity I(x, t)
in each pixel. Temporal snapshots of the resulting I(x, t) after
t = 7, 14 and 42 days of infiltration are shown in Fig. 5. A compar-
ison of these snapshots with the initial infiltration capacity in
Fig. 3A reveals a significant deterioration in performance of the
SIP. While a large fraction of the SIP maintains s high infiltration
capacity after 7 days, 42 days of SIP operation results in a large
reduction of the area corresponding to high infiltration.

Fig. 6 summarizes the spatial variability of the infiltration
capacity I(x, t) in Fig. 3A and Fig. 5 in the form of its probability
density function (PDF) and cumulative distribution function
(CDF) after 1 (t1), 7 (t7), 14 (t14) and 42 (t42) days of SIP operation.
These were computed from the corresponding histograms of pixel-
level values of I(x, t). The infiltration-capacity PDFs at early times
are broad, reflecting high uncertainty (spatial variability) of I. As
time increases, the PDF shifts to the left, reflecting the decrease
in infiltration rates. It also sharpens, indicating the decreased
uncertainty. At all times, the PDF curves display asymmetric tailing
(positively skewed curves).

5.1.1. On the use of effective clogging rates
Since previous observation show that large scale flooding

experiments typically display an exponential decay in infiltration
rate, we explore the feasibility of using an effective clogging rate
keff as a parameter to represent the various biological and physical
clogging mechanisms over the whole SIP footprint.

We compute the mean infiltration capacity IðtÞ by averaging the
values of I(x, t) in (19) over all pixels. The resulting IðtÞ, normalized
with the average initial infiltration capacity I0, is shown in Fig. 7a.
Using a least-squares regression, the best fit exponential curve
approximating the rate of change of the infiltration capacities gives
a constant-in-time keff � 0.139 d�1, which means a characteristic
clogging time of the water in the pond of 7.2 days.

Alternatively, we can estimate a variable-in-time keff(t) by
invoking (2), such as

keffðtÞ ¼ �
1
t

ln
R

X Iðx; tÞ dxR
X I0ðxÞ dx

� �
: ð20Þ

The results of the two methods to calculate keff(t) are plotted to-
gether in Fig. 7b. The numerical evaluation of (20) suggests that
in this case, keff is monotonically decreasing in time, ranging from
0.155 d�1 to 0.125 d�1 over the chosen time interval (up to
100 days). This corresponds to characteristic clogging times be-
tween 6.45 days to 8 days (Fig. 7b). From a practical perspective,
this difference may be negligible and a constant effective parameter
keff, exhibiting a ‘‘homogeneous’’ (or, more appropriately, homoge-
nized) exponential decay, can be considered a good approximation
(see the good fit in Fig. 7).
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Fig. 5. Spatial distribution of the infiltration capacities of the soil at different flooding stages (t = 7, 14 and 42 days) in the reference domain.
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Fig. 6. (a) Probability density function and (b) cumulative distribution function of the pixelized infiltration capacities I(x, t) after 1 (t1), 7 (t7), 14 (t14), and 42 (t42) days of SIP
operation at the SVH site.
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5.1.2. SIP management strategies
Next, we explore how spatial variability of the SIP infiltration

capacity I(x, t) affects the efficiency of the following four mainte-
nance strategies:

� No maintenance activity is performed.
� All biological clogging mechanisms are remediated (Type A).
� All physical clogging mechanisms are remediated (Type B).
� Physical clogging mechanisms are remediated in selected areas

of the SIP footprint (Type C).

Type C maintenance can employ different criteria to identify the
parts of the SIP footprint where the remediation is to take place.
One could clean an area selected purely on geometrical criteria
(e.g., target a half of the area of the pond at a time). We on the
other hand pursue a Type C maintenance strategy that relies on soil
heterogeneity and hydraulic criteria to select clean-up areas. Spe-
cifically, we target the areas, wherein kp in Fig. 4A falls below a cer-
tain threshold value, e.g., 50% or 80% percentiles of the kp
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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probability distribution (Fig. 8). Since kp is high for points display-
ing low I0 and vice versa, such maintenance strategies focus on the
areas with the highest initial infiltration capacity I0. This allows
one to sustain higher infiltration rates longer, thus resulting in a
decrease in the reduction of the mean infiltration capacity over
long time. Complex geometries over which such a maintenance
is to be performed present practical implementation difficulties.
Thus, this approach has little practical significance at the current
stage of SIP practices but could be potentially interesting for future
large scale facilities.

Fig. 9 displays the average infiltration capacity IðtÞ achieved with
the four maintenance strategies identified above. Unsurprisingly, all
the strategies increase IðtÞ relative to its counterpart without any
maintenance. If one defines 37% of the initial infiltration rate (corre-
sponding to a characteristic time t = 1/keff) as the minimum accept-
able infiltration capacity, then the SIP’s operational time without
maintenance is about 7 days. Treating bio-clogging extends the
operational time to about 9.5 days, and the full treatment of physi-
cal clogging increases the operational time to about 28 days. This
aintenance and operation of artificial recharge ponds. Adv Water Resour
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analysis reveals that at this site physical clogging is the primary
inhibiter for maintaining effective mean infiltration rates.

If only a partial maintenance of physical clogging is performed,
the treatment of 50% of the domain extends the operational time to
18–20 days. A more extensive treatment, 80% of the domain, deliv-
ers a substantial gain over the untreated case of about 25–27 days.
Thus, if feasible, a partial targeted maintenance offers significant
gains in operational time (and thus could be a valid cost-efficient
management alternative).

5.2. SIP operations under uncertainty

In the preceding analysis on the pilot SIP, we assumed that all
the relevant parameters to compute (19) are known with certainty.
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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Such a degree of certainty is uncommon in practical situations,
where dg, K0, I0, R, kb and kp are sparsely sampled and highly uncer-
tain. This parametric uncertainty translates into uncertainty in pre-
dictions of whether and when the predicted mean infiltration rate
IðtÞ falls below a critical value Ic.

To explore the effects of parametric uncertainty, we supplement
our analysis of the SVH site with a number of synthetic fields
whose ensemble statistics are loosely based on the data obtained
from this site. Rather than treating dg as our random variable, we
take the hydraulic conductivity, which we treat as deterministi-
cally linked to dg as random. Specifically, as is commonly done,
we assume that the initial natural log hydraulic conductivity
Y0(x) = lnK0(x) is a multi-Gaussian random field with zero mean
Y0 ¼ 0, variance r2

Y , an exponential variogram, and correlation
length IS. We set h = 0.5 m (constant in space and time) to compute
I0 from K0 using (3) and A = 100 to compute dg from K0 using (8).
Since A and h are constant in space and time, the spatial structure
is identical for dg, K and I0. Random realizations of Y0(x) were gen-
erated with the sequential simulation algorithm GSLIB [28] on a
computational domain comprised of 284 � 692 pixels. These real-
izations were not conditioned to data.

Section 5.2.1 contains an analysis of the infiltration capacities
IðtÞ for single realizations of soil parameters. Its goal is to verify
the robustness and generality of our findings at the SVH site. In
Section 5.2.2, we perform Monte Carlo simulations (MCS) to quan-
tify predictive uncertainty.

5.2.1. Analysis of individual (single) realizations
Consider four SIPs operating in soils, whose distributions of ini-

tial infiltration capacities I0(x) are shown in Fig. 10. These fields are
individual realizations of random fields obtained using different
parameters, e.g. (a) r2

Y ¼ 4 and IS = 66, (b) r2
Y ¼ 4 and IS = 6.6, (c)

r2
Y ¼ 1 and IS = 66, and (d) r2

Y ¼ 1 and IS = 6.6. In all cases the units
for IS are pixels.

Fig. 11 shows how the various maintenance strategies described
in Section 5.1.2 affect the decay in the normalized infiltration
capacity IðtÞ=I0 in the four synthetic fields (Fig. 10). Note here that
when we say Type C maintenance it refers to the de-clogging of
50% of the pond surface.

For r2
Y ¼ 4 and Is = 66, the results suggest that removal of

biological clogging (Type A) yields better performance than
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Fig. 9. Reduction in the normalized mean infiltration capacity, IðtÞ=I0, of the reference site for the alternative maintenance strategies.

Fig. 10. Individual realizations of the initial infiltration capacities I0(x), using
different variances of soil hydraulic conductivity r2

Y and correlation length IS: (a)
r2

Y ¼ 4 and IS = 66, (b) r2
Y ¼ 4 and IS = 6.6, (c) r2

Y ¼ 1 and IS = 66, and (d) r2
Y ¼ 1 and

IS = 6.6. Units of IS in pixels.
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applications on physical processes (Types B, C). For instance,
40 days after recharge has started, the reduction of infiltration
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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from its initial value is about 80% using Type B and C maintenance
(which practically overlap in this case), while there is a reduction
of around 70% with Type A. For the same variance of r2

Y ¼ 4 but
a comparatively small correlation length (IS = 6.6), Type B and C of-
fer slightly better performance than Type A, although after around
40–45 days of operation this behavior is inverted. However, the
late time difference is quite small.

On the other hand, for the smaller variance (more homoge-
neous) system with r2

Y ¼ 1, biological clogging always appears to
play a secondary role when compared to physical clogging effects
in direct analogy to what we observed at the SVH site (Fig. 9). This
is true for both the IS = 66 and 6.6 realizations. Maintenance ap-
plied in the effort to remove biological clogging is practically use-
less relative to doing nothing. On the other hand both physical
clogging maintenance approaches are much more effective.

Note that in all cases the selective removal of physical clogging,
i.e. Type C maintenance, is almost as effective as the complete re-
moval maintenance, particularly for the high variance cases. This is
because this maintenance keeps the dominant flow channels open
and the low permeability regions affect the mean value very little.

5.2.2. Monte Carlo analysis
To quantify the uncertainty associated with predictions in the

decline in the infiltration capacity of the four SIPs in Fig. 10, we
conduct four sets of Monte Carlo simulations (MCS). Each set con-
sists of 1000 realizations of the initial log-conductivity fields Y0(x)
whose statistical properties are described in Section 5.2.1. As in the
case of the single realizations, we use (3) and (8) to relate dg and
the initial infiltration to Y0(x).

Figs. 12 and 13 display some of the most significant results of
the analysis. The former displays the normalized spatially-aver-
aged infiltration capacities against time ðIðtÞÞ for each of the four
statistical fields. The figure includes the ensemble mean of the pre-
dictions over all realizations, along with the degree of uncertainty
for each prediction expressed by the coefficient of variation (CV).
Note that apart from the case with IS = 66 and r2

Y ¼ 4, the ensemble
mean curves of Type B and C (marked by squares and circles) prac-
tically overlap.

One feature that stands out is that CV, initially zero (we assume
perfect knowledge of I0) increases towards larger values at different
rates, that depend on the type of maintenance and geometrical
distribution of soil parameters. The most uncertain cases are those
with biological maintenance and with no maintenance at all, while
the uncertainty is generally quite small for the system with mainte-
nance of physical clogging. This is in some sense a reflection of the
aintenance and operation of artificial recharge ponds. Adv Water Resour
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Fig. 13. Cumulative distribution frequency (CDF) of the normalized overall infiltration capacity IðtÞ resulting from the Monte Carlo analysis. Results are shown at times t1 = 1,
t7 = 7, t14 = 14, t21 = 21 and t42 = 42 days. Results are shown for the four synthetic fields and four maintenance strategies.
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fact that maintenance of physical clogging homogenizes the
system. Interestingly, while biological processes are also heteroge-
neous, their range of heterogeneity is much smaller and so only
treating biological processes maintains a high degree of uncertainty
in the system with late time coefficients of variation in many cases
reaching values of O(1).
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
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Comparing physical clogging maintenance schemes B and C
demonstrates that the ensemble mean behavior is practically
unchanged except with a small visible difference in the most het-
erogeneous system where IS = 66 and r2

Y ¼ 4. As already high-
lighted, the uncertainties are small for both cases with a largest
value around O(10�2) in the most heterogeneous systems. The
aintenance and operation of artificial recharge ponds. Adv Water Resour
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uncertainty is always smallest for Type B maintenance, which is
rather intuitive since it removes all physical clogging, while C only
targets it partially, thus still maintaining a certain degree of phys-
ical clogging heterogeneity in the system. It is shown that biologi-
cal maintenance results in the highest degree of uncertainty, which
raises an important point for managers and decision makers: if
dealing with a highly heterogeneous pond, one would have to de-
cide whether to gamble with the uncertainty associated with
maintenance A or take the more certain approach of maintenance
against physical clogging.

To highlight the main observations from the Monte-Carlo simu-
lations in a different way we present the cumulative distribution
functions (CDF) of normalized infiltration at various times in
Fig. 13. The CDFs are shown for each of the 16 cases (4 ponds with
4 maintenance strategies) at five different times t1, t7, t14, t21 and
t42, where the subscript corresponds to the number of days
elapsed. In Fig. 13 the cases, which suffer from the greatest degree
of uncertainty, clearly stand out (e.g. the pond with r2

Y ¼ 4 and
I = 66 with maintenance type A). On the contrary, many of the sys-
tems with low variance, particularly with maintenance types B and
C have almost instantaneous jumps in their CDFs. These sudden
jumps reflect a very high degree of certainty.

Finally to convey this information even more clearly we present
selected probability density functions for some specific cases to
highlight particular features in Fig. 14. The PDFs are calculated as
the best-fit non-parametric approximation to the discrete experi-
mental histograms of infiltration capacities. We show the PDFs at
various times for different maintenance activities, calculated for
the case with greatest uncertainty (IS = 66 pixels and r2

Y ¼ 4 m2/
day2). The PDFs are shown at three different times, t7, t14 and t42.

The width of the PDFs reflects the degree of uncertainty and ni-
cely visualizes some of the measures of uncertainty in Figs. 12 and
13. We would like to highlight that in Fig. 14, the shape of the pdfs
for Type C is clearly different from the others; this is due to the fact
that the type C maintenance selects to only maintain the higher
infiltration rate channels, thus maintaining higher statistical mean
infiltration capacity and inducing a negative skewness to the PDF.
This is what increases the degree of uncertainty relative to full re-
moval of physical clogging.
6. Conclusions

The effective use of Surface Infiltration Ponds (SIPs) requires the
maintenance of soil infiltration capacity. Of the many processes
that affect infiltration, clogging typically plays a leading role in
diminishing infiltration capacity. Soil heterogeneity at SIP sites in-
duces spatial variability of both local infiltration capacities and lo-
cal clogging parameters, which complicates the accurate prediction
of mean infiltration capacity.

In this work we developed a framework to evaluate the infiltra-
tion rate in a heterogeneous SIP over time so as to aid managers in
the operation of a SIP under uncertainty. The framework focuses on
physical, biological and retardation-like clogging mechanisms,
although additional processes can easily be included. We applied
our general methodology to two sets of single realization examples
(a real SIP and four synthetic ones), and within a Monte Carlo
framework.

The main conclusions of the work can be listed as

� We can use simplified models to quantify the reduction of soil
infiltration rate due to different clogging mechanisms via char-
acteristic grain sizes.
� Biological and physical processes combine to produce a reduc-

tion of infiltration in time. The relative impact of one versus
the other is governed by some typical parameter of the soil like
Please cite this article in press as: Pedretti D et al. Probabilistic analysis of m
(2011), doi:10.1016/j.advwatres.2011.07.008
the grain size. A simple sensitivity analysis on the models dem-
onstrates that physical clogging is more sensitive to soil heter-
ogeneity than biological clogging.
� Detailed knowledge of the geological heterogeneities of the soil

are a determining factor for optimal decision making in mainte-
nance operations of SIPs. Actions can be taken aimed at reduc-
ing the impact of biological or physical clogging independently.
Some of them can be selectively applied to target portions of the
domain, instead of being applied over the whole domain. A
proper initial characterization can significantly help to accu-
rately predict the infiltration rate in a SIP. Such an initial char-
acterization can for example be conducted using primary or
secondary information (e.g. [36]).
� The single realization approach considers the spatial distribu-

tion of initial infiltration capacity to be fully known at any loca-
tion of the pond. It demonstrates how in a heterogeneous
system the mean infiltration rate can be described with an
effective homogeneous decay rate despite the large degree of
heterogeneity.
� The Monte Carlo framework shows that the risk of making opti-

mal decisions depends on soil heterogeneity. Uncertainty
mainly depends on the global variability of the hydraulic prop-
erties of the soil (risk of design failure increases as the variance
of the hydraulic conductivity increases). The geometric distribu-
tion (evaluated by the correlation length) of such parameters
also plays a role, but in most cases is secondary.
� Maintenance actions that target physical clogging mechanisms

significantly reduce the uncertainty in predicting the temporal
evolution of the infiltration rate relative to only maintenance
in relation to biological clogging or no maintenance at all. On
the other hand, some soil characterization parameter combina-
tions lead to a larger value of the ensemble infiltration capacity
with time. Thus a decision maker must weight the relative gain
in infiltration capacity to the gamble of uncertainty.
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