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Persistence of incomplete mixing: A key to anomalous transport
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Anomalous dispersion in heterogeneous environments describes the anomalous growth of the macroscopic
characteristic sizes of scalar fields. Here we show that this phenomenon is closely related to the persistence of
local scale incomplete mixing. We introduce the mixing scale ε as the length for which the scalar distribution
is locally uniform. We quantify its temporal evolution due to the competition of shear action and diffusion and
compare it to the evolution of the global dispersion scale σ . In highly heterogeneous flow fields, for which the
temporal evolution of σ is superdiffusive, we find that ε evolves subdiffusively. The anomalous evolutions of
the dispersion and mixing scales are complementary, εσ ∝ t . This result relates anomalous global dispersion to
the dynamics of local mixing.
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Anomalous dispersion has been ubiquitously observed for
transport in complex environments [1]. It can be traced back
to the fact that projection of microscale transport dynamics in
terms of stochastic or spatial averaging leads to non-Markovian
behavior [2,3]. For Markovian systems, the memory of
previous states is destroyed by complete mixing on the support
scale. Mean field approaches typically rely on support scales
that are not well mixed or, in other words, that are not in local
equilibrium [2,4]. These approaches are characterized by non-
Markovian dynamics that (i) can lead to anomalous dispersion
and (ii) may not preserve the full concentration variability.
The latter is of critical importance for the quantification of
phenomena that depend nonlinearly on local concentration
such as reactive transport [4,5] or population biology [6,7].
Thus the understanding of anomalous dispersion and the
quantification of concentration variability in heterogeneous
environments depend on the notion of incomplete mixing and
the evolution of the local mixing scale compared to the support
scale of the projected transport dynamics. For example, as
the mixing scale reaches the support scale, the projected
transport is expected to become Markovian and represent the
full spectrum of concentration values.

For homogeneous environments, mixing is due to diffusion
only and the local mixing scale grows like

√
t . For heteroge-

neous environments, the mixing dynamics are more complex
and are governed by the creation of concentration gradients
due to heterogeneity and its destruction by microscale mixing.
The dynamics of mixing have been studied for turbulent
flows [8–10], chaotic flows [11,12], and heterogeneous porous
media flows [13] in terms of global mixing states, as quantified
by scalar dissipation rates [8], entropy measures [14], Lya-
punov exponents [13], and pair dispersion [15]. While these
approaches give invaluable insight into the mechanisms of
mixing, they do not provide a quantification of a local mixing
scale, i.e., the support scale for scalar gradients [16]. In this
Rapid Communication we introduce the concept of the mixing
scale based on the distribution of pair separations. We study the
evolution of the mixing scale due to the competition of shear

action and diffusion and relate it to the anomalous evolution
of the global dispersion scale.

(a) Mixing, coarse-grained, and dispersion scales. Mixing
can be studied in terms of pair dispersion, which quantifies the
evolution of the mean square separation between two particles
with a given initial separation [15]. For turbulent flows, this
can be directly linked to the decay of scalar variance [17].
However, it does not provide in itself a measure of a local
mixing scale, defined as the support scale for concentration
gradients. A characteristic scale that can be defined for random
mixtures is the coarse-grained scale ηq [16], which is the scale
r at which the variance of the coarse-grained concentration

cr (x,t) = 1

rd

∫
ρ<r

ddρ c(x + ρ,t) (1)

decreases by a factor q from its point value. The coarse-grained
scale ηq reflects the aggregate construction of the concentration
field. By definition ηq does not conserve the full concentration
variability and it can be much larger than the support scale of
concentration gradients [16].

In order to define a local mixing scale that conserves the
full variability of a scalar field, we consider the probability
density function (PDF) of particle separations,

p(ρ,t) = 〈δ{ρ − [x(1)(t) − x(2)(t)]}〉, (2)

where x(i)(t) (i = 1,2) denotes the position of two particles
at time t and the angular brackets denote the average over
all particle pairs. The cumulative distribution of absolute
separations r is

P (r,t) =
∫

|ρ|<r

dρ p(ρ,t). (3)

For a uniform distribution of particles, P (r,t) scales as rd

because the number of particles within a hypersphere of
dimension d and radius r is proportional to the volume of
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the hypersphere. Therefore, at the well mixed scales, the
normalized cumulative distribution

C(r,t) = P (r,t)r−d (4)

is constant. For a nonuniform distribution of particles, the evo-
lution of P (r,t) is typically slower than rd [18] such that C(r,t)
decreases with r . We define the mixing scale ε as the transition
scale for which the normalized cumulative distribution shifts
from uniform [C(r,t) = const.] to nonuniform,

ε(t) = max[r|C(r,t) = const.]. (5)

Unlike classical pair-dispersion studies, the mixing scale here
is defined from a transition scale analysis rather than a spatial
moment analysis.

It can be shown that C(r,t) is equal to the variance of
the coarse-grained concentration [Eq. (1)] by noting that the
cumulative distribution of pair separation is equal to the
correlation integral defined by Grassberger and Procaccia [18].
For scales r < ε, C(r,t) is independent of r and equal to the
point value concentration variance. Therefore, ε is the scale
that preserves the full concentration variance. The state of
incomplete mixing of a scalar field can be characterized by
comparing the mixing scale ε(t) to the characteristic dispersion
scale σ (t), which quantifies the size of the plume. σ (t) is
defined by the second spatial moment of pair separation

σ 2(t) =
∫

dρ ρ2p(ρ,t). (6)

(b) Spatially uniform shear and local balance rule. For
spatially uniform shear, the temporal evolution of the mixing
scale ε is governed by the competition of expansion due to
diffusion and compression due to shear [16]. This can be
expressed by a local balance rule

1

ε

dε

dt
= D

ε2
− γ, (7)

where D is the diffusion coefficient and γ is the compression
rate.

(c) Heterogeneous flow and nonlocality. For a heteroge-
neous flow field, the shear varies in space. Therefore, the
size of well mixed areas is spatially distributed (Fig. 1). The
latter is typically minimum in zones of maximum shear. By
Eq. (5), the mixing scale ε corresponds to the minimum size
of the well mixed patches in the domain. As the concentration
distribution is transported through the medium, the location
of the well mixed zone with minimum size changes. Thus the

time evolution of ε no longer depends on a local balance of
diffusion and shear and it becomes nonlocal.

In the following we analyze the temporal evolution of the
mixing scale for transport in steady flows through heteroge-
neous media (Fig. 1). While the mixing characteristics are
generally different from temporally fluctuating random flows,
the basic mechanisms such as creation and dissipation of scalar
gradients are similar. Unlike turbulent velocity fields, flow
patterns are not transported by the mean flow and the Taylor
hypothesis is not valid. For strong degrees of heterogeneity,
dispersion, as measured by σ (t) [Eq. (6)], is superdiffusive
as a result of the non-Gaussian, heavy tailed distribution of
Lagrangian velocities and their long range temporal correlation
[1,19–21]. The temporal behavior of the mixing scale, on the
other hand, is not known in this context. Mixing is generally
expected to be enhanced in strongly heterogeneous flow fields
[7,22,23]. Thus the mixing scale may be expected to grow
superdiffusively too. In the following we show that its temporal
growth is, on the contrary, slowed down by the flow disorder.

To analyze the temporal evolution of the mixing scale, we
perform high resolution numerical simulations of transport
through heterogeneous porous media using a standard ap-
proach [21]. The medium conductivity K(x) is modeled as a
lognormally distributed random field, i.e., the joint distribution
of the point values of logarithmic conductivity ln K is
multivariate Gaussian and characterized by a correlation length
λ and a variance σ 2

lnK [Fig. 1(a)]. The correlation function
C(x) of ln K fluctuations is C(x) = exp(−x2/2λ2). This type
of random conductivity is generic and represents a reference
field for theories of flow and transport in heterogeneous porous
media [24].

Spatial variability of the conductivity K(x) is mapped onto
the divergence-free flow field u(x) via the Darcy equation
u(x) = −K(x)∇h(x), with h(x) the hydraulic head. As bound-
ary conditions we impose no flux across the horizontal and
a constant hydraulic head at the vertical boundaries. The
flow equation is solved numerically with a finite difference
scheme. The flow domain is the two-dimensional rectangle
	 = {x|x1 ∈ [0,819.2λ],x2 ∈ [0,102.4λ]}. The strong hetero-
geneity of the conductivity field and the flow equations
(Darcy equation and fluid mass conservation) imply a strong
localization of high velocity zones such that the flow field
organization is different from the conductivity field orga-
nization [21]. The flow correlation range is long range in
the longitudinal direction and short range in the transverse
direction [Fig. 1(b)].
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FIG. 1. (Color online) (a) Lognormal conductivity field with variance σ 2
lnK = 9 and correlation length λ = 10. (b) Simulated velocity field.

(c) Simulated scalar field C(x,t) at time t = 20τa for an initial line injection at x1/λ = 10 and a Péclet number Pe = 102.
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Transport of a passive scalar c(x,t) in the flow field u(x)
can be described by the Fokker-Planck equation

∂c(x,t)

∂t
+ u(x) · ∇c(x,t) − D∇2c(x,t) = 0, (8)

where D denotes the (constant) diffusion coefficient. As
boundary conditions we impose a flux weighted instantaneous
line injection at the inlet at x1 = 0, no flux at the horizontal
boundaries, and an absorbing boundary at the outlet. The
characteristic advection time scale is defined by τa = λ/u,
where u is the mean transport velocity. The characteristic
diffusion time is τD = λ2/D. The Péclet number Pe = λu/D

compares the diffusive and advective time scales. Equation (8)
is solved by random walk particle tracking [20,21]. Figure 1(c)
displays an example of a simulated scalar distribution for a
large conductivity field variance σ 2

lnK = 9 and a Péclet number
of Pe = 102, which implies a velocity field that varies over
seven orders of magnitude [20,21]. On the forward edge, the
scalar field is characterized by a filamentary structure due to
the meandering high velocity channels. The backward edge is
composed of scalar blobs that remain trapped in low velocity
zones. These low velocity areas create low concentration
lacunarities within the scalar field. Both the forward fingering
and backward trapping imply that the dispersion scale evolves
superdiffusively.

The spatial structure of the scalar field is quantified by
the normalized cumulative PDF of particle separations C(r,t)
[Eq. (4)], shown in Fig. 2 for different travel times. At a
given time, C(r,t) displays three spatial scaling regimes.
In the first regime, C(r,t) is independent of r . This is the
homogeneous range, where concentration gradients are erased
by diffusion. In the second regime, C(r,t) decreases with
scale r . Its slope on a log-log plot reflects the dimensionality
of the concentration field, as may be quantified by the
second order fractal dimension [18]. This slope decreases
with time, which reflects the smoothing of the concentration

FIG. 2. (Color online) Normalized correlation integral C(r,t) as
a function of the radial scale r at times t = 0.03τa , 0.27τa , 2.7τa ,
26.1τa , and 255.7τa ; the small scale value of C(r,t) decreases
with time. The inset shows the second derivative of the normalized
correlation integral ∂2 log10 C(r,t)/∂ log10 r2 as a function of the scale
r for time t7 = 8.4τa . The two minima are found for r = ε and σ ,
which correspond to the changes of scaling regimes.

FIG. 3. (Color online) (a) Temporal evolution of the dispersion
scale σ , the mixing scale ε, and coarse-grained scales η0.05 and η0.5.
The diffusion scale ε0 = √

2Dt is represented by the dashed line. The
scales ε and ηq are normalized to be equal to the diffusion scale at the
smallest time t = 10−2τa . (b) Synthesis of simulation data obtained
for correlation lengths ranging from λ = 5 to 20, Péclet numbers
ranging from Pe = 10 to 100, and logarithmic permeability variances
ranging from σ 2

lnK = 1 to 9. The time t∗ and the mixing scale ε∗ are
normalized so that the transition between the two regimes is unity. The
inset shows the temporal evolution of ε for the different parameter
sets.

field as time increases. We call this range the heterogeneous
range (see Fig. 2). As defined above, the mixing scale
ε [Eq. (5)] separates the homogeneous and heterogeneous
ranges. It is estimated here from the minimum of the
second derivative ∂2 log10 C(r,t)/∂ log10 r2. The inset in Fig. 2
shows that this criterion allows for a sharp identification of
the transition between the homogeneous and heterogeneous
regimes.

The temporal evolution of the mixing scale ε(t) is compared
to that of the global dispersion scale σ (t) in Fig. 3(a).
At initial times, the dispersion scale evolves ballistically,
reflecting the growth of the plume extent due to purely
advective mechanisms, σ 2(t) = σ 2

u t2, where σ 2
u is the velocity

variance. The mixing scale evolves diffusively, ε2(t) = 2Dt ,
since the plume is too small to sample the velocity contrasts.
For times larger than the advection scale τa , dispersion and
mixing become coupled since scalar particles start sampling
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the velocity heterogeneity. As a consequence, the dispersion
scale evolves superdiffusively and the mixing scale, in contrast,
grows subdiffusively, a behavior not described by the local
balance rule [Eq. (7)].

In the subdiffusive mixing regime, the difference between
σ and ε reflects the fact that the concentration field is not
fully mixed within the plume. The difference between these
two scales diverges with time by as much as two orders of
magnitude at late times, as illustrated in Fig. 3(a). The two
scales ε and σ are found to be related as

εσ ∝ t. (9)

This relationship expresses the coupling between mixing and
dispersion via the velocity field organization. Beyond the
illustrative example shown in this Rapid Communication we
tested this result for a variety of parameters that are compatible
with our numerical setting [Fig. 3(b)] and found that this
relationship held in all test cases: εσ/t = const. for t > τa (the
coupled regime) and εσ/t ∝ t1/2 for t < τa (the uncoupled
regime).

The temporal evolution of the coarse-grained scales ηq(t),
with q = 0.05 and 0.5, is displayed in Fig. 3 for comparison

with the mixing scale ε(t). At late times the scale ηq tends
toward the global dispersion scale at a rate that depends on
q. This supports the notion that mixing is enhanced by flow
heterogeneity. However, when defining the mixing scale ε from
a detailed transition scale analysis, one finds that the support
scale for concentration gradients is much smaller than the
coarse-grained scales (up to two orders of magnitude). This
implies that, although the concentration field appears smooth
and diffuse within the mixing zone, the maximum fully mixed
support volume remains small.

The persistent incomplete mixing demonstrated here gives
constraints on assumptions that can be made when modeling
reactive processes in disordered media. For broad velocity gra-
dient distributions, local balance approaches based on Eq. (7)
are not applicable to the description of the evolution of the
mixing scale, as the competition between diffusion and shear
is nonlocal. The mixing scale ε(t) evolves subdiffusively for a
large range of times and diverges from the typical dispersion
size that grows superdiffusively. The scaling complementarity
between dispersion and mixing [Eq. (9)] provides a simple
relationship between anomalous global dispersion and local
mixing dynamics.
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