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2 We study mechanisms of anomalous transport in quenched random media. Broad disorder point

distributions and strong disorder correlations cause anomalous transport and can lead to the same

anomalous scaling laws for the mean and variance of the particle displacements. The respective

mechanisms, however, are fundamentally different. This difference is reflected in the spatial particle

densities and first passage time distributions, which provide an indicator to identify the origins of

anomalous transport.
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Transport in disordered media is in general anomalous in
the sense that the average behavior is non-Markovian [1].
Anomalous transport can manifest itself as nonlinear scal-
ing of the mean and the variance of particle displacements,
tails of the spatial particle densities and the first passage
time distributions [2,3]. Such behavior has been ubiqui-
tously found for particle movements in quenched random
environments including porous media [4–7], gels [8], opti-
cal media [9] and crowded environments such as living
cells [10–12]. The observed anomalous diffusive behavior
has been modeled using Lévy flights and walks, continuous
time random walks (e.g., Refs. [2,3,13], and references
therein), projector formalisms [1,14], fractional Brownian
motion [15] and nonstationary Gaussian noise [16], among
others. As highlighted in Refs. [10–12,15], the origin of
anomalous transport is often unknown and thus it is not
always clear, which model of anomalous transport is ap-
plicable. In this Letter, we address this question by study-
ing the different manifestations of anomalous transport as
induced by strong (power-law) disorder correlation and
broad disorder point distributions (power-law tails towards
extreme values).

Particle movement in a random medium can be de-
scribed by the nonlinear Langevin equation [e.g., [17]]

dxðtÞ ¼ v½xðtÞ�dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dfv½xðtÞ�gdt

p
�ðtÞ; (1)

where we employ the Ito interpretation. The drift vðxÞ> 0
is a quenched random field with nonzero mean, D½vðxÞ� a
drift-dependent diffusion coefficient and �ðtÞ a Gaussian
random variable characterized by zero mean and unit
variance. The initial condition is xðt ¼ 0Þ ¼ x0. The par-
ticle density cðx; tÞ ¼ h�½x� xðtÞ�i satisfies the Fokker-
Planck equation

@cðx; tÞ
@t

þ @

@x
vðxÞcðx; tÞ � @2

@x2
D½vðxÞ�cðx; tÞ ¼ 0: (2)

Disorder model.—We consider a spatial disorder orga-
nization in bins of varying sizes with constant drift within a
given bin. The random velocity vðxÞ then is represented by
vðxÞ ¼ P1

m¼�1 vmIBm
with Bm ¼ fxjam < x � amþ1g.

The indicator function IBm
ðxÞ is one if x 2 Bm and zero

otherwise. The am are given by am ¼ �l0 þP
m
i¼1 li and

a�m ¼ �P
m
i¼0 l�i with m � 0. Length li and velocity vm

are independent identically distributed positive random
numbers, whose distributions are plðlÞ and pvðvÞ, respec-
tively. The random velocity field vðxÞ is stationary and
ergodic. The mean velocity is �v � 0, with the overbar
denoting the ensemble average. The velocity correlation

is Cðx� x0Þ ¼ �ðxÞ�ðx0Þ=�2
v, with �ðxÞ the velocity fluc-

tuation and �2
v the velocity variance. If mean or variance

of pvðvÞ do not exist we define them by introducing
a filter such that �v ¼ �d=d� ln½p̂vð�Þ��¼�c

and �2
v ¼

�d2=d�2 ln½p̂vð�Þ��¼�c
with cutoff mode �c. The hat de-

notes the Laplace transform and � is the Laplace variable.
The correlation function of vðxÞ is given by

CðxÞ ¼
Z 1

0
dlplðlÞmaxð1� jxj=l; 0Þ: (3)

A power-law distribution plðlÞ / l�1�� results in the
power-law correlation function CðxÞ / jxj�� for large dis-
tance. For a constant bin size [i.e., plðlÞ ¼ �ðl� l0Þ], the
velocity field is delta-correlated, CðxÞ ¼ l0�ðxÞ, at an ob-
servation scale much larger than l0.
Average transport.—We present a systematic upscaling

procedure that provides an explicit link between the statis-
tics of the microscale disorder model and the average
transport behavior. This approach includes the following
steps: (i) increase the dimensionality of the original
Langevin equation by introducing an operational time;
(ii) coarse grain the resulting set of equations respecting
the spatial disorder organization; (iii) ensemble average of
the single realization particle density.
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Defining ‘‘operational’’ time s by dt ¼ vcv½xðsÞ��1ds
with vc a characteristic drift,(1) can be written as

dxðsÞ ¼ vcdsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dfv½xðsÞ�gvcv½xðsÞ��1ds

q
�ðsÞ; (4a)

dtðsÞ ¼ vcv½xðsÞ��1ds: (4b)

We coarse grain (4a) so that the spatial transition is equal to
the length of a bin for each random walk step.5 This implies
that the drift is constant during a step, and it guarantees that
at subsequent steps particle velocities are independent. We
denote vðxnÞ ¼ vn. Thus, the spatial increment of the
coarse-grained random walk is xnþ1 � xn ¼ ‘n with ‘n
the bin length at position xn. The operational time incre-
ment �n ¼ snþ1 � sn needed to traverse distance ‘n is the
first arrival time for the biased random walk (4a) over the
distance ‘n and thus a random variable. The distribution of
�n is denoted by p�ð�njln; vnÞ. The mean of �n is ‘n=vc

and its variance is 2�n‘
2
n=v

2
c with �n ¼ DðvnÞ=ð‘nvnÞ. In

the limit �n � 1, the distribution of �n can be approxi-
mated by p�ð�njln; vnÞ ¼ �ð�n � ‘n=vcÞ. With these dis-
cretizations, Eq. (4) becomes

xnþ1 ¼ xn þ ‘n; tnþ1 ¼ tn þ �n; (5)

where �n � �nvc=vn. Note that the transition times �n
depend on the specific disorder configuration, which re-
flects the quenched nature of the random field vðxÞ.

In order to perform the ensemble average, we have to
express the single realization particle density cðx; tÞ in
terms of the coarse-grained particle position xn. To this
end, we note that the number of steps needed to reach a
certain time t is quantified by the renewal process nt ¼
supðnjtn � tÞ and, accordingly, xnt is the particle location

at time tnt � t. The actual particle position xðtÞ at time t is

given by linear interpolation such that xðtÞ ¼ xnt þ ‘ntðt�
tntÞ=�nt . Thus, the single realization particle density cðx; tÞ,
in terms of the coarse-grained space-time particle trajec-
tory, is (5) as cðx; tÞ ¼ h�½x� xnt � ‘ntðt� tntÞ=�nt�i,
where the angular brackets (noise average) now denote
the average over �n. Inserting a Kronecker delta gives
cðx; tÞ ¼ P1

n¼0h�½x� xn � ‘nðt� tnÞ=�n��n;nti. Noting

that n ¼ nt is equivalent to 0 � t� tn < �n, this expres-
sion can be written as

cðx; tÞ ¼ X1

n¼0

h�½x� xn � ‘nðt� tnÞ=�n�IAn
ðt� tnÞi; (6)

where An ¼ ftj0 � t < �ng. Introducing two Dirac deltas
in (6) and taking the ensemble average gives

�cðx; tÞ ¼
Z t

0
dt0

Z
dx0

X1

n¼0

h�ðx0 � xnÞ�ðt0 � tnÞi

� h�½x� x0 � ‘nðt� t0Þ=�n�IAn
ðt� t0Þi: (7)

The ensemble average can be spit because the ‘n and �n at
subsequent steps are not correlated by definition.

Performing the second average explicitly, the mean particle
density is given by

�cðx; tÞ ¼
Z t

0
dt0

Z
dx0

X1

n¼0

Pnðx0; t0Þ
Z 1

t�t0
d�

�
Z 1

0
d‘�½x� x0 � ‘ðt� t0Þ=��c ð‘; �Þ; (8)

with Pnðx; tÞ ¼ �ðx� xnÞh�ðt� tnÞi and the joint transi-
tion length and time distribution defined as

c ð‘; �Þ ¼ vcplð‘Þ
�2

Z 1

0
d��p�ð�j‘; vc�=�Þpvðvc�=�Þ:

(9)

We denote the ith spatial moment of c ðx; tÞ by 	iðtÞ. The
space-time particle density Pnðx; tÞ, satisfies
Pnþ1ðx; tÞ ¼

Z
dx0

Z t

0
dt0Pnðx0; t0Þc ðx� x0; t� t0Þ: (10)

Eqs. (8) and (10) describe the particle density of a fully
coupled CTRW (e.g., [18]) whose space-time trajectory is
given by Eq. (5), with �n and ‘n at each step drawn from
c ð‘; �Þ.
Anomalous transport can be characterized in terms

of the first passage time distribution and the time evolution
of the mean and variance of the particle displacements. The
distribution of the first passage time tfðxÞ of a particle

injected at x0 at time t ¼ 0, is defined by �fðt; xÞ ¼
h�½t� tfðxÞ�i. An explicit expression for �fðt; xÞ can be

derived by using a similar reasoning as above for the
derivation of the average particle density �cðx; tÞ. From (8)
and (10) we obtain explicit Laplace space expressions for

the mean and mean squared displacements m1ðtÞ ¼ hxðtÞi
and m2ðtÞ ¼ hxðtÞ2i,

m̂ 1ð�Þ ¼
Z �

0
d�0 	̂1ð�0Þ

�2½1� 	̂0ð�Þ�
; (11)

m̂ 2ð�Þ ¼
Z �

0
d�0 2�0	̂2ð�0Þ

�3½1� 	̂0ð�Þ�
þ 2	̂1ð�Þm̂1ð�Þ

½1� 	̂0ð�Þ� : (12)

The variance 
ðtÞ ¼ m2ðtÞ �m1ðtÞ2 measures the width of
the mean particle distribution.
The average transport model in l (8)–(10) allows the

systematic study of anomalous average transport induced
by (i) disorder point distributions and (ii) disorder corre-
lations. For illustration, we choose D½vðxÞ� ¼ DvðxÞ=vc

so that �n ¼ D=ð‘nvcÞ. Furthermore, we consider scenar-
ios for which �n � 1 for almost all n and approximate the
joint transition length and time distribution by c ð‘; �Þ ¼
ðvc=‘Þplð‘Þp�ð�vc=‘Þ.
Distribution-induced anomalous diffusion.—First, let us

consider the scenario of a delta distribution of bin length
plðlÞ ¼ �ðl� l0Þ. The latter implies CðxÞ ¼ l0�ðxÞ for an
observation scale L � l0. Average transport for this sce-
nario follows a decoupled CTRW. This transport behavior
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has been well studied in the literature [3,13,18–20].
Anomalous diffusion here is caused by a power-law distri-
bution of transition times 	0ðtÞ / t�1��, which arises for
the velocity distribution pvðvÞ / v��1=ð1þ v=vcÞ1þ�. In
fact, all moments scale as 	iðtÞ / t�1��. A typical real-
ization of this disorder model for � ¼ 3=2 is illustrated by

where the gray scales indicate different values of vðxÞ. In
the computational examples, we refer to this specific sce-
nario as case 1.

Anomalous transport here is distribution dominated be-
cause the quenched random field is essentially uncorre-
lated. The first moment of the particle distribution
asymptotically goes like m1ðtÞ / t� for 0<�< 1 and
m1ðtÞ / t for �> 1. Similarly, the variance evolves
asymptotically as 
ðtÞ / t2� for 0<�< 1 and as 
ðtÞ /
t3�� for 1<�< 2. For 0<�< 2 diffusion is anomalous,
while for �> 2, transport is asymptotically normal and

ðtÞ / t. The behavior of 
ðtÞ is illustrated in Fig. 1 for
� ¼ 3=2. The first passage time distribution scales as
�fðt; xÞ / t�1�� for 0<�< 2.
Correlation-induced anomalous diffusion.—Next, we

consider a power-law distribution of bin sizes, plðlÞ /
l�1��, which leads to a power-law correlation function
CðxÞ / jxj��. We consider velocity distributions pvðvÞ
that go to zero exponentially fast for small v. This means
transport is not limited by slow velocities as in the previous
case. Anomalous transport here is correlation-induced.

For illustration, we choose a power-law distribution
pðvÞ / v�2 expð�vc=vÞ and a lognormal velocity distri-
bution. A typical realization of the power-law pvðvÞ for
� ¼ 3=2 is given by

to which we refer in the following as case 2. A typical
realization of the lognormal pðvÞ and � ¼ 3=4 is
illustrated by

which is referred to as case 3 in the computational
examples.
At late times, the moments 	iðtÞ of c ðx; tÞ scale as

	iðtÞ / ti�1��
Z 1

0
dvvi��pvðvÞ: (13)

Note that in contrast to the distribution dominated scenario,
the scaling behavior here depends on the order of the
moment. The mean and mean squared particle displace-
ments (11) and (12) exist only if moments 	1ðtÞ and 	2ðtÞ
in (13) exist. If the velocity distribution is tailed towards
high velocities, the mean and mean squared particle dis-
placements may diverge. In this case, the behavior is Levy
flight-like, characterized by high velocities that can persist
over long distances. This can be observed for the power-
law velocity distribution, for which 	2ðtÞ diverges loga-
rithmically for 0< �< 1. If 	iðtÞ<1 for i ¼ 1, 2, the
long time behavior of the m1ðtÞ and m2ðtÞ can be obtained
by inserting the Laplace transforms of (13) into (11) and
(12), expansion for small � and using Tauberian theorems.
We find that the centroid of the particle distribution be-
haves asymptotically as m1ðtÞ / t. The variance scales as

ðtÞ / t2 for 0< �< 1, that is, diffusion is ballistic. For
1<�< 2, the variance behaves as 
ðtÞ / t3��. For � > 2
transport is asymptotically normal. This behavior has been
obtained in a different context in Refs. [21,22].
Distribution versus correlation-induced behavior.—

Figure 1 illustrates the spatial variance 
ðtÞ for cases 1–3
obtained from Monte Carlo simulations and the predicted
anomalous scaling behavior. The ballistic behavior of 
ðtÞ
for 0< �< 1 (case 3) is due the fact that the same veloc-
ities can persist over relatively long distances. The dis-
placement variance is then dominated by the velocity
differences in the long conduits, which gives rise to the
t2 scaling of 
ðtÞ. The variance 
ðtÞ for 1<�< 2 (case 2)
scales the same way as its counterpart in the distribution
dominated scenario for 1<�< 2 (case 1). However, the
mechanisms leading to this behavior are fundamentally
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FIG. 1. Time behavior of the spatial variance of the mean
particle distributions for (rectangles) case 1, (triangles) case 2,
and (circles) case 3. The solid lines indicate the asymptotic
behavior. The results are obtained by Monte Carlo simulations
based on (5) for 105–106 disorder realizations.
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FIG. 2. Particle density �cðx; tÞ for (rectangles) case 1, (tri-
angles) case 2, and (circles) case 3 at t ¼ 103. The results are
obtained by Monte Carlo simulations based on (5) for 106–107

disorder realizations.

P HY S I CA L R EV I EW LE T T E R S

3 3



different. This can be seen in both the spatial particle
distributions and the first passage time distributions.

Figure 2 shows average particle densities for the three
cases under consideration at a given time. For the distri-
bution dominated scenario (case 1) the density is charac-
terized by a sharp leading edge and a trailing tail, while the
correlation-dominated cases (2 and 3) are characterized by
forward tails that express fast transport over relatively large
distances. The tail obtains more weight with decreasing �
because the frequency of long conduits increases.
Correspondingly, the first passage time distributions for
the correlation-dominated scenarios, shown in Fig. 3, are
characterized by a relatively high frequency of early and
low frequency of late arrival. The mean and mean squared
first passage time are finite in contrast to the distribution
dominated case, for which �fðx; tÞ has a power-law tail at
long times.

In conclusion, we have shown that average transport in
quenched random velocity fields characterized by arbitrary
correlation structure and distribution of point values fol-
lows a continuous time random walk. For uncorrelated
disorder, space and time increments are uncoupled, while
spatial correlation gives rise to coupling. Using this aver-
age model we studied anomalous transport caused by
power-law disorder distributions and power-law disorder
correlations. While the anomalous diffusion behavior can
be identical in both cases, the transport mechanisms are

fundamentally different as reflected in the spatial particle
densities and first passage time distributions.
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