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Abstract

We investigate the temporal scaling properties of mixing in heterogeneous

permeability fields with variances ranging from very small (σ2
lnK = 0.01)

to very large (σ2
lnK = 9). We quantify mixing by the scalar dissipation

rate, which we estimate over a large range of temporal scales. For an initial

pulse line injection, we find that moderate and strong heterogeneity induce
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anomalous temporal scaling of the scalar dissipation rate, which we call non-

Fickian mixing. This effect is particularly relevant for upscaling reactive

transport as it implies a non-Fickian scaling of reactive transport. Although

spreading and mixing are intimately coupled, we find that their scaling prop-

erties are not directly related in general. In the Non-Fickian mixing regime,

the temporal scaling of the scalar dissipation rate depends on the complex

spatial distribution of the concentration field that generates transverse mix-

ing. For times larger than the characteristic diffusion time associated with

one permeability field correlation length, the heterogeneity of concentration

in the plume is attenuated and progressively erased by diffusion. Thus, at

large times, the temporal scaling of mixing and spreading can be related

through a simple analytical expression.

1. Introduction

Mixing is a fundamental process that drives chemical reactions in fluids

(Rezaei et al., 2005; Cirpka and Valocchi, 2007; Tartakovsky et al., 2008a;

de Simoni et al., 2005, 2007). Understanding and predicting mixing is a

key step for predicting reactive transport as it describes the rate at which

reactants will meet. Therefore, it has attracted the attention of researchers

across a range of scientific communities. In geophysical flows, mixing finds

applications both in porous media flow (Kitanidis, 1994; Kapoor and Kitani-
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dis, 1998; Kleinfelter et al., 2005) and in turbulent flows at various scales as

found in oceanic and atmospheric flows (Pope, 2000; Weiss and Provenzale,

2008; Rees, 2006). Heterogeneous velocity fields, which fluctuate at multiple

scales, are typical in these applications. The flow heterogeneity generates

complex concentration distributions that enhance mixing (e.g., Pope, 2000;

Tartakovsky et al., 2008b).

For transport in heterogeneous porous media, a fundamental difference

exists between the concepts of spreading and mixing (Kitanidis, 1988, 1994).

Spreading describes the spatial extent of a solute plume, while mixing can be

seen as the process that increases the actual volume occupied by the solute.

Thus, the processes of spreading and mixing may be quantified in terms of

(suitably defined) moments of the concentration distribution (e.g., Kitani-

dis, 1988; Attinger et al., 1999; Dentz et al., 2000; Dentz and Carrera, 2007;

Dentz et al., 2010). Mixing can also be seen as the process that smoothes

out concentration contrasts, or in other words homogenizes a given (hetero-

geneous) concentration distribution. Various measures for quantifyng mixing

have been proposed. For example, the dilution index is a mixing measure

based on entropy concepts (Kitanidis, 1994) that quantifies the volume occu-

pied by the solute. As such it measures the mixing state of a plume. On the

other hand, the mean scalar dissipation rate, defined from the local concen-

tration gradients quantifies the mixing rate (e.g., Pope, 2000). The mixing
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state and mixing rate evolve with time in opposite directions.

Spreading and mixing are stronlgy coupled (e.g., Kitanidis, 1988, 1994).

Spreading is essentially driven by advective mechanims and tends to enhance

concentration contrasts, which in turn enhance mixing. Various studies on

effective mixing and reactive transport for moderately heterogeneous media

exist (Kapoor and Gelhar, 1994a,b; Kapoor and Kitanidis, 1998; Fiori and

Dagan, 2002; Luo et al., 2008; Cirpka et al., 2008; Fernandez-Garcia et al.,

2008). These are typically based on perturbation methods and restricted to

moderately varying permeability fields. Mixing has not been analyzed for

highly heterogeneous permeability fields. The high degree of heterogeneity

implies that the large scale spreading of a solute plume is non-Fickian over

a large range of times (Matheron and de Marsily, 1980; Fiori et al., 2006;

Berkowitz et al., 2006; Benson et al., 2001; Cushman et al., 2005; Le Borgne

and Gouze, 2007; Le Borgne et al., 2008a; Neuman and Tartakovsky, 2009;

Zhang et al., 2009). Non-Fickian spreading can be characterized by the

scaling of the characteristic plume size, σ1, defined as the standard deviation

of the spatial distribution of concentrations:

σ2
1(t) =

1

Lx

∫
Ω

ddx [x1 − 〈x1(t)〉]2 c(x, t). (1)

where 〈x1(t)〉 is the center of mass coordinate of the plume in the direction

of mean flow, which here is aligned with the one-direction of the coordi-

nate system. The broad interest in non-Fickian spreading constrats with the
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paucity of similar work on mixing. The objective of our work is precisely to

investigate the relationship between non-Fickian spreading and non-Fickian

mixing.

We start by introducing the mixing measure that we consider, the scalar

dissipation rate and show that it is related to effective reaction laws. We

propose an efficient numerical method to quantify the temporal scaling of the

scalar dissipation with high accuracy. Using this method, we quantifiy the

temporal scaling of spreading and mixing. We demonstrate the occurence of

non-Fickian mixing, even for cases that appear to be Fickian from a spreading

perspective, and discuss its physical origin.

2. The Scalar dissipation rate

We consider transport by diffusion and advection in a heterogeneous ve-

locity field. We quantify global mixing by the scalar dissipation rate (e.g.,

Pope, 2000; Kapoor and Anmala, 1998; Kapoor and Kitanidis, 1998; Fedotov

et al., 2005; Warhaft, 2000; Bolster et al., 2010b), which is a global measure

of mixing defined as

χ(t) =

∫
Ω

ddxD∇c(x, t) · ∇c(x, t), (2)

where D is the constant diffusion coefficient, c is the local concentration and

d is the Eulerian dimension of space. Note that for simplification we do not
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consider a local dispersion tensor in this study. The methods and analysis

presented can however readily be extended to take this into account.

The interest of the scalar dissipation rate as a mixing measure can be

understood from the work of de Simoni et al. (2005, 2007), which we briefly

summarise here. Consider the transport of two reacting species of concen-

trations c1(x, t) and c2(x, t), which react in equilibrium to produce a third

immobile component c3(x, t). The governing equations can be written as

∂ci

∂t
+ v(x) · ∇ci = D∇2ci + r(x, t), i = 1, 2 (3)

and

∂c3

∂t
= −r(x, t), c1c2 = Kc, (4)

where v(x, t) is the velocity field, D is the diffusion coefficient, assumed

to be identical for all components, r(x, t) is the equilibrium reaction rate

and Kc is the chemical equilibrium constant. A conservative component for

this reactive transport system can be defined as c(x, t) = c1(x, t) − c2(x, t).

Substracting the transport equations (3) for c1 and c2, it can be shown that

c satisfies the pure advection diffusion equation, which is the same as (3) but

with r = 0. This shows that c is indeed conservative.

Using (4) and the definition of c allows us to solve for c1(c) and c2(c).

Substituting the latter in (4), while using the fact that c is conservative yields

r2(x, t) =

(
d2c2

dc2

)
D∇c · ∇c, (5)
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where the first term d2c2/dc2 is called the chemical factor and depends on

the specifics of the reaction (stoichiometry and equilibrium constant). The

second term D∇c · ∇c, called the mixing factor, is exactly the integrand of

the scalar dissipation rate defined in (2). From (5) we can define the global

reaction rate as:

R2(t) =

∫
Ω

ddx
d2c2

dc2
D∇c · ∇c (6)

When the chemical factor varies little over the range of c(x, t) considered

(Fernandez-Garcia et al., 2008; Sanchez-Vila et al., 2008), it can be assumed

to be almost constant and thus the global reaction rate is directly propor-

tional to the scalar dissipation rate. Note however that when the chemical

factor varies strongly with the mixing ratio such a global measure is not suf-

ficient for predicting reactions (Willmann et al., 2010; Bolster et al., 2010a).

In general, if the scalar dissipation rate temporal scaling is anomalous, i.e.

the mixing process is non-Fickian, the reaction rate temporal scaling is also

expected to be anomalous. Thus, understanding the scaling behaviour of

the scalar dissipation rate is an important first step for upscaling reactive

transport.

One of the main difficulties in evaluating the scalar dissipation rate and

reactions for that matter is the numerical calculation of the concentration

gradients in equations (2) and (6). The concentration field can vary sharply

over small distances, particularly for highly heterogeneous velocity fields.
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An accurate quantification of concentration gradients requires a very fine

discretization for Eulerian numerical schemes, where numerical dispersion

can induce errors, or a very large number of particles for random walk ap-

proaches. Concentration gradients are very sensitive to numerical noise in the

concentration field. To circumvent this issue, Fernandez-Garcia et al. (2008)

proposed an interpolation procedure to obtain a smooth concentration field

from a limited number of particles. While appealing and useful in practice,

such interpolation methods must be conducted with caution as they can lead

to smoothing of actual gradients. A lack of resolution of these gradients can

seriously compromise the ability of any model to accurately predict mixing

and reactions (Battiato et al., 2009).

Global mixing measures such as the scalar dissipation rate, can be deter-

mined without the computation of the local concentration gradients. Instead

one can evaluate the scalar dissipation rate from the integral of the squared

concentration (e.g., Pope, 2000), defined as

M(t) =

∫
Ω

ddxc2. (7)

For advective-diffusive transport in a domain with no solute flux boundary

conditions, the scalar dissipation rates can be expressed as

χ(t) = −1

2

dM

dt
. (8)

The equivalence of expressions (8) and (2) can be seen by multiplying the
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advection-dispersion equation in (4) for r(x, t) = 0 by c and integrating

over space, using the divergence theorem. This is detailed in appendix A

Notice that M(t) should not be confused with spatial or temporal moments

of concentration. It quantifies the variability of the concentration values at

a given time and not the temporal or spatial extent of the plume.

We now illustrate that calculating the scalar dissipation rate using M(t) is

significantly better than calculating it from local gradients of concentration.

We solve the advection-diffusion equation for a homogeneous medium and an

initial line injection using a particle tracking method. We take a permeameter

geometry with homogeneous velocity v and diffusion coefficient D. Snapshots

of the calculated concentration distributions are shown in Fig. 1. The time is

normalized by the characteristic diffusion time over one pixel τD = ∆x2/D =

3, where ∆x is the pixel size. The local concentration is normalized by the

total mass so that
∫
Ω

ddxc(x) = 1. For such system, the analytical solution

for the scalar dissipation rate is obtained by replacing the ADE solution in

2D in equation (2), which yields,

χ1D(t) =
C2

0Lyt
−3/2

8
√

2πD
, (9)

where C0 is the initial concentration and Ly is the size of the domain in the

vertical direction.

Figure 1:
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Although we used a relatively large number of particles (N = 105), the

concentration field is poorly resolved at late time due to the dilution of the

plume. Even at the earliest time in Fig. 1 it is clear that the numerical

field does not vary as smoothly as the analytical solution. The noise in the

concentration field makes it next to impossible to accurately evaluate the

scalar dissipation by gradients as it induces non physical gradients. This

is clearly seen in Fig. 2 where the gradient method in equation (6) signifi-

cantly overestimates the scalar dissipation rate after a relatively short time.

Conversely, despite poor resolution of the concentration field, the scalar dis-

sipation rate estimated from the temporal derivative of M(t) in (8) is in very

close agreement with the analytical solution over the full range of time and

concentration scales considered (Fig. 2).

The error on the estimation of the scalar dissipation rate depends on the

bin size for computing concentrations and on the number of particles. For

a too large bin size, the averaging of the concentration field implies that its

variability is under-estimated. Here, we take a bin size equal to the velocity

field discretization. In Appendix A, we show that, for a given bin size, the

relative mean error of the scalar dissipation rate due to a finite number N of

particles is given by

∆χN(t)

χ(t)
=

1

2N
. (10)

Further analysis of the effect of a finite number of particles on the concentra-
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tion statistics can be found in Feller (1971) and Chakraborty et al. (2009). In

summary, we deem the temporal derivative of M(t) to be a robust estimator

of the actual scalar dissipation rate χ(t).

3. Non-Fickian mixing

We now consider transport in a two-dimensional multi-lognormal hy-

draulic conductivity field defined by its log-conductivity variance σ2
lnK and

a Gaussian correlation with correlation length λ. In order to compare the

scalings of spreading and mixing, we study the temporal behavior of the

spreading length σ1(t) and scalar dissipation rate χ(t) for different perme-

ability field variances σ2
lnK. Note that the scaling behavior will also depend in

general on the permeability field representation (multi-lognormal, connected

or stratified), the permeability field correlation length and the injection mode.

However, our aim here is not to perform an exhaustive analysis for all these

different conditions. We study spreading and mixing for a single realization,

with large dimension so that we can analyze scaling behavior over 3 orders

of magnitude in time. For the domain sizes investigated the results depend

only slightly on the particular realization. Note that the methodology can

be easily extended to 3D. However, obtaining a large range of simulation

times in 3D domains currently typically requires using parallel simulations

(de Dreuzy et al., 2007).
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We adopt a domain of size Ω = [0, L1]× [0, L2], where L1 is the size in the

direction parallel to the mean flow direction and L2 is the size perpendicular

to the mean flow direction. The boundary conditions are again permeameter-

like. The steady flow is divergence-free, ∇·q(x) = 0. It is obtained from the

Darcy equation q(x) = −K(x)∇h(x), together with prescribed head condi-

tions on the vertical boundaries and no-flow conditions across the horizontal

boundaries; K(x) is the hydraulic conductivity and h(x) is the hydraulic

head.

Transport is solved by a random walk particle tracking scheme (Kinzel-

bach, 1988; Salamon et al., 2006), which prevents numerical dispersion prob-

lems for highly heterogeneous media. We define the Peclet number as Pe =

λKg∇h/ΦD = λv/D, where Kg is the geometric mean of the hydraulic con-

ductivity, ∇h is the mean hydraulic gradient Φ is the constant porosity, and

v is the mean velocity. The domain size is 8192 × 1024 = 819.2λ × 102.4λ.

We study the mixing behavior for an initial instantaneous line injection.

Results are sensitive to the way the injection is performed. Therefore, this

issue deserves some discussion. The most immediate option is to adopt a

constant injection by setting an equal number of particles in each pixel of

the line. The issue with this injection method is that the probability of in-

jecting particles into very low velocity zones is larger than that of particles

entering low velocity zones while travelling through the medium. The con-
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sequence is that islands of high concentration zones are created in very low

velocity regions, from which particles can only leave by diffusion. This effect

dominates the mixing behavior and thus introduces a bias in the analysis.

The above problem suggests that the most realistic option is the flux pro-

portional injection, where the number of particles injected in each region is

proportional to the local flux. The advantage of this method is that the initial

probability distribution of particle velocities is the same as the Lagrangian

velocity distribution. However, this injection method implies a large initial

variance of concentration since the local concentration is proportional to the

number of particles. This initial variance reflects the fact that more initial

mass enters into the high flow regions, which may be considered natural,

but hinders comparisons of mixing for different permeability fields, because

the initial concentration (i.e. the mixing state) depends on the permeability

field variance. To overcome this problem, we also adopted a hydrib injection

method, which we term fully mixed constant injection. It consists of inject-

ing the particles with a constant injection (i.e. equal number of particles in

each pixel). But, to avoid trapping of particles in low velocity regions, we

impose a fully mixed condition at the injection line by setting a large trans-

verse diffusion coefficient in the first pixel. The advantage of this method

is that the initial concentration variance is independent on the permeability

field heterogeneity while at the same time the number of particles injected
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effectively in each flow zone of the second pixel row is proportional to the

local flux. Obviously the problem with this injection condition is that a large

amount of mixing occurs in the injection row of pixels. Fig. 4b compares the

scalar dissipation rate estimated with the latter injection condition to that

estimated from the flux proportional injection. For the weakly heterogeneous

field, the two injection methods give the same result. For the intermediate

and strong heterogeneity cases, the scalar dissipation rate estimated from

the flux proportional method is larger at early time than that obtained from

the fully mixed constant injection method. This is due to the larger initial

concentration variance for the flux proportional injection method. However,

at intermediate and large times, the two injection methods give the same

results. This indicates that the memory of the initial injection condition on

mixing is relatively short (on the order of 3τa). In the following, we discuss

the results for the fully mixed constant injection method.

Examples of simulated concentration fields at different travel times are

given in Fig. 3, for a permeability field variance σ2
lnK = 9, correlation length

λ = 10∆x and Peclet number Pe = 102. The temporal evolution of the

characteristic plume size for different permeability field variances is shown

in Fig. 4a. The time is normalized by the characteristic advection time

τa = λ/v, where v is the mean velocity. The spreading length is normalized

by the permeability field correlation length λ. The temporal evolution of the
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characteristic plume size for a small permeability field variance of σ2
lnK = 0.01

is Fickian over most of the temporal range, i.e. σ1 ∝ t1/2. For an intermediate

permeability field variance σ2
lnK = 1, the evolution of σ1 is intially non-

Fickian, but returns to the Fickian scaling, for t > 10τa. One needs to bear in

mind the large size of the initial plume to understand how quickly the Fickian

regime is attained. However, for the largest permeability field variance, the

evolution of σ1 is non-Fickian over the full temporal range investigated here.

Note that we also computed the characteristic plume size averaged over 100

realizations (Le Borgne et al., 2008a,b). The results are less noisy but the

non-Fickian scaling obtained is the same.

The temporal evolution of the scalar dissipation rate is shown in Fig. 4b

for different variances of the permeability field. χ(t) is normalized by χ1D(τa)

(9). At early times (t < 3τa), the scalar dissipation rate scaling is independent

on the permeability field heterogeneity and follows the Fickian scaling, which

reflects the large mixing at the initial condition (in the flux-averaged initial

condition, the mixing rate is higher for large variances, which reflects that

the initial state is less mixed). For both the intermediate (σ2
lnK = 1) and

large heterogeneities (σ2
lnK = 9) cases the scaling of the scalar dissipation

rate is found to be non-Fickian at larger times. Such non-Fickian scaling

occurs despite the late time Fickian behaviour in longitudinal spreading for

the intermediate heterogeneity case. Thus, mixing can be said to be more
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”anomalous” than spreading. A similar result was obtained by Vanderborght

et al. (2006) that showed that mixing may be non-Fickian also for cases that

appear to be Fickian from a spreading perspective.

In the non-Fickian regime, the slope of the scalar dissipation rate evolu-

tion with time reflects the dimensionality of the mixing process. Non-Fickian

mixing occurs due to transverse diffusion when new interfaces are created by

shearing of the plume (Werth et al., 2006). The heterogeneous velocity fields

induce plume stretching and concentration gradients in all directions and

not only in the longitudinal direction as for the homogeneous case. For a 2D

mixing process, as occurs for a point injection in a homogeneous media, the

scalar dissipation rate scales as χ(t) ∝ t−5/2. Here we find a scaling that is in-

termediate between the 1D and 2D behaviours. The transition time between

the Fickian and non-Fickian mixing regimes decreases with the permeability

heterogeneity. For the intermediate heterogeneity it is approximately equal

to 10τa while for the strong heterogeneity case it is approximately equal to

3τa. This is the time necessary for spreading to create new interfaces aligned

with the direction of flow.

The cumulative scalar dissipation,
t∫

0

dtχ(t) = 1/2(M(0) − M(t)), rep-

resents the total amount of mixing that has occured up untill time t. The

temporal evolution of M(t) is shown in Fig.5. It is normalized by its ex-

pected value for the homogenenous domain at time t = τa, M1D(τa). M(t) is
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initially independent on the permeability field variance and decreases faster

for the largest heterogeneity. Thus, the total cumulative mixing at a given

time increases witht the permeability field heterogeneity.

4. Effect of the plume spatial structure and transverse concentra-

tion gradients

The non-Fickian scaling of mixing is partly due to incomplete mixing

inside the plume, which generates concentration gradients in the transverse

direction, and partly due to non-Fickian spreading, which influences the con-

centration gradients in the longitudinal direction. To analyze these two ef-

fects, we define the longitudinal scalar dissipation rate, which quantifies the

longitudinal mixing rate, and compare it to the scalar dissipation rate esti-

mated from the full concentration field. A similar analysis was conducted

analytically for a confined stratified medium by Bolster et al. (2010b). For

this, we define the mean longitudinal concentration projected in the trans-

verse direction c(x1, t) as

c(x1, t) ≡
∏
i�=1

1

Li

Li∫
0

dxic. (11)

The integral of the squared projected concentration is

M1(t) =

L1∫
0

dx1c
2 (12)
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and thus the longitudinal scalar dissipation rate is

χ1(t) = −1

2

dM1

dt
=

L1∫
0

D

(
∂c

∂x1

)2

. (13)

The longitudinal scalar dissipation rate represents the contribution of the lon-

gitudinal concentration gradients to the global dissipation rate. For weakly

heterogeneous permeability fields, the scalar dissipation rate estimated from

the projected concentration field is very close to that estimated from the full

concentration field (Fig. 6a), reflecting the fact that the projected concen-

tration field is a relatively good measure of the actual one. This is expected

since the induced transverse concentration gradients are very small for this

case. This result also demonstrates the robustness of our method for estimat-

ing the scalar dissipation rate. The full concentration field is much noisier

than the projected concentration field, due to a lower density of particles,

as illustrated in Fig. 1. Nonetheless, the scalar dissipation rates estimated

from the two concentration fields are very similar. For the intermediate and

strong heterogeneity cases, χ(t) and χ1(t) diverge significantly (Fig. 6b and

c). This quantifies the preponderant role that transverse concentration gra-

dients within the plume play on mixing.

For the intermediate heterogeneity field, the temporal evolution of the

longitudinal scalar dissipation rate is initially non-Fickian and then converges

to Fickian (Fig. 6b) for t/τa = 10, which is the time for which spreading
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becomes Fickian (Fig. 4a). For the strong heterogeneity field, the temporal

evolution of the longitudinal scalar dissipation rate is non-Fickian at all times

(Fig. 6c). Thus, the non-Fickian behavior of longitudinal mixing appears to

occur for the same time ranges as the non-Fickian behavior of spreading. This

observation leads us to conjecture that the relationship between longitudinal

mixing and spreading might be the same as for the Fickian case. For the

homogeneous case, the relationship between χ1(t) and σ1(t) is given by

χ1(t) =
1

4
√

πσ2
1

dσ1

dt
. (14)

In Fig. 6 we illustrate that relationship (14) appears to correctly predict

this relationship not only for the weak heterogeneity case, but also for the

intermediate and strong heterogeneity cases. This suggests that equation

(14) is generally valid for Fickian and non-Fickian transport and that it can

quantify the impact of anomalous spreading on longitudinal mixing. This

can be shown to be true for non-Fickian transport governed by the fractional

ADE (Bolster et al., 2010a). Note that for the strong heterogeneity case,

equation (14) is only verified for t > 10τa.

For most of the temporal range, the scaling of χ(t) is different from that of

χ1(t). This implies that transerve concentration gradients have a preponder-

ant role in governing the scaling non-Fickian scaling of χ(t). For this reason,

transport models calibrated from global spreading measures generally cannot

be used directly for predicting mixing and reactive transport (Cirpka and Ki-
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tanidis, 2000a,b). However, at late times, concentration gradients have been

significantly erased by diffusion and the concentration field appears to be

more homogeneous (Fig. 3d). A characteristic time for this process is the

time for Lagrangian particles to diffuse across one correlation length of the

heterogeneity τD = λ2

D
. This is the time needed for diffusion to fill the holes

in the concentration field, that are created by the presence of low velocity

regions. For t > τD, the scalar dissipation rate χ(t) appears to converge

towards χ1(t). The effect of the plume structure on the scalar dissipation

rate becomes negligible compared to the effect of the global spreading of the

plume. This implies that, after this time, an effective transport model based

on longitudinal spreading can correctly represent mixing processes, which

may explain the results of Willmann et al. (2010). It is important to em-

phasize, however, that at time later than τD the spreading rate, can and

will continue to be non-Fickian. In this regime, mixing can be therefore be

predicted by equation (14).

5. Conclusion

We demonstrate the occurence of a non-Fickian scaling of mixing in het-

erogeneous porous media. This effect is due to ramified patterns of the dis-

persion front that imply that diffusive mass transfer occurs in all directions

and across numerous interfaces within the plume and not only in the direc-
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tion parallel to the mean flow or at the plume edge. Thus, the non-Fickian

scaling of mixing reflects the dimensionality of the mixing process. Although

mixing and spreading are intimately related processes, there is no direct re-

lationship between their temporal scalings. Mixing can be non-Fickian when

spreading is Fickian and vice versa. Only when internal concentration gra-

dients have been erased by diffusion within the plume can the two processes

be related by a simple analytical relationship. This occurs after the diffusion

time τD that characterizes the time for diffusion across the permeability field

correlation lenght.

The scalar dissipation rate is of particular interest as a measure of mixing

as it is directly tied to the temporal evolution of reaction rates. From the re-

sults obtained here we can anticipate an anomalous scaling of reaction rates

in highly heterogeneous media. This will have important consequences for

upscaling reactive transport in heterogeneous porous media. The method-

ology presented here, which consists of evaluating the scalar dissipation as

the time derivative of the integral of the squared concentration, is particu-

larly efficient to investigate such effect as it circumvents having to compute

local concentration gradients. As such, it allows an accurate estimation of

the scalar dissipation rate over many orders of magnitude in time. The

methodology will be extended to 3D and used to investigate the influence

of the injection mode, the permeability field representation and correlation
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8. Figure captions

Figure 1. (color online). Spatial distribution of the concentration c(x, t)

simulated with 105 particles in a homogeneous porous medium at times a)

t/τD = 12.2, b) t/τD = 127.6, c) t/τD = 321. The color scale shows the

logarithm of the concentration, computed with a bin size equal to the pixel

size ∆x.

Figure 2. Time evolution of the scalar dissipation rate in a homogeneous

medium, estimated from local concentration gradients and from the time

derivative of M(t). Notice the perfect overlap of the latter with the analytical

solution.
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Figure 3. (color online). Spatial distribution of the conservative com-

ponent c(x, t) simulated for 106 particles in a highly heterogeneous porous

medium at times a) t/τa = 0.8, b) t/τa = 2.6, c) t/τa = 8.2, d) t/τa = 82. The

color scale shows the logarithm of the concentration, computed with a bin

size equal to the pixel size ∆x. The permeability field variance is σ2
lnK = 9,

the correlation length λ = 10 and the Peclet number Pe = 102.

Figure 4. a) Characteristic spreading length (longitudinal standard devi-

ation of the plume) and b) scalar dissipation rate estimated for permeability

field variances ranging from σ2
lnK = 0.01 to σ2

lnK = 9 for a Peclet number

Pe = 102.

Figure 5. Time evolution of M(t) for different permeability field variances.

M(t) is normalized by its expected value for the homogenenous domain at

time t = τa, M1D(τa).

Figure 6. Scalar dissipation rate estimated from the full concentration

field χ(t) (full line), compared to that estimated from the projected con-

centration field χ1(t) (dashed line) and to that estimated from equation 14.

a) permeability field variance σ2
lnK = 0.01, b) permeability field variance

σ2
lnK = 1, c) permeability field variance σ2

lnK = 9.
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A. Equivalence of −1
2

∂
∂t

M(t) and
∫
Ω

ddxD∇c(x, t) · ∇c(x, t)

We start with the standard advection diffusion equation for conservative

component c

∂c(x, t)

∂t
+ ∇ ·

(
v(x)c(x, t)

)
= D∇2c(x, t) (15)

Multiplying (15) by c(x, t) and integrating over the spatial domain we obtain

1

2

∂

∂t

∫
Ω

ddxc2(x, t) +
1

2

∫
Ω

ddx∇ ·
(
v(x)c2(x, t)

)

=
1

2
D

∫
Ω

ddx∇ · ∇c2(x, t) −
∫

Ω

ddxD∇c(x, t) · ∇c(x, t) (16)

Applying the divergence theorem, the second term on the left hand side

and first term on the right hand side (those terms with the divergence ∇.

operator) are zero since there is no mass flux on the domain boundaries after

the injection time. Note that this is true for a pulse initial injection but not

for a continuous injection condition. This leaves

1

2

∂

∂t

∫
Ω

ddxc2(x, t) = −
∫

Ω

ddxD∇c(x, t) · ∇c(x, t) (17)

Recalling the definition of M =
∫

Ω
ddxc2(x, t) and χ =

∫
Ω

ddxD∇c(x, t) ·

∇c(x, t) from (2) and (7) one obtains from equation (17) that

χ(t) = −1

2

dM(t)

dt
. (18)
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B. Mean Error of the Scalar Dissipation Rate

In this appendix we determine the mean error associated with a finite

number of particles when calculating the mean scalar dissipation rate.

The concentration as estimated from the particle trajectories obtained

from a random walk particle tracking simulation using N particles can be

written as

cN(x, t) =
1

N

N∑
n=1

d∏
i=1

δ
� xi

∆xi
�,�x

(n)
i

(t)

∆xi
�
∆xi

−1, (19)

where δij denotes the Kronecker-Delta; �x� denotes the floor function defined

as �x� = max{n ∈ Z|n ≤ x}, ∆xi is the size of the sampling bin in i-direction,

x
(n)
i (t) is the i-th coordinate of the particle trajectory x(n)(t). The latter is

defined by the Langevin equation

dx(t)

dt
= q[x(t)] +

√
2Dξ(t), (20)

where ξ(t) is a standard Gaussian noise. The concentration distribution

c(x, t) then is defined by

c(x, t) =
d∏

i=1

〈
δ� xi

∆xi
�,�xi(t)

∆xi
�

〉
∆xi

−1 (21)

for suitably chosen bin-sizes ∆xi. The angular brackets denote the average

over all noise realizations.

The concentration distribution c(x, t) is given in terms of cN(x, t) as

c(x, t) = cN (x, t) + ∆c(x, t), ∆c(x, t) = c(x, t) − cN(x, t). (22)
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We define the mean square error of the numerical concentration as

σ2
N (x, t) =

〈
[∆c(x, t)]2

〉
. (23)

Using (19), and (22), we obtain

σ2
N (x, t) = c(x, t)2 +

1

N2

N∑
n �=n′

d∏
i=1

∆xi
−2

〈
δ
� xi

∆xi
�,�x

(n)
i

(t)

∆xi
�

〉〈
δ
� xi
∆xi

�,�x
(n′)
i

(t)

∆xi
�

〉

+
1

N2

N∑
n=1

d∏
i=1

∆xi
−2

〈
δ
� xi
∆xi

�,�x
(n)
i

(t)

∆xi
�

〉

− 2c(x, t)
1

N

N∑
n=1

d∏
i=1

∆xi
−1

〈
δ
� xi
∆xi

�,�x
(n)
i

(t)

∆xi
�

〉
(24)

where we decomposed the double sum originating from cN(x, t)2 into a sum-

mation over n �= n′ and one over n = n′. In the latter we use that δijδij = δij .

Using the definition (21) of c(x, t) yields

σ2
N(x, t) =

c(x, t)

N∆V
− c(x, t)2

N
, (25)

where ∆V =
∏d

i=1 ∆xi is the volume of the sampling bin. Thus, the mean

error of

MN (t) =

∫
Ω

ddxcN (x, t)2 (26)

is given by

∆MN (t) = 〈MN(t) − M(t)〉 =

∫
Ω

ddxσ2
N (x, t) =

1

N∆V
− M(t)

N
. (27)
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And the mean error of

χN(t) = −1/2
dMN(t)

dt
(28)

is obtained from the time derivative of (27) as

∆χN(t) = 〈χN(t) − χ(t)〉 =
χ(t)

2N
(29)

Thus, the mean relative error when estimating the scalar dissipation rate

using random walk particle tracking decrease with the inverse particle number

as N−1. We run simulations with varying amounts of particles and found

close agreements with the analytical solution.
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FIGURE 1

t/τ  =12.2
D

t/τ  =127.6
D

t/τ  =321
D

Figure 1. Spatial distribution of the concentration c(x, t) simulated with 105 particles in

a homogeneous porous medium at times a) t/τD = 12.2, b) t/τD = 127.6, c) t/τD = 321.

The color scale shows the logarithm of the concentration, computed with a bin size equal to

the pixel size ∆x.
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FIGURE 2
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Figure 2. Time evolution of the scalar dissipation rate in a homogeneous medium, esti-

mated from local concentration gradients and from the time derivative of M(t). Notice the

perfect overlap of the latter with the analytical solution.
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FIGURE 3
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a

c) t/τ =8.2
a

d) t/τ =82
a

 y/λ

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

 y/λ  y/λ

 y/λ

200 40 8060 100 120 140 160 180 200

 x/λ

0 10 0 10 20 0 10 20 30 40 50

 x/λ  x/λ  x/λ

-3.5

-4

-4.5

-5

-5.5

-6

-4

-4.5

-5

-5.5

-6

-4.2

-4.6

--5

-5.4

-5.8

-5.2

-5.4

--5.6

-5.8

-6

Figure 3. (color online). Spatial distribution of the conservative component c(x, t) sim-

ulated for 106 particles in a highly heterogeneous porous medium at times a) t/τa = 0.8,

b) t/τa = 2.6, c) t/τa = 8.2, d) t/τa = 82. The color scale shows the logarithm of the

concentration, computed with a bin size equal to the pixel size ∆x. The permeability field

variance is σ2
lnK = 9, the correlation length λ = 10 and the Peclet number Pe = 102.
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FIGURE 4

Figure 4. a) Characteristic spreading length (longitudinal standard deviation of the

plume) and b) scalar dissipation rate estimated for permeability field variances ranging

from σ2
lnK = 0.01 to σ2

lnK = 9 for a Peclet number Pe = 102.
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FIGURE 5
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Figure 5. Time evolution of M(t) for different permeability field variances. M(t) is

normalized by its expected value for the homogenenous domain at time t = τa, M1D(τa).
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FIGURE 6

Figure 6. Scalar dissipation rate estimated from the full concentration field χ(t) (full

line), compared to that estimated from the projected concentration field χx(t) (dashed line)

and to that estimated from equation 14. a) permeability field variance σ2
lnK = 0.01, b)

permeability field variance σ2
lnK = 1, c) permeability field variance σ2

lnK = 9.
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