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We determine the full multipoint concentration statistics for superdiffusive transport in a steady stratified
random velocity field. Using a Lagrangian approach, we derive explicit analytical expressions for the multi-
point moments of concentration and specifically for the concentration variance, which is a measure for con-
centration uncertainty. The multipoint concentration moments are fully characterized by the Lagrangian mean
velocity and by the one and two particle velocity correlations. While the relative variance at the center of mass
of the mean concentration is constant, it increases exponentially with time and distance from the center of
mass. This implies that small concentration values are particularly uncertain, which can pose a serious practical
concern as these are typically the earliest and latest to arrive at a point.
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I. INTRODUCTION

Observed transport behavior in fluctuating environments
is often anomalous. That is, the distribution of a transported
quantity cannot be described by the classical advection dis-
persion equation �e.g., �1–4��. Even when transport may fol-
low the advection-dispersion equation on a “local” scale, the
effective large scale transport in natural environments does
not. Spatiotemporal fluctuations can have a dual effect. On
one hand, they act on the mean transport behavior and lead
to effective transport dynamics that are different from their
local scale counterpart. On the other hand, they introduce
uncertainty due to limited knowledge on the fluctuation de-
tails. Oftentimes the only possible description of the fluctu-
ating environment is statistical. Given such a statistical de-
scription, the transport behavior can be modeled by a
stochastic approach. The latter provides a straightforward
framework for both the quantification of the effective, mean
transport behavior and the related uncertainty.

A series of applications require the quantification of both
heterogeneity induced effective large scale transport and un-
certainty. These include the safety assessment of geological
hazardous waste facilities �e.g., �5,6��, groundwater manage-
ment �e.g., �7,8�� and carbon sequestration in geological me-
dia �e.g., �9,10��. Another potential application is the move-
ment of objects on the ocean surface and transport in
turbulent and chaotic flows �e.g., �11��. Capturing the influ-
ence of heterogeneity can often be achieved by stochastic or
spatial averaging over the local scale transport problem. In
more general terms, one can perform a dimensional reduc-
tion or projection of the local scale processes. Such averag-
ing implies a loss of information, which in general leads to a
non-Markovianity property of the projected process �e.g.,

�12��. Furthermore, spatial heterogeneity induces fluctuations
about this mean behavior, which can be quantified by the
ensemble variance of the distribution density c�x , t�, which is
defined by

�c
2�x,t� = �c�x,t� − c̄�x,t��2, �1�

where the overbar denotes the ensemble average, c̄�x , t� is
the mean concentration. For transport in heterogeneous po-
rous media the concentration variance has been studied in,
e.g., Refs. �13–16� and is of general interest for transport in
spatially fluctuating flow fields because it gives valuable in-
formation on the mixing properties of a passive scalar �e.g.,
�11,17,18��. In principle, the complete characterization of the
process requires the knowledge of the full multipoint statis-
tics of concentration. The latter have been looked at by using
PDF �probability density functions�—methods in, e.g., Refs.
�11,19,20�. Frequently, the analysis of the concentration vari-
ance and the multipoint statistics is limited to perturbation
theory and to so-called assumed PDF methods �e.g., �11,15��.

Here we present a nonperturbative, exact study of the
multipoint concentration statistics for transport in a stratified
random velocity field. The specific model under consider-
ation has been introduced by �21� to study dispersion mecha-
nism in heterogeneous porous media. Since then, this model
has been subject to intense research �e.g., �3,22–25�� because
it provides a relatively simple but nontrivial model to study
the possible mechanisms that lead to superdiffusive behavior
�i.e., a superlinear growth of the spatial variance� in hetero-
geneous media in particular and stratified random velocity
fields in general. This model can be regarded as an approxi-
mation to aquifers characterized by vertical stratification of-
ten observed in geological media �26,27�. Figure 1 shows a
realization of the type of velocity fields under consideration
in this paper. Previously, �28� showed that effective transport
in such a velocity field is non-Markovian and described by a
Gaussian concentration distribution. Here we extend this*marco.dentz@idaea.csic.es
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work and derive explicit expressions for the n-point mo-
ments of concentration.

II. MODEL

Transport of a passive scalar g�x , t �x2�� in a stratified flow
field u�x2� can be described by the advection diffusion equa-
tion

�g�x,t�x2��
�t

= − u�x2�
�g�x,t�x2��

�x1
+ D

�2g�x,t�x2��
�x2

2 , �2�

where the coordinate vector is given by x= �x1 ,x2�T; D is the
diffusion coefficient. For simplicity, we restrict this study to
an infinite d=2 dimensional domain with no diffusion in the
flow direction. The following analysis can be easily extended
to more than two spatial dimensions and longitudinal diffu-
sion. The spatial density g�x , t �x2�� and its gradients at infin-
ity are zero. The initial distribution is given by g�x , t
= t0 �x2��=��x1���x2−x2�� �which means that g�x , t= t0 �x2�� can
be regarded as a Greens function�. The stratified flow field
u�x2� is a realization of a stationary spatial Gaussian random
process �u�x2�� characterized by the constant ensemble
mean velocity uE=E�u�x2�� and correlation of the velocity
fluctuations u��x2�=u�x2�−uE, which is CE�x2−x2��
=E�u��x2�u��x2���. The notation E� · � stands for the ensemble
average.

We consider now an ensemble of initial plumes that are
distributed vertically according to ��x2�; ��x2� is normalized
to one, its variance is denoted by a2. For a�1, it is assumed
to have the scaling form

��x2� �
1

a
f�	 x2

a

 , �3�

where f��0� is constant. Sampling the ensemble of concen-
tration distributions along the vertical and taking the limit of
a→� gives the mean concentration

c̄�x1,t� = lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a

c�x1,t�x2�� , �4�

where we defined the projected concentration

c�x1,t�x2�� � �
−�

�

dx2g�x,t�x2�� . �5�

The mean squared concentration is defined accordingly by

c2�x1,t� = lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a

c�x1,t�x2��

2. �6�

This averaging procedure is equivalent to performing the
ensemble average over the concentration distribution evolv-
ing from a point injection because the random shear flow is
assumed to be an ergodic random field �recall a�1�. In the
following we derive explicit expressions for the multipoint
moments of concentration in general and for the concentra-
tion variance �c

2�x1 , t�=c2�x1 , t�− c̄�x1 , t�2 in particular.

III. ENSEMBLE STATISTICS

Here we want to determine explicit equations for the evo-
lution of the n-point statistics of the ensemble of projected
concentration densities �c�x1 , t �x2���. The n-point density of
c�x1 , t �x2�� is defined by

�n�y,t� � lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a



i=1

n

c�x1
�i�,t�x2�� . �7�

where y= �x1
�1� , . . . ,x1

�n��T. The simplest and most commonly
used, statistical characteristics of �c�x1 , t �x2��� are its mean
value �4�, which is c̄�x1 , t�=�1�x1 , t� and its variance �1�. The
latter is defined in terms of �1�x1 , t� and �2�x1

�1� ,x1
�2� , t� as

�c
2�x1,t� = �2�x1,x1,t� − �1�x1,t�2. �8�

Let us begin by defining the “raw” n-point density

�n�x�1�, . . . ,x�n�,t�x2�� = 
i=1

n

g�x�i�,t�x2�� , �9�

which satisfies the transport equation

��n�x�1�, . . . ,x�n�,t�x2��
�t

= − �
i=1

n �u�x2
�i��

�

�x1
�i� − D

�2

�x2
�i�2�

	�n�x�1�, . . . ,x�n�,t�x2�� . �10�

The initial condition is �n�x�1� , . . . ,x�n� , t= t0 �x2��
=i=1

n ��x1
�i����x2

�i�−x2��. The n-point moment of concentration
then is given by

�n�y,t�x2�� = lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a



	�
−�

�

dnx2��x�1�, . . . ,x�n�,t�x2�� . �11�

Equation �10� is a 2n-dimensional Fokker-Planck equa-
tion. It is exactly equivalent to the following system of
Langevin equations �e.g., �29��,
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FIG. 1. A sample realization of the considered random velocity
field.
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dX1
�i��t�x2��
dt

= uE + u��X2
�i��t�x2���,

dX2
�i��t�x2��
dt

= 
�i��t�

�12�

for i=1, . . . ,n. The 
�i��t� denote Gaussian white noises with
zero mean and correlation �
�i��t�
�j��t���=�ij2D��t− t��. The
angular brackets denote the white noise average. The initial
particle positions at time t= t0 are given by �X1

�i��t0� ,X2
�i��t0��

= �0,x2�� for i=1, . . . ,n. The raw n-point density in this
framework is given by

��x�1�, . . . ,x�n�,t�x�� = 
i=1

n

���x�i� − X�i��t�x2���� . �13�

Inserting Eq. �13� into Eq. �11�, we obtain for the n-point
density

�n�y,t�x2�� = �
−�

�

dx2���x2��
i=1

n

���x1
�i� − X1

�i��t�x2���� . �14�

A. Averaging

Now consider the n-dimensional system of Langevin
equations,

dYi�t�
dt

= uE + �i�t� �15�

for i=1, . . . ,n, where the initial positions are Yi�t= t0�=0 and
the noise is defined by �i�t�=u��X2

�i��t �x2���. The noise has the
same distribution as u��y�, which here is a Gaussian random
field. Thus, �i�t� is uniquely defined by its mean and variance

��i�t��� = lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a

�u��X2

�i��t�x2���� , �16�

��i�t�� j�t���� = lim
a→�

1

a
�

−�

�

dx2�f�	 x2�

a



	�u��X2
�i��t�x2���u��X2

�j��t��x2���� , �17�

where � · �� denotes the noise average. Making use of the
ergodicity of u��x2�, we obtain that ���t���=0 and �e.g., �28��

��i�t��i�t���� = �
−�

�

dx2CE�x2�G�x2,t − t��0� , �18�

��i�t�� j�t���� = �
−�

�

dx2�
−�

�

dx2�C
E�x2 − x2��G�x2,t�0�G�x2�,t��0� ,

�19�

where i� j; G�x2 , t �x2�� is the Green function for diffusion in
vertical direction

G�x2,t�x2�� =
1

�4�Dt
exp�−

�x2 − x2��
2

4Dt
� . �20�

This is the marginal particle distribution in vertical direction.
The n-point density �14� can now be written in terms of the

n-dimensional correlated random walk �15� as

�n�y,t�x2�� =�
i=1

n

��x1
�i� − Yi�t���

�

. �21�

B. Explicit solutions for the n-point density

Discretizing Eq. �15� in time, we obtain

Y�tN + � = Y�tN� + uE + ��tN� �22�

with the constant time increment  and discrete time tN=N;
we defined the n-dimensional vector uE= �uE , . . . ,uE�T. The
random walk �22� has the sharp initial position Yi�tN0

�=0.
The random force ��tN� kicks in at time tN0

. In order to make
the process well defined, for tN� tN0

we consider the process
deterministic or driven by white noise. Thus, for tN� tN0

the
evolution of Yi�tN�� does not depend on the system states
previous to tN0

. The stochastic process given by the series of
random velocities ��i�tl��l=N0

� can be described by its charac-
teristic function �����tl��� �e.g., �29��. For the multi-
Gaussian correlated processes ��t�= ��1�t� , . . . ,�n�t��, it is
given by

�����tl��� = exp�−
1

2�
ll�

�
ij=1

n

�i�tl�Cij
L�tl,tl��� j�tl��� , �23�

where from Eqs. �18� and �19� we define the Lagrangian
velocity correlation Cij

L�t , t�����i�t�� j�t����; ��i�tn�� denote
the Fourier variables conjugate to ��i�tn��. In order to derive
an explicit expression for �n�y , t� we perform a Fourier-
transform of Eq. �21�, which in discrete time gives

�̃n�k,tN� = �exp�ik · Y�tn����, �24�

where k= �k1 , . . . ,kn�T is the n-dimensional wave vector.
From Eq. �22� we obtain for the n-dimensional trajectory

Y�tN� = �
l=N0

N−1

uE + �
l=N0

N−1

��tl� . �25�

Inserting this into Eq. �24�, and performing the noise av-
erage gives

�̃n�k,tN� = exp�ik · uE������ti� = k�i=N0

N−1 ;���ti� = 0�i�N� .

�26�

At large times, tN�, we take the limit to continuous
time. Thus, from Eqs. �23� and �26�

�̃n�k,t� = exp�− k · �
0

t−t0

dt�D�t��k + ik · uE� , �27�

where we have defined the time dependent dispersion coef-
ficients

Dij�t� = �
0

t

dt�Cij
L�t,t�� . �28�

Thus the n-point density in real space is given by
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�n�y,t� =
exp�− �y − uEt��−2�t − t0�/2�y − uEt��

��2��ndet �2�t − t0�
, �29�

where �2�t� is the tensor of trajectory variances

�2�t� = 2�
0

t

dt�D�t�� . �30�

and �−2�t� its inverse.

C. Concentration variance

The most commonly used measures of uncertainty are the
mean and variance. The concentration variance has been fre-
quently studied for transport in heterogeneous porous media
�e.g., �13–15,30,31�� in both Eulerian and Lagrangian mod-
eling frameworks. Oftentimes, these studies are limited to
perturbation theory in the velocity fluctuations. We focus
here on the concentration mean and variance as indicators of
uncertainty and the self-averaging properties of concentra-
tion �e.g., �1��. From Eq. �29�, we obtain for the concentra-
tion variance �8� the compact expression

�c
2�x1,t� = c̄�x1,t�2

	� exp��x1 − uE�t − t0��2 �12
2

�11
4 + �12

2 �11
2 �

�1 − �12
4 /�11

4
− 1� ,

�31�

where the mean concentration is given by �28�

c̄�x1,t� =

exp�−
�x1 − uE�t − t0��2

2�11
2 �

�2��11
2

. �32�

In the case of a delta-correlation in the 2-direction, that is
CE�x2�=�u

2l��x2� with �u
2 the variance of the velocity field

and l its correlation length, the dispersion coefficients are
�e.g., �21,32,33��

Dii�t� =
�u

2D

��
�t/D, Dij�t� = ��2 − 1�Dii�t� . �33�

We define the diffusion time scale D= l2 /D. Inserting Eq.
�33� into Eq. �31�, we obtain for the relative variance

�c
2�x1,t�

c̄�x1,t�2 =

exp��x1 − uE�t − t0��2
�2 − 1

2�2�11
2 �

�2�2 − 2
− 1. �34�

At the center of mass, the relative concentration variance is

constant and given by
�c

2�uE�t−t0�,t�
c̄�uE�t−t0�,t�2 �0.1. The concentration

variance decreases exponentially with time and distance
from the center of mass of the mean concentration. The rela-
tive variance, in contrast, increases exponentially with time
at positions that do not coincide with the center of mass of
the mean distribution, because �11

2 � �t− t0�3/2 in Eq. �34�.
Furthermore, the relative variance increases exponentially

with distance from the mean center of mass, which implies
that small concentrations are particularly uncertain. In par-
ticular, these observations imply that the concentration is not
self-averaging.

From the outset such a behavior is not completely unex-
pected because the dispersion behavior in infinitely extended
stratified media has been found to be non-self-averaging ei-
ther. This is indicated by the fact that the variance of the
center of mass fluctuations of the plume, as quantified by the
two-particle variance �12

2 �t�, increases superdiffusively with
time. The latter marks the difference between two dispersion
measures which are called the ensemble and effective disper-
sion coefficients �e.g., �32,34��. While for transport in non-
stratified divergence-free random velocity fields, the two dis-
persion measures converge in the asymptotic long time limit,
for stratified media they are always different �32�. In fact, the
relative variance as expressed by Eq. �31� would tend to zero
if the two-particle variance �12�t�2 tended to zero. For a con-
fined stratified medium this may be the case.

Figure 2 shows the mean concentration c̄�x1 , t� and stan-
dard deviation �c�x1 , t� at t=500D and t=2	103D. Note
the double peak in the standard deviation, which indicates
that the region of maximum uncertainty and maximum aver-
age concentration do not coincide. The general shapes of the
curves change proportionally in time �reflecting the fact that
the ratio between D11�t� and D12�t� is constant�.

D. Numerical simulations

The explicit analytical expression �31� for the concentra-
tion variance is compared to Monte Carlo simulations. We
use particle tracking simulations in two-dimensional random
shear flow. The simulated flow field is organized in layers of
constant thickness l. The velocity within each layer is con-
stant, drawn from a Gaussian distribution with unit mean and
variance. For transverse scales much larger than the thick-
ness of a layer, the correlation is approximately delta �e.g.,
�33��. Solute transport is simulated by random walk particle
tracking. Initial positions are uniformly distributed along a
vertical line source, whose length is 104l. Within each stra-
tum 103 particles are released, which gives a total of 107

simulated particle trajectories. Averages are then taken over
the projected partial distributions that evolve from the strata.
The implementation of the particle tracking method is de-
scribed in detail in �35�. Equivalently, we considered aver-
ages over particle distributions consisting of 103 particles
evolving from point sources in 104 different realizations of
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FIG. 2. Evolution of the mean concentration �solid� and vari-
ance �dashed� at two times �a� t=500D and �b� t=2	103D for a
variance of �u

2=1.
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the flow field. The results are identical as a consequence of
the ergodicity of the random velocity field. In the following,
we present only the results obtained for a long line source in
a single realization.

A comparison of the results from the numerical simula-
tions and the corresponding analytical solutions are shown in
Fig. 3. As one can see, the analytical and numerical solutions
are in good agreement, which is not surprising as the derived
expressions for the multipoint concentration moments are ex-
act for an infinite medium. Several other simulations varying
the modeling parameters were run, yielding similar results.
Note that the mean concentration obtained by numerical
simulations agrees almost perfectly with the predicted behav-
ior, while for the variance there are slight deviations. This
can be traced back to the fact that the latter is much more
sensitive to noise.

IV. SUMMARY AND CONCLUSIONS

We present a Lagrangian methodology for deriving the
multipoint concentration statistics in Gaussian distributed
random shear flow and determine explicit expressions for the
multipoint concentration moments. The specific model under
consideration has been frequently considered in the literature
to study non-Fickian diffusion and the resulting effective
particle densities �e.g., �3,21,22,24,25,28��. In fact, the effec-
tive dispersion coefficient evolves anomalously with the
square root of time. In a stochastic modeling approach, the
mean concentration distribution of a solute is defined by en-
semble averaging of the concentration distribution originat-
ing from an instantaneous point injection in one realization
of the random flow field.

Alternatively, for an ergodic random flow field, the mean
behavior can be obtained by considering transport in a single

realization for a solute that originates from a line source
perpendicular to the stratification that is much larger than the
characteristic scale of flow stratification. In this case the
mean behavior is obtained by projecting the partial plumes
evolving from points along the vertical line source and aver-
aging of the source distribution �28�. The vertical particle
movements describe a Brownian motion and are independent
of the longitudinal movement. Thus the effective distribution
is given by the product of the vertically projected effective
density and a Gaussian density representing the vertical dis-
tribution. Therefore, it is sufficient to focus on the vertical
projection of the effective particle distribution. Dentz et al.
�28� showed that the effective, or mean, particle movements
can be represented by a correlated random walk, where the
noise correlation is uniquely defined by the Lagrangian ve-
locity correlation function. The mean particle distribution is
then given by the density of this random walk. Being a cor-
related random walk, the process is non-Markovian. Here we
extend this methodology to determine the full concentration
statistics as given by the explicit analytical expressions for
the multipoint moments of the concentration distribution.
This yields a full statistical characterization of the non-
Markovian effective particle dynamics. We obtain multi-
Gaussian distribution densities for the n-point densities.
These are completely characterized by �i� the mean particle
velocity, �ii� the single particle velocity correlation, and �iii�
the two-particle velocity correlation.

We then study the concentration variance as a simple
measure for the uncertainty of concentration values and for
the self-averaging properties of the particle distribution. The
concentration variance is characterized by a double peak and
decreases with time and distance from the center of mass.
The relative concentration, in contrast, increases both with
distance from the mean center of mass and time. This implies
that the low concentration values are particularly uncertain,
or in other words, that the low probabilities of finding a
particle at a given position at a given time, are very uncer-
tain. The relative variance is constant at the center of mass of
the mean distribution which indicates that the probability of
the bulk of the particles, or the highest concentration, is sub-
ject to a basically constant uncertainty.

These results have some practical relevance because ex-
perimentally determined concentration values and particle
densities are often obtained as space and/or time averages
and the observed mean behavior is often found to be super-
diffusive. The presented work considers a model that gives
some insight in the mechanism that can lead to such behavior
and provides a methodology to quantify uncertainty and in
fact the full concentration statistics.

In conclusion, by focusing on a relatively simple random
flow model, this work sheds some new light and provides
novel insights on the features and possible limitations of sto-
chastic transport models in random flows. The presented
methodology and the results obtained may have some impact
for risk assessment studies and extreme value analysis.
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FIG. 3. A comparison between the numerical concentration �-�
and standard deviation �- -� against the analytical values of concen-
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