
Solute dispersion in channels with periodically varying apertures
Diogo Bolster,1,a� Marco Dentz,1,b� and Tanguy Le Borgne2,c�

1Department of Geotechnical Engineering and Geosciences, Technical University of Catalonia (UPC),
Barcelona 08034, Spain
2Géosciences Rennes, UMR 6118, CNRS, Université de Rennes 1, Rennes 35000, France

�Received 29 October 2008; accepted 20 April 2009; published online 13 May 2009�

We study solute dispersion in channels with periodically varying apertures. Based on an
approximate analytical solution of the flow equation, we study the impact of the geometry and
molecular diffusion on effective solute dispersion analytically using the method of local moments.
We also study the problem numerically using a random walk particle tracking method. For transport
in parallel shear flow, the effective dispersion coefficient is dependant on the square of the Peclet
number. Here, when the fluctuation of the channel aperture becomes comparable with the channel
width, the effective dispersion coefficients show a more complex dependence on the Peclet number
and the pore geometry. We find that for a fixed flow rate, periodic fluctuations of the channel
aperture can lead to both a decrease and an increase in effective dispersion. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3131982�

I. INTRODUCTION

The understanding and quantification of the dispersion
of dissolved substances in the flow through channels is of
importance in a series of applications ranging from the de-
sign of microfluidic devices,1,2 nutrient transport in blood
vessels,3,4 dispersion in porous media,5–9 and mixing and
spreading of contaminants in groundwater aquifers.10–13

Groundwater aquifers are frequently modeled as heteroge-
neous porous media whose pore scale structure can be rep-
resented by a network of pore channels.14 Fractured geologi-
cal media are often represented as networks of discrete
fractures.15,16 Thus, studying the channel model under con-
sideration here gives valuable insight in the pore scale mix-
ing and spreading processes which are of paramount impor-
tance for the correct modeling of mixing-limited reactive
transport in porous media, as pointed out, for example, by
Ref. 17.

The volume occupied by a solute dissolved in the fluid
flow through a channel expands at short time scales due to
molecular diffusion. Eventually at some intermediate scale,
the interaction of molecular diffusion, local flow variability,
and the geometry of the channel leads to a mixing and
spreading behavior that is different from the one induced by
molecular diffusion. In general, when dealing with solute
transport in inhomogeneous environments, one distinguishes
between spreading, which consists in increasing the surface
area of a solute plume, and mixing and dilution, which con-
sists in increasing the volume occupied by a dissolved sub-
stance in the host fluid.13,18–20 This distinction is of particular
importance at preasymptotic times, that is, at times, for
which the solute has not sampled the full geometrical and
flow variability.13,20–22 At asymptotic times, solute spreading
can be measured by constant dispersion coefficients that in-

tegrate the interaction of small scale spatial variability and
diffusion on effective spreading and mixing. Many
studies5,23,24 focus on the determination of the coefficient that
describe the effective solute dispersion on the large scale,
i.e., at length and time scales on which the microscale vari-
ability of flow and geometry are homogenized.

The impact of the interaction of molecular diffusion and
flow variability on effective solute dispersion in axisymmet-
ric channels was studied by Taylor23 and Aris.25 They
showed that given enough time for vertical concentration
gradients to be smeared out by diffusion, effective solute
transport is one dimensional and completely defined by the
mean flow velocity U and the effective Taylor dispersion
coefficient,23

D� = D +
U2a2

210D
, �1�

where D is the molecular diffusion coefficient and a is
the channel width. This result relies on a constant channel
aperture.

In many applications, however, channel apertures are not
constant. The geometry of the channel can have a significant
impact on the effective dispersion behavior and lead to a
behavior that is qualitatively and quantitatively different
from the one found in channels with constant aperture. In
microfluidics, for example, the design of specific mixing
properties in microchannels is based on the manipulation of
the channel geometry.1 The channel model is also of interest
to study solute dispersion in geological media.26–28 Although
natural media is in general not periodic, it represents the
simplest system to analyze the effect of the convergence and
divergence of flow lines on dispersion. The latter plays a
central role for transport in heterogeneous porous media. At
fracture scale, the proposed channel model is relevant to un-
derstand the role of fracture wall roughness on the transport
properties. Tartakovsky and co-worker29,30 studied the im-
pact of small scale roughness on the global dispersion using
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a stochastic model. Using an alternate stochastic model31 es-
timated the dispersion due to fluctuations in the boundary
and within this framework always observed an increase in
dispersive effects due to fluctuations. Studying transport in
self-affine rough fractures, Drazer et al.32,33 illustrated that
surface roughness could reduce dispersion effects at very low
Peclet numbers. Smith34 analyzed longitudinal dispersion co-
efficients for varying channels. Mercer and Roberts35 inves-
tigated effective solute transport in channels with varying
flow properties using center manifold theory. Rosecrans36

studied Taylor dispersion in curved channels using the same
approach. In the latter paper a heuristic argument is given for
the existence of channel shapes and flow fields that lead to a
reduction instead of an increase in solute dispersion as it is
observed in channels with constant aperture. Hoagland and
Prud’homme37 studied the transport of a passive solute in a
sinusoidal tube in a pressure driven flow. Other authors
�e.g., Refs. 38–40� looked at transport by processes such as
thermophoresis and electrophoresis �force, rather than
pressure driven� in sinusoidal geometries and quantified the
dependence of transport properties on Peclet number and
geometry.

The geometry of the pore has a significant impact on the
flow velocity. Here we focus on flow regimes at small Rey-
nolds numbers so that the flow problem is given by Stokes
equation. Kitanidis and Dykaar12 derived an analytical ex-
pression for the velocity distribution in a channel that con-
sists of a connected periodic chain of slowly varying two-
dimensional pores, as illustrated in Fig. 1. Their analysis
demonstrates that short wavelengths and large amplitudes
can give rise to recirculation zones. Such recirculation zones
represent immobile regions that can have a significant impact
on effective solute transport depending on the typical mass
transfer time scales.41–45 Similar results for the flow velocity
in periodic channels were obtained in Refs. 46–48. Specifi-
cally Cao and Kitanidis47 illustrated the existence of recircu-
lation zones for pores that open rapidly.

The methods devised by Taylor and Aris for the calcula-
tion of asymptotic dispersion coefficients are typically re-
stricted to parallel flows. In a series of seminal papers a

“generalized” theory of dispersion was developed for
passive5,49,50 as well as reactive flows.51,52 These methods
allow for the calculation of the asymptotic effective disper-
sion and reaction coefficients for flow domains having a pe-
riodic structure.

Based on this generalized theory of dispersion, Dykaar
and Kitanidis53 studied macrotransport of a reactive solute in
a porous medium on the basis of the analytical expression for
the pore velocity field given in Ref. 12. They determined the
combined effects of reaction, flow variability. and molecular
diffusion on macrotransport for a particular pore geometry
which included a recirculation zone.

In this paper, we systematically study the impact of pore
scale geometry and molecular diffusion on asymptotic solute
dispersion using the analytical expression for the flow veloc-
ity given in Ref. 12. We investigate analytically and numeri-
cally under which conditions solute dispersion can decrease
and probe the impact of recirculation zones on asymptotic
dispersion. To this end, we apply the approach by Taylor23

and Aris25 as well as the one devised by Brenner5 to deter-
mine the asymptotic longitudinal dispersion coefficient and
compare them to the dispersion coefficients obtained by nu-
merical random walk simulations.

II. PORE GEOMETRY AND FLOW VELOCITY

We consider flow in a channel that is two dimensional
and symmetric about a central axis at y=0. The channel
walls fluctuate periodically in horizontal direction,

h�x� = h̄ + h� sin�2�x

L
� , �2�

where h̄ is the average channel height and h� is the amplitude
of the fluctuations. A unit cell in the following is denoted by
�, its volume by V�. The aspect ratio is defined by

� =
2h̄

L
. �3�

The ratio between the amplitude of the aperture fluctua-
tions h� and the mean aperture in the following called the
fluctuation ratio, is denoted by

a =
h�

2h̄
. �4�

The flow rate through the channel Q and the fluid viscosity �
define the Reynolds numbers

Re =
Q

�
. �5�

On the pore scale, Reynolds numbers are typically small12,14

of the order of 10−4–10−1. For Reynolds number of this scale
flow is described by the Stokes equation.

For a slowly varying boundary, i.e., ��1 Kitanidis and
Dykaar12 derived an analytical solution for the flow velocity
using a perturbation expansion in �. In the following, we
give a brief summary of their solution. For a detailed deri-
vation we refer the reader.12

h

h’

L

Q Q

FIG. 1. A schematic of the pore we are considering and a connected periodic
network of pores
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The divergence-free flow velocity u= �u ,v�T is given in
terms of the stream function � by

u =
��

�y
, v = −

��

�x
. �6�

The flow equation for � is biharmonic,12,54

�4� = 0. �7�

At the channel walls no-flux and no-slip boundary conditions
are specified. The solution for � is periodic with period L. In
addition to mass and momentum balance as expressed by Eq.
�7� the solution of the flow problem requires a further equa-
tion expressing energy conservation.12 The viscous dissipa-
tion energy within a cell of length L is balanced by the work
applied to the fluid in the cell volume,12,55

�
�

dV�� = − �pQ , �8�

where � is the dissipation function,55 �p is the pressure drop
over the unit cell, and Q is the flow rate.

Note that the flow rate in a channel with constant aper-

ture given by the average aperture 2h̄ is described by the
cubic law,14,56

Q̄ = −
2h̄3

3�

�p

L
. �9�

For the case of sinusoidally varying walls, however, it is
known that the cubic law does not hold.48

Kitandis and Dykaar12 performed a perturbation expan-
sion of the stream function 	 and the flow rate Q in powers
of �,

� = �
i=0




�i�i, Q = �
i=0




�iQi. �10�

They determine the contributions up to fourth order, where
�1=�3=0 and Q1=Q3=0. Their explicit results for �0, �2,
and �4, and Q0, Q2, and Q4 are given in Appendix A for
completeness. Accordingly, we obtain for the flow velocity,

u�x� = �
i=0




�iu�i��x� . �11�

In order to illustrate the different types of flow that can
arise within such a geometry, three sets of streamlines calcu-
lated using Eq. �10� are shown in Fig. 2. Figure 2�a� shows
the channel flow for �=0. It is given by the well known
Hagen–Poiseuille flow. For increasing �, the streamlines be-
come more curved, see Fig. 2�a� for �=0.2. For �=0.4, Fig.
2�c�, recirculation cells develop at the location of the maxi-
mum channel diameter.

The deviation of the flux Q from the cubic law is illus-
trated in Fig. 3 for the contributions Q0, Q2, and Q4 normal-

ized by Q̄, Eq. �9�, which follows the cubic law. Figure 3
illustrates how the three quantities vary with varying fluctua-
tion ratio a. The pressure drop �P across each pore is iden-
tical. Q0 decreases monotonically with a, which is a reflec-
tion on the fact that a given pressure drop will cause less

flow for highly fluctuating pores, eventually approaching
zero as the thinnest section of the pore approaches zero too
�h�→h, i.e., if there is zero cross sectional area no matter
how large the pressure drop no flow can occur�.

Q2 is a negative quantity, which is zero for h�=0 and
h�=h. This suggests that second-order effects can cause a
reduction in effective flow rate and thus perhaps also disper-
sion. Finally Q4 is always positive with zero value at h�=0
and h�=h.

III. SOLUTE DISPERSION

Transport in the flow field through a two-dimensional
channel with varying diameter is described by the advection
diffusion equation. The temporal change in the solute distri-
bution c�x , t� is balanced by the divergence of the advective-
diffusive solute flux

�c�x,t�
�t

+ � · �u�x� − D��c�x,t� = 0, �12�

where D is the molecular diffusion coefficient. We investi-
gate the asymptotic longitudinal dispersion behavior of a dis-
solved substance. The boundary conditions are natural
boundary conditions at x= �
 and vanishing solute flux at
the periodically fluctuating horizontal boundary. The initial
distribution is given by c�x , t=0�=��y��x�, i.e., a vertical
line source.

The longitudinal flow velocity u�x� is divided into its
average value over the unit cell

ū =
D

V�
�

�

dxu�x� , �13�

and fluctuations about it,

u�x� = ū�1 + u��x�� . �14�

Flow and transport can be characterized by two dimen-
sionless numbers; the aspect ratio �, Eq. �3�, and the Peclet
number Pe, which is defined by

Pe =
2h̄ū

D
. �15�

The Peclet number denotes the ratio between the advective
and dispersive time scales

�u =
2h̄

ū
, �D =

�2h̄�2

D
, �16�

respectively.
Solute dispersion here is characterized in terms of the

longitudinal width � of the solute distribution c�x , t�,

��t� =� dxx2c�x,t� − 	� dxxc�x,t�
2

. �17�

Specifically, asymptotic longitudinal dispersion is quantified
in terms of the effective dispersion coefficient
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De =
1

2
lim
t→


d��t�
dt

. �18�

Brenner5 determined the following expression for the disper-
sion coefficient in periodic flow scenarios, using the method
of local moments:

De =
D

V�
�

�

dx	���x� · ���x� + 2
���x�

�x

 , �19�

where the auxiliary function ��x� satisfies

− D�2��x� + � · u�x���x� = − u��x� . �20�

The boundary conditions for ��x� are

� · u�x���x� = 0 �21�

for x���, where �� is the boundary of the unit cell. Fur-
thermore, � is periodic and its integral over the unit cell is
zero

�
�

dx��x� = 0. �22�

Using these properties of ��x� it is easy to show by applying
the Gauss theorem that Eq. �19� can be written as

De =
1

V�
�

�

dx	− u��x���x� + 2D
���x�

�x

 . �23�

In order to solve for the asymptotic dispersion tensor, we
first employ an approximation in the spirit of Taylor’s
derivation23 of an effective dispersion coefficient in parallel
channels, second we numerically solve Eqs. �19� and �20�
and third, we use numerical random walk simulations to
solve the full transport problem. The results are compared
against the numerical simulations.
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FIG. 2. Streamlines for a pore with �=0 and a=0 �top�,
�=0.2 and a=0.2 �middle�, and �=0.4 and a=0.4
�bottom�.
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A. Taylor approximation

We assume that vertical gradients of ��x� are much
larger than longitudinal ones. We furthermore assume that
advective transport vertical to the channel axis can be disre-
garded. Thus, Eq. �20� simplifies to

− D
�2��x�

�y2 = − u��x� . �24�

This approximation is motivated by the original assumptions
made by Taylor23 and Aris25 and a desire to know how far
they can take use. It is similar to the Fick–Jacobs approxi-
mation in thermophoretic transport.40 As shown by Yariv and
Dorman �2007�,38 the approximation becomes invalid when
Pe �2�O�1�, where the other terms in Eq. �20� make a more
significant contribution. Nonetheless it is important to study
it to see how far such an approximation can take you and
what type of error one may expect if it is made as it plays an
important role in the validity of the cubic law and its Taylor
dispersion interpretation.31,57,14,56 Equation �24� can be inte-
grated straightforwardly as outlined in Appendix B. Note that
the present approximation requires the disregard of horizon-
tal gradients of ��x� in expression �19� for the effective
asymptotic dispersion coefficient, which is equivalent to di-
rectly employing Eq. �23�.

1. Effective dispersion coefficient

Using expansion �11� for the flow velocity, we obtain an
expansion in � for �

��x� = �
i=0




�i�i�x� . �25�

Inserting the latter into Eq. �19� yields for the effective dis-
persion coefficient,

De = �
i=0




�iDi
e, �26a�

Di
e = �

j=0

i
D

V�
�

�

dx
���i−j��x�

�y

���j��x�
�y

+
2D

V�
�

�

dx
���i��x�

�x
.

�26b�

Solving Eq. �24� and using Eq. �6� we obtain for the zeroth
order contribution to De,

D0
e =

1

210

Q0
2

D
+

a2

10

Q0
2

D
. �27�

Note that this term consists of one part that is analog to
the classic Taylor dispersion result with the difference that
Q0 does not follow the cubic law and a second term that
depends on the fluctuation size a. One might expect this
zero-order analysis to hold for any flow where the boundary
fluctuates slowly over a length scale larger than the average
channel width as this corresponds to a lubrication theory type
approach.58

The second-order contribution to the effective dispersion
coefficient is given by

D2
e =

1

D
	1

5
a2Q0

2 +
1

105
Q0Q2 −

2

25
a4�2Q0

2

+
2

175
a2�2Q0

2
 . �28�

Similarly at fourth order, we obtain

D4
e =

1

D
� 71

606 375
a2�4Q0

2 +
2918

40 425
a4�4Q0

2

−
548 381

4 036 032 000
Q0

2a2�6 −
2

875
Q0

2a6�4

+
4

175
Q0Q2a2�2 −

4

25
Q0Q2a4�2 +

1

5
Q0Q4a2

+
1

10
Q2

2a2 +
1

210
Q2

2 +
1

105
Q0Q4� . �29�

Using the flow rates given in Appendix A we can com-
pute the contributions to the effective dispersion coefficients
from Eqs. �27�–�29�. The dependence of De on a is illus-
trated Fig. 4. Note here that the decrease in D0

e with a is not
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FIG. 3. Normalized Q0 �–�, Q2 �- -�, and Q4 �-.� as a function of the fluc-
tuation ratio a.
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FIG. 4. Dispersion coefficients as a function of a. D0
e �–�,

D2
e �- -�, and D4

e �-.�.
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due to pore geometry but reflects the fact that the flow rate
Q0 decreases with increasing a for a constant pressure drop.
Note that D0

e decreases more rapidly with a than Q0 did
because of the quadratic relationship. It is worth noting that
D2

e is negative, reflecting the influence of Q2.

2. Dependence on the pore wall geometry

From Fig. 4 we have seen that due to nonlinear effects
through the orders De does not scale with Q in the same
manner as for transport in a parallel channel flow. In order to
study the dependence of the dispersion properties on the pore
wall geometry, we choose the flow rate Qtot=Q0+�2Q2

+�4Q4 such that the average flow rate is always the same
regardless of a and � �i.e., we no longer impose a fixed
pressure drop, but rather a constant flow rate�. Additionally,
in order to compare the relative impact or the curvature, we
normalize all dispersion coefficients by the dispersion coef-
ficient for normal parallel flow, i.e.,

De =
De

De�a=0,�=0
. �30�

De is a dimensionless dispersion coefficient. As the val-
ues of Eqs. �27�–�29� are difficult to interpret intuitively due
to the size and complexity of the expressions, a plot illustrat-
ing the values of D0

e, D2
e, and D4

e for several values of a is
shown in Fig. 5. One feature in this figure that should raise
caution is the relatively large values of D4

e compared to D0
e

for larger values of a. This suggests that for these larger
values of a the asymptotic expansion in Eq. �25� may be-
come invalid and that as such one must be cautious in inter-
preting these results. As D4

e is multiplied by �4 these contri-
butions can still be relatively small.

A contour plot showing De for various values of a and �
is shown in Fig. 6. Now that the effect of decreased flow rate
due to a constant pressure drop has been removed it is evi-
dent that the boundary fluctuations could potentially have
significant influence on the overall enhanced Taylor disper-
sion, particularly for large values of a and �, which corre-
sponds to shorter pores with large boundary fluctuations.

In order to investigate this further we will focus on four
points illustrated in Fig. 6 marked �a�–�d�. Using this
classical model we would expect an increase in Taylor dis-
persion by a factor of �a� 1.87, �b� 2.06, �c� 4.4, and �d� 5.93.
The only one of these cases that has a recirculation zone is
case �d�.

Figure 7 depicts a surface plot of the total dispersion
coefficient, normalized by the parallel wall case, over a range
0�a�0.45 and 0.01���0.5 for various typical Peclet
numbers. It is worth noting that the behavior for all cases is
similar with any increase in � or a resulting in an increase in
the effective dispersion coefficient. Once the Peclet number
is large the relative changes in behavior become identical as
seen for the Pe=100, Pe=1000, and Pe=2000 cases. This is
simply because for these cases the enhanced dispersion effect
is much larger than the molecular diffusion contribution,
which still plays a significant enough role for the Pe=10
case.

B. Brenner solution

One of the major drawbacks of a straightforward appli-
cation of the Taylor–Aris predictions for dispersion is the
fact that it disregards horizontal gradients and advective
mass transfer perpendicular to the mean flow direction. This
type of approximation is not valid for larger values of a and
� as the curvature of the flow increases and particularly in the
regimes for which recirculation zones appear. In this case we
rely on the numerical solution of Eq. �20� for the auxiliary
function ��x� and Eq. �19� for the asymptotic dispersion co-
efficient. We employ the finite difference methods outlined in
Ref. 53.

Figure 8 illustrates the normalized dispersion coefficient
for various values of Peclet number. There are several inter-
esting and perhaps unexpected features illustrated here, par-
ticularly in light of what we saw in the previous section and
Fig. 7. First, note that the general behavior for each order of
Peclet number is different. That is, the figure for Pe=10 is
distinct from the one illustrating Pe=100, which in turn is
different from the Pe=1000 case. With the result obtained by
the Taylor–Aris approximation presented in Sec. III A one
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FIG. 5. De0 �–�, De2 �- -�, and De4 �-.� for various values of a.
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would not expect this as the effective dispersion is dependant
on the square of the Peclet number �i.e., De�D Pe2�.

Based on simple scaling arguments one might expect an
effective dispersion De=�D Pe2, where � is a constant that
would depends on the geometry, namely, � and a. The results
in Fig. 8 seem to indicate that this scaling is not accurate
when fluctuations in the pore wall exist.

In particular, the Taylor–Aris results predict that the only
effect the fluctuations of the boundaries can have is to in-
crease the effective dispersion. This certainly seems to hold
true for the Pe=10 case, although the behavior is not mono-
tonic in � for all values of a. For the larger Peclet number
cases, Pe=100, Pe=1000, and Pe=2000, we actually predict

that in certain cases the boundary fluctuations decrease the
effective dispersion coefficient, particularly for small values
of �. Values of the maximum and minimum dispersion coef-
ficients and the respective values of a and � for each of the
Peclet numbers considered are shown in Table I. A cross
section of Figs. 7 and 8 at Pe=1000 for �=0.2 is shown in
Fig. 9 to illustrate and compare this effect. Note that while
the “Taylor–Aris–type” solution increases with a, the full
solution actually decreases, although the relative magnitude
of this change is much less.

Also, in general, one might expect the influence of the
boundaries to play a larger role for the larger Peclet number
cases, as dispersion is an advectively driven phenomenon

FIG. 7. �Color online� Normalized dispersion coeffi-
cients for various values of Peclet number, calculated
using the Taylor–Aris approximation model �Eq. �26a��.

FIG. 8. �Color online� Surface contour plots for the
dispersion coefficients for various Peclet numbers over
a range of a and � calculated using Brenner’s method
�Eq. �23��. All values are normalized with the value
corresponding to a smooth channel �i.e., a=0�.
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�although diffusion is necessary to activate it�. However, the
largest relative change in dispersion for these cases seems to
occur for Pe=10 for small values of � and larger a. This
suggests that for lower Peclet numbers long wavelengths
with large amplitudes can increase dispersion. A tentative
explanation for these observations is given in Sec. III C.

C. Random walk simulations

While experiments for the types of flows presented here
do exist, changing the geometry and accurate measurements
can be elusive. Random walk particle tracking provides an
efficient way to determine effective dispersion
coefficients.13,59–63 The random walk simulations presented
in the following are based on the Langevin equation

dx�t�x��
dt

= u�x�t�x��� + �1�t� ,

�31�
dy�t�x��

dt
= v�x�t�x��� + �2�t� ,

where x�t �x�� denotes the tracetory of a solute particle that is
initially located at x�t=0 �x��=x�. The initial position of a
solute particle is denoted by x�t=0�=x�, which for a line
source at x=0 is x�= �0,b�t, where b is uniformly distributed
over the channel cross section at x=0. The transport descrip-
tion in terms of the Langevin Eq. �31� is exactly equivalent
to the one in terms of the Fokker–Planck Eq. �12�.64

The ��t� denotes a two-dimensional Gaussian white
noise, which is defined by its first and second moments

�i�t�� = 0, �i�t�� j�t��� = 2Dij�t − t�� . �32�

The numerical solution of Eq. �31� and the calculation of the
effective dispersion coefficient �18� using random walk par-
ticle tracking are outline in Appendix C.

Figure 10 shows particle distributions at a transport time
of 50�u for three different Peclet numbers of �a� Pe=103,
�b� 102, and �c� 10 and the fluctuation ratios a=0,0.2,0.4
and apertures of �=0.2 and 0.4.

Note that for the classical Taylor problem �a=0�, the
asymptotic regime is reached at times larger than the diffu-
sion time scale, t��D, i.e., when vertical gradients have dis-
appeared due to mixing. For Pe=103 and Pe=102, the dis-
played transport time is smaller than �D and the observed
distributions are preasymptotic. Nonetheless, these figures il-
lustrate the influence of the boundaries on the dispersion
behavior.

Recall Fig. 2, which illustrates the streamlines of the
flow field for different values of the aspect ratio �. For
�=0.4 a recirculation zone forms where the channel width is
maximum. This notes both in the center of mass velocity of
the plume as well as in the width compared to the flow fields
with the flow fields for smaller aspect ratios. With increasing
Peclet number the plume width increases significantly due to
a higher residence time of trapped particles in the recircula-
tion zones.

Figure 11 compares the predicted dispersion coefficients
for points �a�–�d� from Fig. 7�b� using the parallel wall Tay-
lor solution �i.e., a=0, Eq. �1��, our approximate “Taylor–
Aris” solution �Eq. �26a��, the Brenner solution �Eq. �23��
and the solutions calculated from the random walk simula-
tions. Even for case �a� the agreement for all cases is not
good as the Taylor–Aris approximation overpredicts the ef-
fective dispersion coefficient. However, the parallel wall case
with no fluctuations seems to work quite well. In cases �b�
and �d� the parallel wall solution underpredicts the measured,
while the full higher order solution overpredicts it. For case
�c�, where the influence of the boundaries is to decrease the
dispersion, both the parallel wall and full Taylor–Aris pre-
dictions are unable to capture this decrease. This clearly il-
lustrates the limitations of a traditional Taylor–Aris ap-
proach, which cannot capture the influence of nonparallel
flow. This disagreement, particularly evident at larger Pe is
unsurprising as the approximation in Eq. �24� becomes in-
valid when Pe �2=O�1� as shown by Ref. 38. Additionally,
the asymptotic expansion in Eq. �25� also becomes question-
able for the larger values of a. On the other hand, the Bren-
ner theory, which does not suffer from this limitation agrees
excellently with all the cases presented in Fig. 11.

While the four cases illustrated here seem to indicate
that Brenner’s theory works at predicting the influence of the
boundaries on dispersion we investigated this further by con-
sidering the maximum and minimum predicted values for the
Pe=10, Pe=100, and Pe=1000 as depicted in Fig. 8. In all
cases good agreement was found between Brenner’s theory
and the random walk simulations, suggesting further that the
theory works well.

The results of this study can be understood in a Lagrang-
ian framework. Pore wall fluctuations affect the distribution
of Lagrangian velocities within a single pore and the corre-
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0

1
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D
/D
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FIG. 9. Normalized dispersion coefficients against a using the Taylor–Aris
approximation �Eq. �26a�� �–� and full solution �Eq. �23�� �- -� at Pe=1000
for �=0.2.

TABLE I. Values and locations of the maximum and minimum normalized
dispersion coefficients from each of the cases depicted in Fig. 7.

Pe Maximum Location Minimum Location

10 2.1 �=0.02 a=0.45 1 �=0 a=0

100 1.867 �=0.45 a=0.45 0.85 �=0.13 a=0.45

1000 1.46 �=0.46 a=0.08 0.54 �=0.45 a=0.4

2000 1.46 �=0.46 a=0.08 0.52 �=0.45 a=0.4
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lation of Lagrangian velocities from pore throat to pore
throat. The increase in the pore wall fluctuations tends to
widen the Lagrangian velocity distribution within pores. For
instance, for large fluctuations of the pore walls, particles

traveling close to the wall may take a long time to leave the
pore, in particular, if they remain trapped inside a recircula-
tion zone. On the other hand, the increase in the pore wall
fluctuations increases the convergence of flow lines at pore
throats. The latter implies a decorrelation of Lagrangian ve-
locities since it is easier for particles to jump between
streamlines by diffusion. The widening of the Lagrangian
velocity distribution implies an increase in the asymptotic
dispersion coefficient while the decrease in the Lagrangian
velocity correlation implies a decrease in the asymptotic dis-
persion coefficient. Thus, when increasing pore wall fluctua-
tions, the changes in the Lagrangian velocity distribution and
in the Lagragian velocity correlation have an antagonist ef-
fect on the asymptotic dispersion coefficient. The existence
of these two competitive effects implies that pore wall fluc-
tuations can either increase or decrease the asymptotic dis-
persion coefficient depending on the relative strength of
these two effects �Fig. 8�.

For small aspect ratio �, i.e., for elongated pores, the
dominant effect of the increase in the pore wall fluctuations
is a stronger convergence of flow lines at pore throats and
thus a decorrelation of the Lagrangian velocities. This im-
plies a decrease in the asymptotic dispersion coefficient. On
the other hand, for a larger aspect ratio, the increase of the
pore wall fluctuations leads to the existence of recirculation
zones �Fig. 2�. The trapping of particles in these recirculation
zones implies a significant widening of the Lagrangian ve-
locity distribution within a pore. Therefore, in this case, the
latter effect is found to dominate over the decorrelation of
Lagrangian velocities and the asymptotic dispersion coeffi-
cient is increased.

Our Taylor–Aris approximation in essence neglects the
effect of the convergence and divergence of streamlines. By
neglecting this effect this approximation leads to a stronger
correlation of Lagrangian velocities and thus a larger
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FIG. 10. Random walk simulations at several Peclet numbers after a time of
50T �where 1 T is the advective time scale�. In all cases the top plot corre-
sponds to a=0, the middle plot to a=0.2 and �=0.2, and the bottom plot to
a=0.4 and �=0.4. �a� Pe=1000, �b� Pe=100, and �c� Pe=10.
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FIG. 11. Taylor dispersion �inverse effective Peclet number� predicted by
the Taylor theory, Brenner, and measured by random walks for cases �a�–�d�
from Fig. 7�b�. Brenner theory �Eq. �23�� �–�, parallel wall Taylor–Aris �Eq.
�1�� �..�, full Taylor–Aris �Eq. �26a�� �- -�, random walk simulations ���.
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−1 =Deff /Q.
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asymptotic dispersion coefficient than predicted by the full
numerical solution �Fig. 11�. On the other hand, the Brenner
solution includes the effect of the convergence and diver-
gence of flow lines and thus reproduces the numerical simu-
lations satisfactorily.

This is a qualitative interpretation of the presented re-
sults. We are currently performing a fully quantitative analy-
sis of the Lagrangian velocity properties within such system
using the methods proposed in Refs. 65 and 66�.

IV. SUMMARY AND DISCUSSION

Using an analytical perturbation solution for the flow
field, we have studied solute dispersion at asymptotic times
in two-dimensional channels with periodic wavy walls. To do
this we used the method of local moments.5 In particular we
focused on the effects of varying the amplitude and wave-
length of the boundary fluctuations.

First, we employed an approximation analogous to the
Taylor–Aris theory23 �Eq. �26a��. By making this assumption
we analytically calculated the effective dispersion coeffi-
cients. We found that for a fixed flow rate, dispersive effects
increase monotonically with the amplitude of fluctuation and
with decreasing wavelength, i.e., the shorter and wider the
pores the larger the dispersive effects. Additionally, under the
Taylor–Aris assumption, dispersion effects scale linearly
with Peclet number, implying that the behavior while quan-
titatively different �i.e., at large Peclet numbers dispersive
effects dominate diffusion, while at smaller values diffusion
still plays a role� is qualitatively similar.

In order to check the validity of these Taylor–Aris-type
assumptions we computed the full solution to the local mo-
ment equation numerically �Eq. �23�� and found results that
differed significantly. First, we found that the qualitative ef-
fects on effective dispersion are quite different when varying
the Peclet number. We did not find a simple linear scaling
that one might expect. The behavior at Pe=10 was qualita-
tively different from that at Pe=100, which in turn was quali-
tatively different from that at Pe=1000. For small Reynolds
number flows �i.e., Re�1�, as studied here, one expects the
flow field to look the same regardless of the flow rate since
advective effects are negligible on flow. However, while
the flow fields at different flow rates, i.e., at different Peclet
numbers, look identical, the transport behavior differs
significantly.

Second, we found cases where increasing the curvature
�i.e., increasing the amplitude of fluctuation or decreasing the
wavelength� actually led to a decrease in the effective dis-
persion. We observed this particularly for the larger Peclet
number cases. While this may be surprising, especially given
the results of the “Taylor” approximation, such a possibility
has previously been predicted heuristically in Ref. 36. We
present a tentative explanation for these observation based
on a Lagrangian interpretation, which will be pursued in
greater detail as future work.

Finally, we also found that while increases in dispersion
did occur, particularly for large fluctuations and short wave-
lengths, these increases were much smaller than those pre-
dicted by our Taylor approximation. This suggests that while

curvature can influence the effective dispersion, its influence
may not be as large as one might expect from a simplified
analysis.

In order to validate our analysis we studied the transport
of a passive contaminant in such flows using a high accuracy
numerical random walk method. We found in all cases that
the dispersion coefficient predicted by the full “Brenner” so-
lution �Eq. �23�� compared very well with these simulations,
unlike the Taylor–Aris approximation model �Eq. �26a��,
which seriously overpredicted dispersion. For most cases,
taking the original Taylor–Aris solution �Eq. �1�� for a chan-
nel with no fluctuations provided a better estimate than the
approximate local moment solution, although it was still off.
Our Taylor–Aris approximation consisted of two parts, ne-
glecting horizontal gradients and advection transverse to the
mean flow direction. As shown in Ref. 38 this approximation
falls apart when Pe �2=O�1� and these neglected features
appear to play an important role. Additionally the expansion
proposed in Eq. �25� may become invalid for some of the
larger values of a.

In summary, changes in the periodic boundary fluctua-
tions in a channel can lead to both increases and decreases in
effective dispersion. This statement may have strong impli-
cations for applied fields such as transport through porous/
fractured media where curvature in the flow field is common-
place, or in microfluidics where such curvature effects may
be exploited to control mixing.

APPENDIX A: THE FLOW STREAMFUNCTIONS

The zeroth, second, and fourth order flow rates, Q0, Q2,
and Q4 are given by

Q0 = 	 �1 − 4a2�5/2

1 + 2a2 
Q̄ ,

Q2 = 	−
12

5

�1 − 4a2�7/2�2a2

�1 + 2a2�2 
Q̄ , �A1�

Q4 = 	144

25

�1 − 4a2�9/2�4a4

�1 + 2a2�3

−
�1 − 4a2�5/2�4

175�1 + 2a2�2 �7648a6 – 7680a4 + 2406a2

+ 214�1 − 4a2�5/2 − 241�
Q̄ .

The zeroth, second, and fourth order contributions to the
stream function, given in Ref. 12, are

�0 =
Q0

4
�3� − �3� , �A2�

�2 =
Q2

Q0
	0 +

3Q0

40
	4� dh

d�
�2

− h
dh

d�

���2 − 1�2, �A3�
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�4 = 	Q4

Q0
− �Q2

Q0
�2
	0 +

Q2

Q0
	2 −

Q0

5600
	�408 + 1800�2�

�� dh

d�
�4

+ �684 – 1800�2�h� dh

d�
�2 d2h

d�2 − �270

− 180�2�h2� d2h

d�2�2

− �248 − 240�2�h2 dh

d�

d3h

d�3

+ �19 − 15�2�h3 d4h

d�4
���2 − 1�2, �A4�

where

� = �x, � =
y

h���
and h��� =

1

2
+ a sin�2��� . �A5�

APPENDIX B: TAYLOR METHOD

Integrating Eq. �24� twice with respect to y gives

��x� =� dyf�x� + A�x�y + B�x� , �B1�

where f�x�=�dyu��x�. The symmetry of the channel geom-
etry implies that � is symmetric about y=0, which yields
A�x��0. As the average of � is zero, we obtain

B�x� = − F̄�x� , �B2�

where F�x�=�dyf�x�. Thus, we obtain for ��x�,

��x� = F�x� − F̄�x� . �B3�

APPENDIX C: RANDOM WALK SIMULATIONS

The transport problem is solved numerically by random
walk simulations based on the Langevin Eq. �31�. In discrete
time, the equation of motion of the nth solute particle reads
as

x�n��t + �t�x�� = x�t,x�� + u�x�t�x����t + �2D�t�1,

�C1�
y�n��t + �t�x�� = y�t�x�� + v�x�t�x����t + �2D�t�2.

The �i�i=1, . . . ,d� are independently distributed Gaussian
random variables with zero mean and variance one. The
impermeable channel walls are modeled as reflecting
boundaries.

The ith local moment is given by summation over the ith
power of the particle trajectories of all simulated particles
originating from x�,

��i��t�x�� = lim
N→


1

N�
n=1




�x1
�n��t�x���i. �C2�

The global moments are obtained by summation over all
initial positions x�, which are distributed according to ��x��,

m�i��t� = lim
M→


1

M �
m=1

M

��i��t�x��m�� . �C3�

The asymptotic effective dispersion coefficient then is given
by

De = lim
t→


1

2

d

dt
�m2�t� − m�1��t�2� . �C4�

The simulations presented release N particles from each
initial position. The line source is represented by M equidis-
tantly positioned point sources along the cross section of the
channel at x=0.
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