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Abstract
Mixing-driven reactions in porous media are ubiquitous and span natural and engineered
environments, yet predicting where and how quickly reactions occur is immensely challeng-
ing due to the complex and nonuniform nature of porous media flows. In particular, in many
instances, there is an enormous range of spatial and temporal scales over which reactants
can mix. This paper aims to review factors that affect mixing-limited reactions in porous
media, and approaches used to predict such processes across scales. We focus primarily on
the challenges of mixing-driven reactions in porous media at pore scales to provide a concise,
but comprehensive picture. We balance our discussion between state-of-the-art experiments,
theory and numerical methods, introducing the reader to factors that affect mixing, focusing
on the bracketing cases of transverse and longitudinal mixing. We introduce the governing
equations for mixing-limited reactions and then summarize several upscaling methods that
aim to account for complex pore-scale flow fields. We conclude with perspectives on where
the field is going, along with other insights gleaned from this review.

Keywords Mixing · Reactions · Upscaling

1 Introduction

Mixing-driven reactions in porous media are ubiquitous and span natural and engineered
environments. In geologic systems, examples are abundant including intrinsic and engineered
remediation, natural attenuation, mineral formation, hydrothermal ore-deposits, dissolution
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of CO2 into brackish water during geologic CO2 sequestration, use of surfactants and CO2

for enhanced oil recovery, and reactions between methane and sulfate in smoker vents on
ocean floors to mention but a few (Alvarez and Illman 2005; Kitanidis and McCarty 2012;
Bethke 2007; Wise 2000; Niemi et al. 2017; Sheng 2010). In engineering settings, we can
consider microfluidic systems with applications in biotechnology, porous media combustion
technology, or fixed-bed reactors, where a solid phase is embedded within a flowing system
creating a porous medium (e.g., hollow filmmembrane bioreactors for wastewater treatment)
(Li 2008; Mujeebu et al. 2009; Stephenson et al. 2000). Many biochemical reactions critical
to life occur in biological tissues, a large component of which is a porous medium (Vafai
2010). Other, perhaps less conventional systems that can be modeled as a porous medium,
in that flow moves through a region densely populated with solid, include flow and transport
through wetlands which can process large amounts of nutrients and contaminants (Carleton
andMontas 2007), or atmospheric boundary layer exchange flowswith open canopies which,
through chemical reactions, can control critical fluxes between forests and the atmosphere
(Freire et al. 2017). It is important to note that this list of examples is nowhere near compre-
hensive, and only represents a fraction of applications in porous media where mixing-driven
reactions occur. However, this list does display the extremely broad range of spatial and
temporal scales that arise in such problems.

Within the context of porous media, predicting where and how quickly chemical reactions
occur can be immensely challenging due to the complex and nonuniform nature of flow
processes, and the enormous range of spatial (i.e., molecular, pore, continuum scales) and
temporal (seconds to geological time) scales over which reactants can mix. At pore scales,
factors including pore size distributions, geometry, tortuosity and connectivity all play a role,
while at larger scales we must consider heterogeneity, say in the physical or geochemical
makeup of an aquifer. These complex features translate into complex flows that ultimately
control the detailed manner in which chemicals move through a porous medium, but more
importantly how chemical constituents can come into contact with one another, which is key
to the occurrence of any chemical reaction. Complex flows can bring reactants into contact
or cause them to separate and thus enhance or diminish the interfacial area between them.
Mixing is the process then that brings reactants together, enabling them to ultimately react.
Thus, it is often argued that if we are ever going to successfully predict mixing-driven reac-
tions, as a first step we must develop models capable of predicting mixing processes. To
this end, several useful measures of mixing, including the dilution index (Kitanidis 1994),
concentration variance, and scalar dissipation rate (Pope 2000; Le Borgne et al. 2010), have
been proposed, each of which aims to quantify how much volume a solute occupies, how
uniform a concentration field within a plume is, and how quickly the system is homogeniz-
ing. Often the evolution of these indices can be tied back to velocity field characteristics,
particularly ones that account for flow-induced deformation such as Lyapunov exponents or
the Okubo–Weiss Parameter (de Barros et al. 2012; Engdahl et al. 2014), which for example
enables the identification of reaction hotspots, that is, the locations where reactions are most
likely to occur (Wright et al. 2017).

When considering the broad range of examples listed in the first paragraph, transport scales
can be on the order of anything frommillimeters to kilometers.Yet ultimately,mixing is driven
by interactions at the smallest molecular scales by diffusion. The multiscale nature of mixing
presents a challenge in predicting mixing-driven reactions at scales of practical interest. Real
flows also often vary in time, yielding temporal complexity (Dentz et al. 2000). Environmental
flows often come with a high degree of uncertainties, where balances between advection-
dominated and dispersion-dominated scenarios that must be considered are not always clear.
Additionally, chemical reactions have their own characteristic time scales, meaning there is
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a competition between reaction kinetics and transport phenomena all acting at potentially
vastly different time scales. Even in simple settings, models of mixing-driven reactions result
in a (tightly) coupled sets of nonlinear partial differential equations. Translating such models
across scales is where a truly challenging problem emerges.

The objective of this paper is to critically review the factors that affectmixing-limited reac-
tions in porous media and approaches used for prediction of such processes across scales.
So as to maintain focus and not overwhelm the reader, we will focus primarily on the chal-
lenges of mixing-driven reactions in porous media at pore scales as well as upscaling of
these to continuum scales. We are interested in cases where multiple chemical reactants are
initially segregated in different spatial regions of the porous media. We assume that at least
two chemical species from different regions are required for the reaction of interest to occur.
For simplicity, we limit our scope to single-phase flow with dissolved reactants, although
there are interesting and important cases involving multiphase flow, such as geological car-
bon sequestration where the reactants are mixed when the nonwetting supercritical CO2
phase is injected into a brine reservoir. Note that multiphase flow introduces a new level
of complexity since the fluid displacement patterns are affected by capillary pressure entry
effects, not only the pore space geometry (Jiménez-Martínez et al. 2015, 2017). We also
do not consider cases where the solid phase itself may act as a separate reactant (e.g., sorp-
tion/precipitation/dissolution). To provide a concise but comprehensive picture, we balance
our discussion between state-of-the-art experiments, theory and numerical methods.Much of
what we discuss holds equally and presents similar challenges in upscaling from continuum
scales to larger scales that account for larger-scale heterogeneities, which we discuss only
briefly in the concluding section. For more comprehensive reviews of mixing that emphasize
larger scales, the reader is referred to several recent articles, e.g., Dentz et al. (2011, 2017).

The paper is structured as follows. Section 2 introduces the reader to the factors affecting
mixing. Both transverse and longitudinal mixing are considered, and factors such as pore
space geometry, flow velocity, flow direction, and sorption are considered. Section 3 intro-
duces the reader to governing equations for mixing-limited reactions. Equations for flow at
the pore and continuum scale are presented, as well as equations for solute transport and reac-
tion at these scales. Upscaling methods are also represented, where approaches to account
for more complex heterogeneities are considered. The conclusion comes next, where per-
spectives on where the field is going are given, along with other insights gleaned from this
review.

2 Factors AffectingMixing-Limited Reactions

We generally distinguish two different mixing scenarios-transverse and longitudinal. Both
cases are for the “model” mixing-controlled reaction: A + B → C , where both reactants
and the product are solutes. The first is illustrated schematically in Fig. 1(i), and the second
in Fig. 1(ii). In Fig. 1(i), uniform steady flow is from the left with fluid containing mostly
reactant B, and there is a small source zone of reactant A that is input continuously. Diffusion
transverse to flow mixes the two reactants, and the product C is formed. Transverse mixing-
limited reaction scenarios eventually reach steady state because the mass input rate of A is
balanced by mass consumption rate of A by the reaction. At steady state, there is a “plume”
region with high reactant A and negligible reactant B; product C is generated along the plume
fringe. There is ample evidence that thismixing scenario iswidely applicable in practice based
on several studies reporting the length and stability of groundwater plumes at underground
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Fig. 1 The two mixing scenarios considered in this paper (i) transverse mixing and (ii) longitudinal mixing.
Both cases show results of pore-scale numerical simulations for mean uniform flow from left to right and with
the bi-molecular reaction A + B → C. The transverse scenario is at steady state for Peclet number=10 and
Damkohler number=100. The longitudinal scenario is from Hochstetler and Kitanidis (2013) and shows a
time snapshot for Peclet number=14.4 and Damkohler number=25. See Sect. 3 for the definitions of the
Peclet and Damkohler number

storage tank sites (Connor et al. 2015), as well as from controlled field experiments of natural
attenuation (Rasa et al. 2013).

In Fig. 1(ii), the domain initially is occupied by reactant B. Fluid containing reactant
A is continuously input into the domain through the left boundary. The porous medium
structure imposes heterogeneity upon the flow resulting in an irregular penetration of reactant
A into reactant B. As A and B diffuse across this irregular interface the reaction proceeds
to form the product C. We call this the longitudinal mixing case, since the two fluid regions
mix predominantly in the flow direction; unlike the transverse mixing case, this case is
an inherently transient system, as the mixing region changes over time and the amount of
product mass increases with time. Practical examples for this scenario include cases of active
groundwater remediation where reagents are injected into contaminated zones (Semprini
et al. 1990). While we organize our review recognizing this dichotomy of mixing cases (like
most studies in the literature), it should be noted that longitudinal mixing processes will be
important near the leading boundary of the plume during the transient phase, while transverse
mixing will be important along the plume fringes.

In the two cases presented above, the background flow is considered to be steady, which
is an idealization. Note that externally imposed flow variability can have significant impacts
on longitudinal and transverse mixing. For example, temporal oscillations in the mean flow
direction will enhance mixing (Cirpka et al. 2015; Lester et al. 2010). Such fluctuations can
occur in undeveloped groundwater aquifers, since there are often variations in flow direction
driven by seasonal hydrologic events (e.g., rainfall, snow) (Rehfeldt and Gelhar 1992; Goode
and Konikow 1990; Pool and Dentz 2018; Di Dato et al. 2018). From an engineering and
remediation perspective, complex spatial and temporal variations in flow can be imposed
by fluid injection/extraction (e.g., through pumping wells in a groundwater system), thereby
dramatically enhancing mixing among reactants initially segregated in different fluid regions
(Piscopo et al. 2015; Libera et al. 2017). Under some conditions, chaotic advection can occur
which further enhances mixing and reaction (Neupauer et al. 2014; Sposito 2006; Trefry
et al. 2012). An example is shown in Fig. 2, where different groundwater pumping rates at
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Fig. 2 Chaotic Advection: Position of the treatment solution plume (gray) after each step of a designed
injection-extraction strategy in a homogeneous aquifer. The open black circles show the initial position of the
treatment solution plume. Small filled black circles show well locations. The arrow denotes the active well,
with injection indicated by a downward pointing arrow and extraction indicated by an upward pointing arrow..
Adapted from Mays and Neupauer (2012)

four wells are applied to enhance plume stretching and mixing. In Step one, injection occurs
at the W well, and the plume moves to the east. In Step two, injection occurs at the E well,
and the plume moves to the west. In each subsequent step, water is injected or extracted at
a single well and the plume becomes increasingly distorted from its initial shape. In some
remediation systems, multiple chemical reagents must be injected and various strategies such
as alternating pulsed injection are used to control mixing and promote reaction over large
spatial zones (e.g., McCarty and Semprini 1993; Semprini et al. 1990; Gandhi et al. 2002;
Phillips et al. 2013; Bagtzoglou and Oates 2007)

We next present an overview of some porous medium properties that affect mixing-
controlled reactions for the transverse and longitudinal scenarios. Although the underlying
pore-scale physics and processes are similar in both scenarios, different experimental and
modeling investigations have been used for each scenario (e.g., the steady-state nature of the
transverse mixing case allows for simplified laboratory experimentation) and therefore we
discuss each separately.

2.1 Transverse Mixing-Limited Reactions

Cases involving transverse mixing-limited reactions have important practical relevance for
assessing natural attenuation of groundwater contamination at hazardous waste sites where
there is a long-term persistent source of dissolved pollutant. Often, naturally occurring
microorganisms utilize the pollutant as, for example, an electron donor in a degradation reac-
tion, provided there are dissolved electron acceptors (e.g., oxygen or nitrate) in the upgradient
groundwater. As in Fig. 1, a steady-state dissolved contaminant plume results. The resulting
steady-state length of the plume is an important quantity for assessing the overall contam-
ination risk and degree of natural attenuation. A conceptual model of a steady-state plume
at a field site in Denmark is shown in Fig. 3, along with measured profiles of phenoxy acid
(pollutant and electron donor), and the electron acceptors oxygen and nitrate. Soluble Mn
is also shown, due to reduction of insoluble manganese oxide as an electron acceptor. The
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Fig. 3 Conceptual model for the landfill leachate plume at the Sjoelund Landfill site [from Bjerg et al. (2011)]

conceptual model is based on the assertion that transverse mixing of oxygen and nitrate limit
the distance that phenoxy acid can migrate downgradient before reacting.

2.1.1 Effect of porous media structure heterogeneity

Porous media structure is relevant at the pore scale, and at larger scales where variations
in permeability give rise to streamline compression and expansion. At the pore scale, het-
erogeneity arises from variations in grain size, grain orientation, and grain geometry, all
of which can influence transverse-limited reactions. Examples are shown in Fig. 4, where
microfluidic experiments and matching pore-scale modeling studies were performed to cap-
ture these effects (Willingham et al. 2008). Transverse mixing-limited reaction was evaluated
using two different cylindrical grain sizes, two different orientations of an ellipse, and three
different grain geometries. Flow was constant from the left; species ’A’ and ’B’ were input
along the bottom and top half, respectively, of the inlet boundary; the reaction that produces
the product ’C’ is assumed to occur instantaneously as soon as the two species mix. Visually
it is apparent that the largest amount of C is produced for the vertical ellipse, and the least
amount for the horizontal ellipse. This is due to greater tortuosity, contact time, and stream-
line compression in the former, where streamline compression enhances mixing because
the time scale of diffusion depends on the squared distance between adjacent streamlines
(t ∼ L2/D). There is no apparent difference in amount of C produced for the two different
cylinder sizes; the same pore throat sizes were used for both, and this may dominate differ-
ences in mixing for different sized grains. The amount of C produced in the aggregate pore
structure also matched the cylinders, indicating similar reactant contact times and streamline
compression. Although only simulation results are shown in Fig. 4, companion microfluidics
experiments are in close agreement. Acharya et al. (2007) conducted similar simulations for
random grain geometries and configurations, and found that more complex grain geometries
and configurations generally give rise to greater transverse dispersion and reaction.

The effects of larger-scale spatial heterogeneity in pore structure can also affectmixing and
reaction by causing convergence and divergence of streamlines. Microfluidic and larger flow
cell experiments using reactive solutes havebeenperformedwith highpermeability inclusions
(or lenses) surrounded by lower permeability material (Willingham et al. 2010; Rolle et al.
2009). Complementary numerical studies are also available (Werth et al. 2006). An example
of a flow cell experiment is shown in Fig. 5. A solution of 0.004mol/L NaOH (pH=11.49)

123



Mixing-Limited Reactions in Porous Media

Fig. 4 (left) Simulation results showing production of C fromA (top half) andB (bottom half) being introduced
from the left boundary of each porous media. (right) Cumulative amount of C produced in each porous media
with distance along the pore structures [from Willingham et al. (2008)]

Fig. 5 Flow cell experiment showing how high permeability inclusions can shorten the length of a reactive
solute plume. Flow is from left to right. The reactive solute in the plume is NaOH, and it reacts with HCl in
the surrounding pore water [from Rolle et al. (2009)]

was used for the reactive plume, and an ambient solution of 0.01mol/L HCl (pH=2.03) was
used for the surrounding groundwater. Flow was left to right, and all solutions were amended
with the pH indicator bromophenol blue, which changed its color from yellow to blue in the
pH interval of 3–4.6. The top panel is for a homogeneous porous medium, while the bottom
has two rectangular high permeability inclusions. As shown, the blue color disappears in
approximately 1/3 the travel distance when the higher permeability inclusions are present,
and this is due to compression of the streamlines in the high permeability inclusions and
subsequent enhanced diffusive mixing.

More complex arrangements of two-dimensional heterogeneity have been explored
numerically; e.g., Werth et al. (2006) considered a system where irregularly shaped high
permeability inclusions were placed into a lower permeability domain. This resulted in sub-
stantialmixing enhancement relative to a homogeneous domain, again as a result of streamline
compression and enhanced mixing.

The effects of three-dimensional arrangements of heterogeneity have also been explored
numerically. Three-dimensional spatial variability in permeability and anisotropy can intro-
duce additional transverse mixing mechanisms that enhance reaction. In particular, there can
be helical flow with twisting streamlines which causes intermixing of the inlet fluid stream
tubes containing different chemical reactants. Helical mixing of a conservative tracer was
studied experimentally in a flow cell, and then matched through numerical modeling (Ye
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Fig. 6 Helical flow cell with corresponding flow paths and reactive plume length [from Ye et al. (2016)]

et al. 2016). The calibrated model was then used to simulate reactive plume lengths under
homogeneous and helical flow conditions. The flow cell, helical flow paths, and reactive
plume length are shown in Fig. 6. The reactive plume length under helical flow conditions is
approximately one-third of that under homogeneous flow.

2.2 Longitudinal Mixing-Limited Reactions

Again, we assume that the bulk flow is one-dimensional and steady in order to focus on
the role of porous medium structure and reaction rate. Within the context of longitudinal
mixing, there are two particularly well-known experimental papers that highlight some of
the key challenges of translating pore-scale reactions to continuum scales (Raje and Kapoor
2000; Gramling et al. 2002). Prior to these experiments, the traditional thinking was that one
couldmeasure transport parameters (advection, dispersion) for a porousmedium and estimate
reaction parameters from a traditional batch experiment, lump these parameters together in
an advection–dispersion reaction equation and predict reactive transport. Raje and Kapoor
(2000) constructed a glass bead-filled column and displaced 1,2-naphthoquinone-4-sulfonic
acid with aniline, a known bimolecular reaction that produces 1,2-naphthoquinone-4-
aminobenzene. They measured transport parameters from a column experiment with no
reactions, and measured the reaction rate in a beaker where they mixed the two reactants
together and measured the rate of production of the product. In all cases, the fitted parameters
matched experimental observations next to perfectly. With these parameters, they parame-
terized the advection–dispersion reaction equation and predicted breakthrough curves of the
product that would be produced in a displacement experiment. Actual measured values were
about 40% less than those predicted by their model. In an analogous setup, Gramling studied
the reaction betweenCuSO4 andEDTA4−, a colorimetric bimolecular reactionwhere the light
intensity of the product CuEDTAwas used to construct spatial distributions of concentrations.
The rate of this reaction is sufficiently fast that it can be considered instantaneous (Hering
andMorel 1988). Again, mismatches between predictions from a parameterized ADREwere
on the order of 40% with lower concentrations of product observed than predicted. The
experiments of Raje and Kapoor and Gramling, which are for one of the simplest imaginable
porous media, a homogeneous one-dimensional column packed uniformly with sand, high-
light that simply taking known dispersion parameters and known chemical kinetic parameters
and lumping them together is not sufficient to predict reactive transport in a porous medium.
The main reason for this is that a traditional continuum level parameterized ADRE is implic-
itly assuming perfect mixing of chemical reactants over the pore scale, while in reality the
complex and tortuous nature of the pore-scale flowmeans that this is not true and that mixing
is not perfect. Incomplete mixing at pore scales can significantly reduce large scale reaction
rates, although much like Taylor dispersion (e.g., Bolster et al. 2011) in certain instances at
asymptotic times, mixing may be sufficient to overcome this (Jose and Cirpka 2004).
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Raje and Kapoor’s and Gramling’s work clearly highlight these shortcomings and have
motivated many studies since their publication, including others to look even closer at the
mechanisms that lead to incomplete mixing. These are illustrated in numerical simulations
as shown in Fig. 1 (Hochstetler and Kitanidis 2013); this figure shows that the reactive front
is not uniform, but has some paths which are faster and some that are slower, giving rise
to a very complex concentration distribution. Any upscaled model that is to be effective in
predicting reactive transport must account for this in some, preferably efficient, form.

The mechanisms that give rise to incomplete mixing were studied in further detail by de
Anna et al. (2014). Like Gramling, they used a colorimetric bimolecular reaction to visualize
the reaction front and quantify the amount of product produced (although the specific reaction
they used was a different one) but in a two-dimensional microfluidic reactor. The nature of
their setup allowed them to clearly visualize transport, mixing and reaction mechanisms with
a dynamical measurement of local concentrations with a sensitivity of 3 orders of magnitude,
enabling assessment of a wide range of Peclet and Damkohler numbers by varying the flow
rate within the cell and the local reaction rate. The resulting images and analysis demonstrate
that the underlying transport and reaction aremore complex than a simple classical continuum
level ADR can describe, reflecting a rich set of incomplete mixing dynamics that must be
accounted for. A major conclusion of their work is that while classical continuum-scale
Fickian ADR theory would predict a scaling of the cumulative mass of product C with the
square root of time, they identified two other regimes where the produced mass evolves faster
than the Fickian behavior. Thus, a major problem with a classical continuum level ADR is
not just that it might over-predict the rate of reaction, as suggested by Raje and Kapoor and
Gramling, but that it cannot capture the correct temporal scaling of mass production; this
means that any constant effective parameter model will likely not be able to capture the full
range of true behaviors. Also, de Anna’s experiments show that the geometry of the mixing
interface between reactants, controlled by the geometry of the medium, determines the rate
of mass production. To describe andmodel this, they demonstrate that the invading solute can
be considered as stretched lamellae, whose dynamics they can describe. Mass transfer across
lamellar boundaries limits the rate of reaction. At later times, a second regime occurs where
these lamellae coalesce. The rate of this coalescence and the associated mixing zone dictate
the rate of product formation. In this regime, the mass of product is directly proportional to
the volume of the mixing zone, as calculated from conservative species. For further details
on this see Sect. 4 (Figs. 7, 8).

3 Governing Equations for Flow, Transport and Reaction: Pore Scale

In this section, we present the governing equations that are typically solved for modeling of
flow and transport of mixing-driven reactions at the pore scale. For the sake of simplicity,
we focus exclusively on the equimolar bi-molecular reaction A + B → C , which it is
often argued is the fundamental building block of all more complex mixing-driven reactions
(Gillespie 2000). Flow at the pore scale is governed by the Navier–Stokes equation, with
no slip boundary conditions imposed at the grain-fluid solid interface boundaries. For many
applications of practical interest in porous media, the Reynolds number Re = V Lρ/μ,
where V is a characteristic velocity, L a characteristic length and ν the fluid viscosity, is
small such that Re << 1 (e.g., when pore sizes are small, velocities are slow and the fluid is
highly viscous). Under such circumstances, it is not necessary to solve the full Navier–Stokes
equations, and it is often reasonable to only solve for Stokes flow, where inertial effects are
negligible and pressure forces are balanced by viscous ones, such that
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Fig. 7 (top) Raje andKapoor (2000) and (bottom)Gramling et al. (2002)measured (left) transport and reaction
parameters to predict (right) reactive column experiments. In both cases, there is a discrepancy of about 40%
with larger concentrations of product predicted than measured

Fig. 8 Concentration of product at various times in a longitudinal mixing-limited reaction experiment of de
Anna et al. (2013). Note the clear filamentary lamellar structure of the product, rather than a vertically uniform
concentration

∇̂ p̂ = μ̂∇̂2v̂, ∇̂ · v̂ = 0 (1)

where v̂ is the fluid velocity, p̂ is the pressure of the fluid, and μ̂ is the viscosity of the
fluid. Hats denote dimensional quantities. Other than for highly idealized geometries (e.g.,
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Kitanidis and Dykaar 1997; Bolster et al. 2009), this equation must be solved numerically,
which can be done by any number of methods; see below.

Given a solution for the velocity field, the governing equation for transport of the chemical
constituents is given by

∂Ĉi

∂ t̂
+ ∇̂ ·

(
v̂Ĉi

)
= ∇̂ ·

(
D̂∇̂Ĉi

)
− r̂AB i = A, B (2)

∂ĈC

∂ t̂
+ ∇̂ ·

(
v̂ĈC

)
= ∇̂ ·

(
D̂∇̂ĈC

)
+ r̂AB , (3)

where Ĉi is the concentration of reactive species i , v̂ is the pore-scale velocity field, and D̂ is
themolecular diffusion coefficient, which is assumed equal and constant for all species.While
different formulations can exist for the reaction term, we here focus on it as determined by
the law of mass action such that r̂AB = k̂ĈAĈB , where k̂ is the kinetic reaction rate constant.
This reaction term is what couples the transport equations for each of the considered species.

From a theoretical perspective, particularly with upscaling in mind, it is often useful to
present these equations in dimensionless form as this more clearly elucidates the competition
among transport, mixing and reaction processes. To do so we must define the following
quantities:

Ci = Ĉi

Ĉ0
, v = v̂

〈v̂〉 , t = t̂
〈û〉
l̂

, x = x̂

l̂
,

Pe = 〈v̂〉l̂
D̂

, Da = k̂Ĉ0l̂2

D̂
(4)

where Ĉ0 is a characteristic concentration, l̂ is a characteristic length scale, 〈v̂〉 is a charac-
teristic/average velocity. Particularly important are the two dimensionless numbers Pe and
Da, which, respectively, are the Peclet and (diffusive) Damkohler numbers. Pe quantifies
the relative balance between advective and diffusive effects, while Da the balance between
reaction to diffusive effects. Given these definitions, we can recast the transport equations as

∂Ci

∂t
+ ∇ · (vCi ) = 1

Pe
∇2Ci − Da

Pe
CACB i = A, B

∂CC

∂t
+ ∇ · (vCC ) = 1

Pe
∇2CC + Da

Pe
CACB

(5)

One interesting feature of these equations,which can facilitate their solution in certain circum-
stance, is that we can define invariantsCD = CA−CB ,CE = CA+CC andCF = CB +CC ,
the evolution each ofwhich can be described by the conservative advection diffusion equation

∂Ci

∂t
+ ∇ · (vCi ) = 1

Pe
∇2Ci i = D, E, F (6)

A variety of numerical methods have been applied to solve the pore-scale fluid flow
and reactive transport equations. Examples include finite element techniques (Hochstetler
and Kitanidis 2013); finite volume methods coupled with streamline-based particle track-
ing methods (Nunes et al. 2015; Alhashmi et al. 2015); lattice Boltzmann methods (LBM)
(Acharya et al. 2007); smoothed particle hydrodynamics (SPH) (Tartakovsky et al. 2009),
among many more. Due to computational challenges, many studies assume two-dimensional
porous media with idealized geometry, although recent advances have enabled extension
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to three dimensions. For example, Alhashmi et al. (2016) use a realistic three-dimensional
geometry derived from micro-CT images of sandstone rock core. Since diffusion is a key
driver of mixing effects, it is important to avoid numerical artifacts such as numerical diffu-
sion when solving advection–diffusion equations, and some investigators use special particle
tracking methods adapted for mixing-controlled reaction (Alhashmi et al. 2015; Porta et al.
2013; Sund et al. 2017a). Such particle-based methods can come with their own limitations
due to noise associated with finite size effects, although some have argued that this can be
exploited to simulate noise that is ubiquitous in real systems (e.g., Benson and Meerschaert
2008; Paster et al. 2014a; Bolster et al. 2016).

The governing equations above can be simplified for idealized transverse mixing cases,
when the system is at steady state to

∇ · (vCi ) = 1

Pe
∇2Ci − Da

Pe
CACB i = A, B (7)

∇ · (vCC ) = 1

Pe
∇2CC + Da

Pe
CACB (8)

3.1 Example Pore-Scale Solution and Limiting Behavior

As noted, the governing pore-scale equations can be solved numerically given an assumed
pore geometry. This has been done in several studies, with the aim to gain deeper understand-
ing of the interactions among mixing and reaction processes for the purposes of upscaling
to the continuum scale. This has been done by Porta et al. (2013, 2016) and Hochstetler and
Kitanidis (2013) for the longitudinal mixing scenario, and by Knutson et al. (2007) for the
transverse mixing scenario. In both cases, the system evolves from a reaction-limited to a
transport-limited regime. In the former, the rate of mixing of the two reactants is faster than
the intrinsic rate of reaction, while in the latter the reaction rate is fast relative to the rate of
mixing. Since the steady transverse mixing scenario is more convenient for illustration, this
case is presented.We consider a simple scenariowhere solutesA andB are input continuously
along the bottom and top half on the inlet boundary and a steady-state plume of product C is
produced by the bi-molecular reaction (see Fig. 4). The transverse gradients are very large
near the inlet zone, so the species are rapidly mixed by transverse diffusion and the overall
reaction is limited by the intrinsic reaction kinetics. Further downstream from the inlet, the
transverse gradients decrease so that the overall reaction is limited by the mixing rate of
the individual species. This can be more clearly shown by using the numerically simulated
results for the reactants A and B to compute the vertically integrated reaction rate at a given
downstream location. This is computed in dimensionless form as

r(x) = Da

Pe

∫ ∞

−∞
CACBdy (9)

where the overline indicates vertical averaging across the y direction. Some example results
for an idealized 2D domain with a spatially periodic porous medium are shown in Fig. 9. The
vertically integrated dimensionless reaction rate computed by (9) is shown as a function of
dimensionless distance from the inlet (where the grain diameter is used as the length scale).
The figure shows that in the downstream zone all three curves converge so the reaction rate is
independent of Da. The peak of the curve corresponds approximately to the location where
the system transitions from reaction limited tomixing limited, and the transition occurs closer
to the inlet for a larger reaction rate (Da). As demonstrated by several studies (Acharya et al.
2007; Willingham et al. 2008), in the mixing-controlled regime the overall reaction rate
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Fig. 9 Results for the transverse mixing scenario shown in Fig. 4 for periodic porous medium. Vertically
integrated dimensionless reaction rate defined by (9) as a function of longitudinal distance divided by grain
diameter

scales with x−1/2, a behavior that is consistent with the figure above. Note that this has an
analog for the longitudinal mixing-controlled scenario, where studies of the total mass of
product C formed scales with the t1/2, which is equivalent to the total reaction rate scaling
with t−1/2 (Porta et al. 2013; Hochstetler and Kitanidis 2013). The impact of increasing Pe
(not shown) is that the location for transition to mixing-controlled reaction moves further
downstream; this is because steep transverse gradients of the reactants will persist over a
longer downstream zone with high Pe, and hence the reactants in this zone are mixing faster
than they can be consumed by reaction.

4 Upscaling Pore Scale to Continuum Scale

Pore-scale studies yield detailed physical insights and understanding. However, practical
applications typically require governing equations at the continuum scale. Development and
application of various upscaling methods are at the center of the entire field of porous media
modeling; here, we emphasize some special issues for mixing-controlled reactions.

4.1 Volume Averaging

A common approach to upscaling in porous media is using the method of volume averag-
ing, which shares many similarities with other methods such as the method of moments and
homogenization. One starts by writing the governing equations at the pore scale, identifying
a representative elementary volume and then applying an averaging filter to the governing
equations. Typically the equation for the average will have terms in it that depend on sub-
scale quantities, necessitating a mathematical closure. By invoking a series of assumptions,
typically related to strong separation of spatial and/or temporal scales, it is possible to rig-
orously derive such closures, resulting in an effective continuum or large scale equation. A
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common example includes the use of mechanical dispersion, which averages out subscale
velocity fluctuations, but effectively captures the spreading that they induce. Note though
that because of the assumptions required to produce the closure, this large scale equation
may only be valid under very specific conditions (e.g., at late times when the solute has had
sufficient time to sample the full range of velocities, although this could be an issue, since if
incomplete mixing is missed at early times, it can result in late time overestimation).

In the context of reactive transport, many studies have used volume averaging theory
to derive continuum-scale advection–dispersion reaction equations starting from the pore-
scale; many of these are for heterogeneous reactions on grain surfaces (e.g., Golfier et al.
2009; Guo et al. 2015), but a few have considered the specific case of mixing-controlled
bimolecular reactions (e.g., Porta et al. 2012, 2013, 2016; Hochstetler and Kitanidis 2013;
Sund et al. 2017a). Here we briefly summarize and present some key features. Quantities
can be averaged over the volume of the fluid within an averaging volume unit cell, such that
quantity ∗ averaged in this way is defined as,

〈∗〉 = 1

V f

∫

V f

∗ dV , (10)

where V f is the averaging volume. Then the fluctuation of the quantity ∗ is defined as,

∗′ = ∗ − 〈∗〉. (11)

Volume averaging of (5) and (6) leads to

∂〈Ci 〉φ
∂t

+ φ〈v〉 · ∇〈Ci 〉︸ ︷︷ ︸
advection

= 1

Pe

[
φ∇2〈Ci 〉 + ∇φ∇〈Ci 〉

︸ ︷︷ ︸
diffusion

+∇ ·
(

φ

V f

∫

Γls

C ′
indA

)]

︸ ︷︷ ︸
diffusion

−∇ · 〈v′C ′
i 〉︸ ︷︷ ︸

dispersion

−φ
Da

Pe
r

︸ ︷︷ ︸
reaction

i = A, B (12)

∂〈C j 〉φ
∂t

+ φ〈v〉 · ∇〈C j 〉︸ ︷︷ ︸
advection

= 1

Pe

[
φ∇2〈C j 〉 + ∇φ∇〈C j 〉

︸ ︷︷ ︸
diffusion

+∇ ·
(

φ

V f

∫

Γls

C ′
jndA

) ]

︸ ︷︷ ︸
diffusion

−∇ · 〈v′C ′
D〉︸ ︷︷ ︸

dispersion

j = D, E, F (13)

where φ is the porosity of the unit cell. Focusing on reactive component B and conservative
component D, the reaction term is given by

r =
[
〈CB〉〈CA〉) + 〈C ′

BC
′
A〉

]
= 〈CB〉(〈CB〉 − 〈CD〉) + 〈C ′

B

(
C ′
B − C ′

D

)〉 (14)

Several terms in these volume averaged equations remain to be closed, particularly the
dispersion and reaction terms which depend on the product of two fluctuation quantities.
Modeling terms like the hydrodynamic dispersive flux, J =< u′C ′ >, have been thoroughly
investigated formanyyears, and are described in detail in another paper in this issue (Cushman
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et al. 2018). Although it can be nonlocal, one can also under certain simplifying assumptions
(typically at late times) adopt the widely used Fickian model Ji = −D∇〈Ci 〉, where D is
the hydrodynamic dispersion tensor, equal to the sum of the effective molecular diffusion
coefficient and the mechanical dispersion tensor (Bear 1972) (although this can lead to
overmixing at the pore scale and failure to capture the full range of temporal behaviors
as discussed in Sect. 2). The simplest approach to describe hydrodynamic dispersion is in
terms of its principal components, DL and DT , oriented parallel and transverse to the mean
velocity. In some cases, the dispersion coefficients may depend upon reaction parameters
(Shapiro and Brenner 1988; Porta et al. 2012); others have reported that dispersion can be
compound specific (Rolle et al. 2012). Multicomponent diffusion in reactive systems must
be dealt with carefully (Steefel et al. 2015; Muniruzzaman and Rolle 2017). We do not
consider these complications here and assume that dispersion coefficients are measured for
inert solutes.

As explained for the transverse mixing scenario in Sect. 3, the reaction rate-limited region
is near the inlet boundary. It is only in this region where an upscaled reaction rate model is
required, since in the downstream mixing-limited region the overall reaction rate depends
only upon transverse mixing and is independent of the intrinsic reaction kinetic parameters.
Moreover, for the case of slow reaction (small Da), the different solute species become
completely mixed throughout an REV prior to significant reaction, and hence the upscaled
reaction expression is identical to the pore-scale kinetic rate law (i.e., r̂AB = k̂ĈAĈB ), but
with continuum-scale concentration values.

Therefore, the key question is how to upscale the reaction for cases for which the rate is
“fast enough” relative to mixing so that there is incomplete mixing within an REV where
reaction is occurring, but not so fast that the reaction is mixing limited. For Pe >> 1 and
Da >> Pe the following closure relationships can be proposed.

C ′
B = MC ′

D M = 〈CB〉
2〈CB〉 − 〈CD〉 C ′

D = b ∗ ∂

∂t
〈CD〉. (15)

where ∗ denotes convolution in time and b is a vector of closure variables that solve the
following equations on the small-scale REV

∂b
∂ y

+ v · ∇b = 1

Pe
∇2b (16)

Full details of the volume averaging procedure, as well as a discussion on assumptions
and restrictions, are available in Porta et al. (2013). This yields a continuum-scale integro-
differential system of equations, which is nonlocal in time:

∂〈CD〉φ
∂t

+ φ〈v〉 · ∇〈CD〉 = 1

Pe
∇2〈CD〉 + 1

Pe
∇ ·

[
DD ∗ ∂

∂t
∇〈CD〉

]
(17)

∂〈CB〉φ
∂t

+ φ〈v〉 · ∇〈CB〉 = 1

Pe
∇2〈CB〉 + 1

Pe
∇ ·

[
MDD ∗ ∂

∂t
∇〈CD〉

]

−Da

Pe
〈CB〉

[(
〈CB〉 − 〈CD〉

)
− M(M − 1)

〈(
bD ∗ ∂

∂t
∇〈CD

)2

〉
〉]

(18)

where DD = −Pe〈u′b′〉. While the theory of volume averaging is rigorous and valid when
its assumptions are met, one of the main criticisms of this approach is that the upscaled
continuum-scale equations, like those in (18), can sometimes be close to as complicated to
solve as the actual pore-scale system. As such alternative approaches may sometimes be
more desirable.

123



A. J. Valocchi et al.

Fig. 10 a Schematic of a lamella of dye of initial length l0 and advected in a laminar shear flow. b Effect of
the advection field alone: the strain γ t has stretched the lamella and thinned down its transverse dimension to
2s A(t). c Effect of both advection and molecular diffusion: at the same strain, the half-width of the lamella
is denoted s AD(t). Inset: schematic of the Gaussian concentration field of the lamella with its concentration
profiles along the flow C(x, t) and transverse to the lamella C(n, t) [from Souzy et al. (2018)]

As noted above, upscaling the reaction term is not required in the downstream mixing-
controlled region, and hence there is no harm using the pore-scale kinetic rate law and
parameters. There may indeed be practical cases for which the reaction-limited zone is small
and one is interested in the total amount of product created in a large domain. In these cases,
it may be possible to simply neglect the reaction-limited zone and assume fast reaction.
Therefore, it is critically important to get the mixing right in order to accurately model the
continuum-scale reactive system. For transverse mixing scenarios, there are several studies
that show that classical transverse dispersion coefficients for ideal tracers can be used tomodel
fast reactions (e.g., Acharya et al. 2007; Willingham et al. 2008). For example, Acharya
et al. (2007) showed that such a continuum-scale model could simulate the microfluidics
experiments of Willingham et al. (2008) for a variety of porous media geometries. Modeling
longitudinalmixing ismore challenging due to the complex dynamics of themixing interface,
as described in Sect. 2. Time-varying models are often needed, as there can be a long pre-
asymptotic regime of mixing. These models can be developed using some of the alternative
upscaling approaches described next.

4.2 Lamellae

A recent model relies on predicting the evolution of the interface between reacting species. At
early times it is possible to describe the interface as made up of complex elongated structure
which form lamellae, an approach which has had great success in predicting mixing and
reactions in a variety of flows ranging from chaotic to turbulent. By predicting the evolution
of these lamellar structures (Fig. 10), upscaled models of reactions can be developed. For
the case of fast reactions, like in Gramling et al. (2002), the rates of production of mass of
product C can be expressed as

dMC

dt
= D

∫

Ξ

|∇CA|dΣ ≡ DΣ(t)|∇CA| (19)

whereΣ(t) is the length of the interfaceΞ(t) separating the reactants. This equation basically
says that the total amount of reaction is controlled by the diffusive mass transfer of reactant A
across the interface intoB territory. Then, it is argued that the gradient can be approximated by
c0/s(t), where s(t) is the average interface width. Under purely diffusive conditions s(t) ∼√
Dt , giving rise to the classical result that mass of product grows also as MC (t) ∼ √

Dt .
However, in a complex heterogeneous flow, as exists at pore scales within a porous medium,
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the interface is trying to grow by diffusion but is also subjected to stretching and compression
by advective forces; a balance equation can be written such that

1

s(t)

ds(t)

dt
= D

s(t)2
− 1

Σ(t)

Σ

t
dt (20)

where 1
Σ(t)

Σ
t dt is the interface elongation rate, which is related to flow kinematics (Duplat

et al. 2010). At early times the interface length grows linearly in time at some rate γ , and the
interface thickness can be predicted to evolve as

s(t) = s0

√
3β − 2 + 2(1 + γ t)3

3β(1 + γ t)2
(21)

where β = s(0)2γ
D . Initially lamella width decreases until compression and diffusive growth

equilibrate, called the mixing time τm. After this mixing time, the different elements of
the interface can no longer be regarded as independent; they interact via diffusion, and
coalescence leads to aggregate lamellae bundles. In this regime, the evolution of the interface
length Σ(t) can be estimated as the average length of lamella bundles lb(t), which can be
estimated from the overall large scale width of the reaction front, multiplied by the number of
bundles nb(t), which should be inversely proportional to the interface width. Thus, Σ(t) =
nb(t)lb(t) ∼ σa(t)

s(t) . For times bigger than τm, the interface width grows diffusively and so

dMC (t)

dt
∝ c0σa(t)

t
(22)

When the reactive front width grows as a power law, this means that Mc(t) ∝ σa(t), that is
the mass produced is directly proportional to the reactive front width. This means that under
conditions of non-Fickian width growth, which is common in porous media, particularly at
pre-asymptotic times, the mass of reactant will also grow in a non-Fickian manner. Should
the width grow in a Fickian manner, as expected at late times, then a classical scaling should
emerge. These approaches have been validated both numerically and experimentally by de
Anna et al. (2013, 2014), although in both cases the porous media considered do not appear
to revert to a late time Fickian scaling, perhaps due to their limited size, meaning that they
cannot attain asymptotic times.

4.3 Other Approaches

4.3.1 Reactive RandomWalks

Many common numerical methods for studying transport and mixing are Eulerian in nature.
A paper by Boso et al. (2013) focuses on several popular schemes and states that broadly
speaking, because of numerical dispersion, grid-based Eulerian schemes, overestimate dilu-
tion/mixing, and thus over-predict mixing-driven reactions. On the other hand, Lagrangian
approaches, including among others random walk particle tracking (RWPT) approaches, are
free of numerical dispersion, thus presenting a potential advantage. However, concentration
fields represented by a finite number of particles produce naturally noisy concentration fields,
which can present its own set of problems. Some authors have suggested though that this
noise can be used to represent incomplete mixing effects, in particular (e.g., Benson and
Meerschaert 2008; Paster et al. 2014b).
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AmongRWPTs for predicting upscaledmixing-driven reactions, two approaches that have
been applied to successfully model the experimental data of Gramling et al. (2002) are from
Edery et al. (2009, 2010) and Ding et al. (2013). Ding et al. (2013) also successfully simulate
the data of Raje and Kapoor (2000). While the methods both share certain commonalities,
being built on random walk theory, there are fundamental differences, particularly in the
manner in which the reactive step is modeled. Edery et al. (2009) move particles using a
continuous time randomwalk approach, and then use a ’hard-shell’ radius approach to model
reactions - that is each A particle and B particle has a fixed radius around it and particles that
overlap can react. While the model can clearly reproduce the experimental data and effects
of incomplete mixing, open questions remain on how exactly to choose the specific value of
the hard-shell radius, and whether it has a clear physical meaning or is an empirical fitting
parameter. Some empirical evidence suggests it may be related a characteristic pore size,
which may be representative of a scale over which mixing occurs.

Ding et al. (2013) use the reactive RWPT method that was first proposed by Benson and
Meerschaert (2008). In this method, particles are moved by a Brownian random walk, and
then A and B particles can react probabilistically, where the reaction probability depends
on the product of (1) the probability of collocation, which depends on transport, and (2) the
probability of reaction given collocation, which depends only on chemistry. This method has
been shown to represent incomplete mixing in simple settings and complex flows (Paster
et al. 2014a, 2015). In particular, the choice of a finite number of particles can be shown to
correspond to a particular initial condition in which incomplete mixing is encoded as noise.
Some argue that it is troubling to think that the choice of discretization of a numerical method,
i.e., the number of particles chosen, can be used to represent something physical. However,
the work of Bolster et al. (2016) demonstrates that this method yields the exact same solution
as a finite-difference model with the same initial condition, or a random walk method with
100 times more particles, but whose initial condition is chosen to have the same distribution.
This suggests that the equations are being solved consistently.

4.3.2 Empirical Closures

Hochstetler and Kitanidis (2013) conducted 2D pore-scale simulations with continuous input
of species A into a domain having species B, with the product C created by reaction within
the dynamic mixing zone which migrates downgradient. They then fit a continuum-scale
model to compute the so-called effectiveness factor EF, defined as r̂ = Keff <cA><cB> =
EF k <cA><cB>. Repeating their pore-scale simulations for a variety of reaction rates, they
fit the value of Keff in the continuum-scale model to match the total product C generated at
selected cross sections far enough downstream to achieve a constant Keff . Their results were
fit to a function of the following form EF = γ λ

Da+λ
where γ and λ are fitting parameters that

would depend upon Pe.
Sanchez-Vila et al. (2010) used the idea of an effective reaction rate to model the exper-

iments of Gramling et al. (2002). Recall that the reaction Gramling studied is so fast as to
typically be considered instantaneous and so an effective kinetic reaction is chosen to cap-
ture incomplete mixing effects. Unlike Hochstetler and Kitanidis (2013), Sanchez-Vila et al
assume that the effective kinetic rate varies over time. In fact, they assume that it decreases
as a power law in time. They justify this choice based on experiments from Haggerty et al.
(2004), who show that pore-scale rate-limited mass transfer will lead to this power law. A
similar approach can be found in Rubio et al. (2008) using an exponentially decaying seg-
regation factor, while Zhang and Papelis (2011) try different power laws using the approach
of Sanchez-Vila et al. (2010).
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In another stochastic approach, Chiogna and Bellin (2013) model Gramling’s experi-
ments by assuming a probability density distribution of concentration variations to represent
incomplete mixing effects. In particular, based on previous experimental evidence and theory
(Oates 2007), they assume that the mixing ratio is distributed within an REV according to
a Beta distribution, and then fitting the parameters of this distribution one can successfully
model Gramling’s results. Such approaches are promising because they allow for links to
other explicit pore-scale models which may be used to determine the pdf of concentrations,
resulting in a closed-form solution for the case of fast reaction.

4.3.3 Mixed and Unmixed Phase Models

Two recent papers model the phenomenon of incomplete mixing in longitudinal reactive
transport with a dual continuum approach, where reactants can exist in one of two states:
mixed or unmixed (Ginn 2018; Barnard 2017). In both approaches, only themixed fraction of
a solute can actually participate in the reaction, while both fractions can move by advection
or dispersion. Mass is progressively exchanged from the unmixed into the mixed fraction
following a specified exchange rule. The primary difference in both approaches is the rule for
mass exchange between this unmixed and mixed phase. In the words of Ginn “this approach
distinguishes self-diffusive mixing from spreading, and in the case of displacement of one
solution by another, each containing a participant reactant of an irreversible bimolecular reac-
tion, this results in time-delayed diffusive mixing of reactants”. In other words, this approach
attempts to capture incomplete mixing effects based on the physical picture consistent with
the lamellar picture discussed above. Barnard’s model can be thought of as a reaction net-
work (mass transfer from unmixed to mixed and then a mixing-driven bimolecular reaction
in the mixed phase). The model has three fitting parameters, which are the order of the mass
transfer reaction, the rate of this reaction, and then the rate of bimolecular reaction between
the mixed components of the reactants, which is not taken to be instantaneous as in other
cases. Ginn’s approach is a first-order mass transfer from the unmixed to mixed state, but the
rate associated with this mass transfer can vary over time (like Sanchez-Vila and Fernandez
discussed above). Unlike Barnard’s approach, the reaction rate in themixed phase is not a free
fitting parameter and corresponds to the thermodynamic rate. Both methods can successfully
model Gramling’s data.

4.3.4 Hybrid Approaches

As noted above, while volume averaging is a mathematically rigorous approach to upscaling
reactive transport it has two potential limitations, which are that it relies on some strong
assumptions that limit its applicability in terms of regimes of Peclet and Damkohler numbers
where the upscaled theories hold (Battiato et al. 2009; Battiato and Tartakovsky 2011) and
second that the volume averaged equation is often a nonlocal one (in space and/or time)
that can be as difficult to solve as the full small-scale equations. In response to this, hybrid
approaches try to take advantage of the strengths of volume averaging and use alternative
approaches in regions where volume averagingweaknesses are largest. This can often involve
a combined upscaling/downscaling approach; e.g., Scheibe et al. (2015) simulate a transverse
mixing reaction front in a porous medium where they explicitly resolve the pore scale in the
proximity of the front, but not in regions away from where the reaction occurs. Similarly,
Siuliukina and Tartakovsky (2018) apply such an approach to model a miscible reaction
front in an open fracture. Far from the mixing region between reactants, flow and transport
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are described by one-dimensional models, but close to the front small-scale equations (2d
Stokes equations and the advection–diffusion reaction equation) model flow and transport.
These two sets of equations have to be coupled with one another to enforce continuity of
concentrations and fluxes, which is done in an iterative manner. A related hybrid approach is
presented by Tang et al. (2015) who considered diffusion-controlled bi-molecular reaction
that causes biofilm growth and porous medium clogging; full pore-scale models are needed
in the mixing region, while continuum-scale models apply elsewhere. Another recent, but
different, hybrid approach is the Lagrangian Transport Eulerian Reaction Spatial (LATERS)
Markov Model developed by Sund et al. (2017a, b), which aims to take advantage of a
Lagrangian model, the Spatial Markov model (SMM), for certain aspects of the problem and
an Eulerian model, built from the volume averaged upscaled equations, for other. The SMM
takes care of dispersion and is then stochastically downscaled to a representative elementary
volume to compute concentration fluctuations, which in turn are upscaled again to compute
the incomplete terms that need to be closed in the Volume Averaged Equations.

5 Conclusions

We have provided a brief review of the literature on mixing-limited reaction of two solutes
forming a product in porous media, focusing on processes and modeling at pore scales. Both
transverse and longitudinalmixing-limited reactionswere considered in the context of single-
phase flow. Transverse mixing-limited reactions are especially important in groundwater
and can limit the extent of mixing and reaction along contaminant plume margins. At the
pore scale, transverse mixing is affected by the pore size and geometry, with pores that
promote compression of streamlines and greater contact time between solutes, resulting in
more reaction.

Longitudinal mixing-limited reactions are inherently transient, as opposed to steady state,
and are important in many applications where a reacting front advances with fluid flow.
Initially, it was thought that kinetic rate constants from batch experiments could directly be
used in reactive transport models to predict longitudinal mixing-limited reactions. However,
incomplete mixing at the pore scale revealed that apparent reaction rates were less than
expected, and various approaches have been used to scale the reaction rate.

The governing equations for mixing-limited reactions at the pore and continuum scale
were presented. At the pore scale, flow is determined with the Navier–Stokes equation. Flow
fields are coupledwith the advection–dispersion reaction equation to simulate solute transport
and reaction. We presented the governing equations in dimensionless form as this naturally
highlights the competing processes of diffusion, advection and reaction which can all act at
disparate time scales. This is represented by two dimensionless number, the Peclet number
(advective vs diffusive processes) and Damkohler number (reactive vs diffusive processes),
reducing the number of independent parameters and facilitating comparison of experiments
and processes. In particular, the nature of reaction is to couple all of the transport equations
together in a tight manner, meaning that uncertainties and errors in one propagate to all,
making scaling particularly challenging.

A great deal of effort has been made to upscale results from the pore to the continuum
scale. In special cases, e.g., downstream when transverse mixing is slow and reactions are
very fast, pore and continuum-scale models can be substituted for one another with no loss
in accuracy. However, in many cases, more formal upscaling approaches are needed. One
such approach is volume averaging, which uses a filter to average pore-scale results over a
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representative elementary volume and determine the governing continuum-scale equations.
Using this approach, velocity and concentration fluctuations at the pore scale can be cap-
tured in an upscaled model, typically reflected in an upscaled dispersion coefficient and
reaction rate. Such formal volume averaging approaches have been developed in the context
of mixing-controlled bimolecular reactions. While they provide great value and insight into
what processes are most important and at what scales, their application to practical problems
can be challenging as the upscaled equations can be almost as complex as the small-scale
ones.

Consequently, several more parsimonious upscaling models have been developed. One
such approach that has enjoyed great success aims to predict the evolution of the interface
between reacting species by conceptualizing it as an ensemble of elongated structures which
are continuously diffusing, compressing and stretching. By accurately representing these
processes, relatively simple upscaled models can reliably predict mixing-driven reactions.
Other approaches include randomwalk particle methods, where particles representing differ-
ent chemical species move through random walk and then interact probabilistically to model
reaction. Likewise, researchers have developed empirical closures based on simplified vol-
ume averaging approaches, mass transfer models have emerged and hybrid approaches, all
of which have shown promise in capturing complex incomplete mixing phenomena at pore
scales.

Despite all of these advances, many challenges remain in modeling transverse and longi-
tudinal mixing-limited reactions. Pore-scale simulations are computationally very expensive
andnewmethods and faster computers are needed to solvemore realistic problems.At the con-
tinuum scale typically only simple mixing-limited reaction cases are successfully upscaled.
Challenges remain in upscalingmore realistic field scale settings, where incompletemixing at
the pore scale limits application of conventional continuum-scale models. Another challenge
is integrating pore and continuum-scale models together into so-called hybrid models. Pass-
ing information between pore and continuum-scale grid cells, and determining appropriate
upscaled parameters is still a big challenge. Accurately simulating mixing-limited reactions
in the field requires progress on all of these fronts. Finally, while the experimental data from
studies such as Raje and Kapoor (2000) and Gramling et al. (2002) have been invaluable,
more sophisticated experiments and data spanning a broader range of parameter space and
complexity are needed to push the frontier and develop, refine and truly validate the next
generation of state-of-the-art modeling approaches.

While we only touched on it briefly in this review, many of the challenges that arise from
predicting and upscaling pore-scale flows exist equally when trying to model and predict
mixing-limited reactions at continuum scales that reflect larger-scale heterogeneities within
a porous medium (e.g., geologic variability). Many of the upscaling approaches applied to go
from pore to continuum scales have also been adapted to these situations (e.g., Werth et al.
2006; Le Borgne et al. 2013; Ding et al. 2017; Oates 2007)

At the continuum scale,mixing and thusmixing-limited reactions are affected by flowfield
heterogeneity; complex hydraulic conductivity fields lead to flows that include streamline
compression and expansion, which enhance mixing and reaction. Moreover, it is generally
impossible to fully characterize such small-scale heterogeneity at practical field sites, and
hence stochastic approaches are needed that explicitly recognize the uncertainty in predicting
mixing-controlled reactions.
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