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a b s t r a c t 

The Eulerian advection-dispersion-reaction equation (ADRE) suffers the well-known scale-effect of reduced ap- 

parent reaction rates between chemically dissimilar fluids at larger scales (or dimensional averaging). The disper- 

sion tensor in the ADRE must equally and simultaneously account for both solute mixing and spreading. Recent 

reactive-particle-tracking (RPT) algorithms can, by separate mechanisms, simulate 1) smaller-scale mixing by 

inter-particle mass transfer, and 2) mass spreading by traditional random walks. To test the supposition that 

the RPT can accurately track these separate mechanisms, we upscale reactive transport in Hagen-Poiseuille flow 

between two plates. The simple upscaled 1-D RPT model with one velocity value, an upscaled Taylor macro- 

dispersivity, and the local molecular diffusion coefficient matches the results obtained from a detailed 2-D model 

with fully described velocity and diffusion. Both models use the same thermodynamic reaction rate, because 

the rate is not forced to absorb the loss of information upon upscaling. Analytic and semi-analytic upscaling is 

also performed using volume averaging and ensemble streamtube techniques. Volume averaging does not per- 

form as well as the RPT, while the streamtube approach (using an effective dispersion coefficient along with 

macro-dispersion) performs almost exactly the same as RPT. 
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. Introduction 

A recent improvement of the reactive-particle-tracking (RPT)

ethod allows mass transfer between particles and subsequent reac-

ions between any number of chemical constituents on the particles

 Benson and Bolster, 2016 ). One of the features of this algorithm is that

nter-particle mixing occurs separately from dispersive random walks.

rue mixing between dissimilar fluids usually occurs on smaller scales

nd at slower rates than the dispersive spreading ( Cirpka and Kitanidis,

000b; Danckwerts, 1953; De Simoni et al., 2005; Dentz et al., 2011;

entz and Carrera, 2007; Ding et al., 2017; Donado et al., 2009; Hill,

976; Le Borgne et al., 2013; Le Borgne et al., 2014; Lehwald et al., 2012;

olz and Widdowson, 1988; Nauman and Buffham, 1983; Rezaei et al.,

005 ). Schmidt et al. (2018a) suggested that the separate simulation of

ixing and spreading by the RPT method could provide a way to accu-

ately upscale reactive solute transport, because the smaller-scale true

ixing dictates reaction rates, while the random walks simulate the pro-

ess of particle separation that accompanies sub-grid (upscaled) velocity

erturbations. Recent work has further extended the particle methods to
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llow fluid/solid interaction ( Schmidt et al., 2018b ). For additional rea-

ons, such as surface area scaling and solubility saturations near mineral

rains, dissolution/precipitation reactions also suffer significant scaling

ffects of reaction rates (see Brantley et al., 2008; White and Peterson,

990 ). 

Two of the classic examinations of the disparity between mixing and

preading in moving fluids (and the effect on global reaction rates) were

erformed by Kapoor et al. (1997, 1998) . These authors chose a simple

ystem because it can be completely defined at the pore scale: lami-

ar miscible displacement of chemically distinct (and reactive) fluids in

agen-Poiseuille flow, either in a tube or between plates. In these cases,

ransport is exactly known, with the well-known parabolic velocity pro-

le between no-slip walls, and random motion solely by molecular diffu-

ion. The higher velocities at the center of the tube cause overlap of the

uids when projected to 1-D, but mixing only occurs along the warped

nterface. This system exemplifies the lag of mixing behind spreading in

on-uniform velocity fields. 

The spreading rate was first derived for Poiseuille flow by

aylor (1953) , who showed that the 2-D transport of nonreactive tracer
ember 2018 
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Fig. 1. Schematic of physical setup and initial condition. 

Not to scale. 
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n a tube could be upscaled (averaged) to 1-D. Given enough time to

ample the entire velocity variability by local diffusion, transport can be

ffectively described by a one-dimensional advection-dispersion equa-

ion with constant velocity and an enhanced macro-dispersion coeffi-

ient reflecting subscale advection-induced spreading. The asymptotic

 t →∞) upscaled longitudinal hydrodynamic macro-dispersion coeffi-

ient D mac may be orders-of-magnitude larger than the local-scale molec-

lar diffusion coefficient D mol , and its functional form depends on the

hear velocity distribution and molecular diffusion coefficient (e.g., Bol-

ter et al., 2011) . 

This has inspired two tacks for upscaled reactive transport. The first

ack has derived two dispersion coefficients, one for the effective mixing

 eff and another corresponding to Taylor’s D mac that describes macro-

ispersive spreading. In this approach, mixing is assumed to be the dom-

nant mechanism dictating reaction rates (i.e., reactions are nearly in-

tantaneous) so that the statistics of mixing via destruction of concentra-

ion gradients give an effective, smaller, dispersion coefficient ( Cirpka

nd Kitanidis, 2000a, 2000b; Dentz and Carrera, 2007; Dentz et al.,

000 ). This smaller D eff is designed to slow down reactions, but not place

olutes in the correct locations, so Cirpka and Kitanidis (2000a) suggests

 streamtube approach in which the spreading of the centers of mass for

he streamtubes is given by D mac , while mixing within a streamtube is

iven by the smaller D eff. The second tack seeks to adjust the reaction

ate itself by recognizing that the reactant segregation that results from

pscaling should modify the effective reaction rate. This approach has

een used on simpler (diffusion-only) problems that allow direct calcula-

ion of segregation —as measured by reactant concentration covariance

volution equations ( Bolster et al., 2012; Paster et al., 2014; Schmidt

t al., 2017; Tartakovsky et al., 2012 ). However, in heterogeneous ve-

ocity distributions, these equations have yet to be analytically solved,

nd only simpler expressions based on very fast or very slow reactions

nd-members have been developed ( Porta et al., 2012 ). 

These upscaling approaches point out the fundamental problem as-

ociated with an Eulerian advection, dispersion, and reaction equation

ADRE). The dispersion coefficient valid for conservative transport at
41 
ome scale will over-predict fluid mixing and reaction at the same scale,

ut under-predict spreading at some larger scale (or volume averaged

o fewer spatial dimensions). We seek to correct this problem with a

agrangian framework. For M species undergoing Fickian dispersion in

ncompressible flow, the coupled ADREs are 

𝜕𝑐 𝑖 

𝜕𝑡 
= − 𝐯 ⋅ ∇ 𝑐 𝑖 + ∇ ⋅

(
𝐃 ∇ 𝑐 𝑖 

)
+ 𝑅 ( 𝑐 𝐴 , 𝑐 𝐵 , … , 𝑐 𝑀 

, 𝑘 1 , … , 𝑘 𝑁 

); 𝑖 = 𝐴, 𝐵, … , 𝑀 

(1) 

here c i is the concentration of each of the species labeled 𝑖 =
, 𝐵, … , 𝑀, v is a velocity vector, D is a dispersion tensor, and R () is

 reaction function among the M constituents with N reaction chan-

els. The ADRE assumes that D describes mixing and spreading in ex-

ctly the same way. For continuously varying v , this is only true at the

olecular scale. In practice, however, all variables and parameters in

1) have some finite support scale, and the discrepancy between mixing

nd spreading grows with support scale ( Dentz et al., 2011; Le Borgne

t al., 2013; Le Borgne et al., 2014 ). Indeed, if 𝐯 is given by Darcy’s

aw and a hydraulic conductivity parameter, then this type of upscal-

ng has already occurred. As briefly reviewed above, this discrepancy

ay be accounted for by adjusting the only remaining equation param-

ters that are held in the reaction term R (), or by solving the equation

eparately with larger and smaller 𝐃 to figure out mixing versus proper

ositions of reactants. If the perturbations of c i , v , and D are known, as

ell as their auto- and cross-correlations in time and space, then the ad-

usted R () can be approximated with closure assumptions ( Dentz et al.,

011; Porta et al., 2013, 2012; Tartakovsky et al., 2012 ) that may not be

articularly accurate for some values of coefficients. We include a brief

omparison of the two most notable analytic upscaling approximations

o our numerical method in this paper. 

On the other hand, the micro-scale physics of particle motion and

nteraction may already carry all information neglected by the analytic

pscaling. Here we show that, for the simplest case, the RPT method

oes indeed automatically track the necessary small-scale information

nd performs a natural upscaling. 
Fig. 2. 2-D maps of reactant A concen- 

tration after 𝑡 𝐷 = 0 . 1 ( 𝑡 = 100 s): a) Using 

RPT method ( Bolster et al., 2016 ), and 

b) using finite-differences (reproduced from 

Kapoor et al. (1997) ). Initial slug of A at unit 

concentration placed at 95 ≤ x ≤ 105 mm. Con- 

tour interval in (a) is 2 . 5 × 10 −4 molar. Note 

the sharper gradients and much higher concen- 

trations (maximum approximately 70 times) 

maintained by RPT method. 



D.A. Benson, S. Pankavich and D. Bolster Advances in Water Resources 123 (2019) 40–53 

Fig. 3. Log-log plot of A particle variance 

and D mac estimation from both 2-D and up- 

scaled 1-D models. The exponential model 

(green curve, inset) is shown against 2-D 

model (red) and 1-D posterior model results 

using the exponential. The 1-D model vari- 

ance and posterior D show noise due to the 

smaller number of A particles (447). (For 

interpretation of the references to colour in 

this figure legend, the reader is referred to 

the web version of this article.) 
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2  
. Hagen-Poiseuille flow 

We simulate an identical problem of flow, transport, and kinetic

imolecular reaction 𝐴 + 𝐵 → 𝐶 between two parallel plates as did

apoor et al. (1997) ( Fig. 1 ). The concentration units are arbitrary, but

e will use moles/L (molar). The local thermodynamic reaction rate is

iven by the law of mass action 𝑅 = − 𝑘𝑐 𝐴 𝑐 𝐵 for constituents A and B ,

here k [molar −1 T 

−1 ] is a rate coefficient. Without loss of generality we

ssume unit activity coefficients. This type of reaction has been studied

xperimentally and theoretically because of its simplicity and depen-

ence on local mixing (e.g., Ding et al., 2012; Edery et al., 2009; Edery

t al., 2010; Gramling et al., 2002; Raje and Kapoor, 2000; Sánchez-

ila et al., 2010; Zhang and Papelis, 2011 ). The plates are separated

y aperture 𝑏 = 1 mm, and the molecular diffusion coefficient is 10 −3 
m 

2 /s. An initial slug of reactant A is placed across the entire aperture

rom 𝑥 = 95 to 𝑥 = 105 mm (zero elsewhere), while reactant B is placed

with unlimited extent) only on either side of the slug. The velocity

eld follows 𝐯 = [ 𝑣 𝑥 ( 𝑦 ) , 0] , where 𝑣 𝑥 ( 𝑦 ) = 6 𝑣 
(

𝑦 

𝑏 
− 

(
𝑦 

𝑏 

)
2 
)

. The mean ve-

ocity is specified as 𝑣 = 1 . 0132 mm/s, giving a characteristic advection

ime of 𝑡 𝑎 = 𝑏 ∕ 𝑣 = 0 . 99 s. Kapoor et al. define an effective diffusion time

 𝐷 = ( 𝑏 ∕ 𝜋) 2 ∕ 𝐷 𝑚𝑜𝑙 different from more recent definitions of 𝑡 𝐷 = 𝑏 2 ∕ 𝐷 𝑚𝑜𝑙 

e.g., Porta et al., 2012 ), so their Peclet and Damkohler numbers (100

nd 10, respectively) are “off” by a factor of 𝜋2 ≈10. Our Peclet num-

er is defined by 𝑡 𝐷 ∕ 𝑡 𝑎 = 𝑣 𝑏 ∕ 𝐷 𝑚𝑜𝑙 = 1013 . Kapoor et al. chose a reaction

ate coefficient 𝑘 = 0 . 0987 (Mol s) −1 to yield a Damkohler number of

𝑎 = 𝑘𝑐 𝐴 ( 𝑡 = 0) 𝑏 2 ∕ 𝐷 𝑚𝑜𝑙 = 98 . 7 , where the initial nonzero reactant con-

entrations are 𝑐 𝐴 = 𝑐 𝐵 = 1 molar. 

First, we construct a 2-D simulation of the system using the particle-

umber-preserving method ( Bolster et al., 2016 ). This is an extension of

he original RPT algorithm that killed entire particles on reaction (see

enson and Meerschaert, 2008 ). The newer algorithm makes each par-

icle carry only one species, and the mass (and concentration given a

article support volume) on that particle is continuously adjusted to ac-
42 
ount for reactions. We chose this method because the reactions are in-

ependent of the particle random walks, and we need to accurately track

he variance of particle positions to validate upscaling to 1-D. Increasing

article numbers until convergence showed that 20,000 A particles and

40,000 total B particles in two 60 mm zones on either side of the initial

 slug were sufficient. A gray-scale plot of the binned concentrations of

 remaining at 𝑡 𝐷 = 0 . 1 ( 𝑡 = 100 s) shows the segregation of reactants

hat results from the parabolic velocity profile ( Fig. 2 a). Kapoor et al.

sed centered finite-differences in their solution, with a maximum grid

eclet number of 𝑣 max Δ𝑥 ∕ 𝐷 𝑚𝑜𝑙 = 37 . 5 , so that their solution was vastly

rtificially over-mixed (and over-reacted). Their peak concentrations of

emaining reactant A are about 70 times less than ours, but the general

hapes agree quite well. If one wished to use a first-order accurate (sim-

lar to Kapoor et al. (1997) ) finite-difference method with a grid Peclet

umber on the order of unity, then Δ𝑥 ≈ 1 . 7 × 10 −4 . Using 100 nodes in

he y -direction, the 200 mm × 1 mm domain would require on the order

f 120 million nodes. A more accurate advection scheme would require

ewer nodes but would still be computationally demanding so we use the

article method for the benchmark 2-D simulations (see Benson et al.,

017 for a comparison of methods). 

The RPT algorithm of Bolster et al. (2016) was used because individ-

al particles are composed solely of A, B , or C . This allows us to track

ll A particles in the initial slug to verify the analytically upscaled value

f D mac ( t ) (derived in the Appendix). The centered second moment (i.e.,

he “plume variance ”) grows as expected ( Fig. 3 ): quadratically near

 = 0 because of ballistic particle motion according to the velocity pro-

le, transitioning to linear growth according to Fick’s law. We took first

ifferences in discretized time to calculate D mac ( t ) ≈ΔVAR( X A )/(2 Δt ).

e fit 𝐷 𝑚𝑎𝑐 ( 𝑡 ) = 4 . 88 𝑚𝑚 
2 

𝑠 
[1 − exp (− 𝑡 ∕25 𝑠 )] for the upscaled (1-D) model

rom the 2-D data. Note that the analytic D mac ( t ) is almost exactly equal

o our measured D mac ( t ) (see Appendix). 

The locally well-mixed 2-D model used a particle density of

,000/mm 

2 , or a 2-D volume per particle of 5 × 10 −4 mm 

2 . An equivalent
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Fig. 4. Log-log (a) and linear (b) plots of total domain moles of reactant A and product C in both the 2-D full velocity model (red curves) and 1-D upscaled (single 

velocity) model (blue circles). Upscaled 1-D model uses local 𝐷 𝑚𝑜𝑙 = 10 −3 mm 

2 /s for inter-particle mixing and Taylor hydrodynamic dispersion 𝐷 𝑚𝑎𝑐 = 𝐷 𝑒𝑓𝑓 ( 𝑡 ) = 
4 . 8(1 − exp (− 𝑡 ∕25 𝑠 )) mm 

2 /s for random-walk particle spreading. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

43 
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Fig. 5. Particle concentrations at a dimensionless time 𝑡 ∕ 𝑡 𝐷 = 0 . 1 with 𝑡 𝐷 = 𝑏 2 ∕ 𝐷 𝑚𝑜𝑙 = 1000 𝑠 for single realizations of 1) a 260,000-particle 2-D model (black circles); 

2) a 5,811-particle upscaled 1-D model (red squares); and, 3) a 260-particle upscaled 1-D model (blue diamonds). . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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i  

t  
olume, or average spacing, in 1-D is defined by Δ𝑠 = (5 × 10 −4 ) 1∕2 =
 . 0224 mm. Therefore, for the 10 mm initial condition for reactant A , an

quivalently well-mixed 1-D model would use 𝑁 = 10 mm/0.0224 mm

 447. The total particle number including the surrounding initial B

eactant is 5811. Upon upscaling, however, the concentrations are not

ocally well-mixed. The projection to 1-D places disparate concentra-

ions in the same x -location. The particles may represent these differ-

nt concentrations, and do so by representing some support volume.

his volume has been shown ( Paster et al., 2014; Schmidt et al., 2017 )

o represent the concentration auto-correlation (and as time grows, the

ross-correlation) distance. Previous studies (e.g., Kapoor et al., 1997 )

ave shown that, in Poiseuille flow, the reactants segregate in regions

hat occupy about one-half the width of the aperture. This is verified in

ig. 2 a. Therefore, each particle occupies a 1-D volume upon upscaling

f ≈0.5 mm. This gives an initial particle number of 20 for the A initial

ondition, or 260 total particles. This visual estimate is formally shown

o be representative in the Appendix. These particle numbers (5811 and

60, for well-mixed and segregated) were placed in a 1-D model using a

ewer particle-tracking algorithm ( Benson and Bolster, 2016; Schmidt

t al., 2018a ). For the lower number, we also used an ensemble of 100

imulations due to noisy runs. 

This newer algorithm ( Benson and Bolster, 2016; Schmidt et al.,

018a ) transfers masses or moles of any and all species (denoted by

 superscipt, i.e., species A as m 

A ) during a time-step of duration Δt

etween all particle pairs i and j (denoted by subscripts) according to 

𝑚 

𝐴 
𝑗 
( 𝑡 + Δ𝑡 ) = 𝑚 

𝐴 
𝑗 
( 𝑡 ) + 

∑
𝑖 

1 
2 

(
𝑚 

𝐴 
𝑖 
( 𝑡 ) − 𝑚 

𝐴 
𝑗 
( 𝑡 ) 
)
𝑃 𝑖,𝑗 , (2)

sing each particle pair’s collocation probability 

𝑃 𝑖,𝑗 = (Δ𝑠 ∕ 
√
8 𝜋𝜂𝐷 𝑚𝑜𝑙 Δ𝑡 ) exp (− 𝑟 2 ∕(8 𝜂𝐷 𝑚𝑜𝑙 Δ𝑡 )) , (3)
44 
here Δs is the particle support volume, r is the distance between the

 and j particles, and 0 < 𝜂 < 1 is the fraction of the isotropic diffu-

ion simulated by interparticle mass transfer. Because the mass transfer

rocess is diffusive ( Schmidt et al., 2018a ), any “leftover ” diffusion is

dded to macro-dispersion, i.e., by (1 − 𝜂) 𝐷 𝑚𝑜𝑙 + 𝐷 𝑚𝑎𝑐 , which is simu-

ated by random walks ( Benson and Bolster, 2016 ). We chose 𝜂 = 1∕2 ,
lthough it makes no observable difference as long as the value is not

xtremely close to 0 or 1. Note that Δs is essentially calculated automat-

cally as for any j , the probabilities must satisfy 
∑

𝑖 𝑃 𝑖,𝑗 = 1 ; therefore, a

atrix of probabilities is adjusted to have a column sum of unity (see

chmidt et al., 2018a ). Also, the masses in the sum can be from the be-

inning or end of a time-step, or updated sequentially ( Schmidt et al.,

018a ). We chose the sequential updating here for stability. After mass

ransfer of A and B among all particles, the bimolecular reaction pro-

eeds according to a first-order implementation of the law of mass action

 Benson and Bolster, 2016 ), namely 

Δ𝑚 

𝐴 
𝑗 
= Δ𝑚 

𝐵 
𝑗 
= −Δ𝑚 

𝐶 
𝑗 
= − 𝑘 Δ𝑡 Δ𝑠 ( 𝑚 

𝐴 
𝑗 
∕Δ𝑠 )( 𝑚 

𝐵 
𝑗 
∕Δ𝑠 ) . (4) 

fter mass transfer and reaction, the particles experience advection and

ny additional local and macro-dispersion by well-known random walk

ethods ( Labolle et al., 1996; Salamon et al., 2006 ). Specifically, in the

-D model, particles are advected by v x ( y ) Δt and isotropically diffused

y (1 − 𝜂) 𝐷 𝑚𝑜𝑙 , while the 1-D models advect by 𝑣 Δ𝑡 and disperse using

aylor’s (1 − 𝜂) 𝐷 𝑚𝑜𝑙 + 𝐷 𝑚𝑎𝑐 ( 𝑡 ) unless otherwise specified for hypothesis

esting. 

. Results and discussion 

The rates of C production and late-time A decline agree quite well

n both log-log and linear coordinates, when the lower number of ini-

ial A particles ( 𝑁 = 260 ) is used to represent concentration fluctuation
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Fig. 6. Log-log (a) and linear (b) plots of total domain moles of reactant A (decreasing) and product C (increasing) in both the 2-D full velocity model (black solid 

curves) and the 1-D upscaled (single velocity) models. Blue diamond symbols are the previous model using local 𝐷 𝑚𝑜𝑙 = 10 −3 mm 

2 /s for inter-particle mixing and 

Taylor hydrodynamic dispersion 𝐷 𝑚𝑎𝑐 = 𝐷 𝑒𝑓𝑓 ( 𝑡 ) = 4 . 88(1 − exp (− 𝑡 ∕25 𝑠 )) mm 

2 /s for random-walk particle spreading. Black dashed (finite-difference model) and red 

dot-dash (RPT model) curves use D eff( t ) for both mixing and spreading, black wide dashed curves use D mol for both in RPT model. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

45 



D.A. Benson, S. Pankavich and D. Bolster Advances in Water Resources 123 (2019) 40–53 

Fig. 7. Total reaction rates in full 2-D simulation (solid black curve) and upscaled 1-D models. The dashed black line is a finite-difference model with 𝐷 = 𝐷 𝑒𝑓𝑓 ( 𝑡 ) , 
the red squares represent an RPT model with 447 initial A (5811 total) particles, and the blue diamonds use 20 initial A (260 total) particles. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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d  

e  

r  

(  
istances on the order of one-half pore width ( Fig. 4 ). We expect that

n even better fit could be achieved by adjusting the particle number,

ut we have not changed our original visual estimate of particle support

olume equal to one-half pore width (see also the appendix). This level

f agreement was not expected due to the loss of detailed velocity in-

ormation upon upscaling. By virtue of a constant velocity and Gaussian

andom walks, the 1-D model has a Gaussian shape at any time. The

act that the shape of the “plume ” appears to be of secondary impor-

ance would indicate that the magnitude of concentration fluctuations,

long with the rate at which these fluctuations mix at the local scale,

s a primary driver of reaction rate (see also Tartakovsky and Barajas-

olano, 2018 ). 

We can inspect the degree to which different concentrations coex-

st in close proximity by examining a plot of each particle’s concentra-

ion of A versus position along the x -axis in both the 2-D and 1-D RPT

odels ( Fig. 5 ). These concentrations are given by diving the species

asses by particle support volume Δs . For clarity we plot every 25 th 

article from the 260,000 initial A particle model in 2-D, along with

ingle realizations from the 5811 particle and 260 particle models in

-D, all at a time of 100 s ( = t D /10). Unlike an Eulerian model, the 1-D

pscaled models have particles at, or near, the same position with very

ifferent concentrations. This happens because the properly upscaled

ispersive random walks take particles with different masses and move

hem relatively large distances, using D mac ( t ), into areas of very different

oncentrations. The local transfer of mass between particles takes place

ore slowly than this (according to D mol ), so there is not enough time to

quilibrate with surroundings before a new excursion. This is especially

rue in the 260-particle model, and shows that a key to this upscaling

s a correct calculation of the large-scale excursion lengths versus the

ocal-scale mixing rate. Also evident in Fig. 5 is that the 1-D model has

ost information about the particular velocity distribution and performs

aussian random walks. 
o  

46 
A more important point is the difference between the Lagrangian

odel with mixing given by 𝐷 = 10 −3 mm 

2 /s and spreading by D mac ( t ),

nd an Eulerian model that uses the same value (either D mol or D mac ( t ))

or both mixing and spreading. We ran the 1-D models using these poten-

ial end-member choices for mixing and dispersion, and found that those

pscaled models under-predict and over-predict reaction magnitudes

ignificantly ( Fig. 6 ). This is further emphasized by a plot of the global

eaction rates ( Fig. 7 ). To check the accuracy of these particle mod-

ls, we also coded a 1-D Eulerian model using upwind finite-differences

FD) and D mac ( t ). With a constant velocity and Courant number of unity,

he FD model does not suffer numerical dispersion, and it verifies the

PT model using upscaled single valued 𝐷 = 𝐷 𝑚𝑎𝑐 ( 𝑡 ) . This model using

 mac ( t ) for both mixing and spreading is a better model than using D mol 

or both, which indicates that it is more important for the reactants to

e placed in the proper positions before mixing begins, even if the local

ixing is overdone. That is why, for t →0, the reactant initial condition

pecifies the correct positions and using D mol is the better model. After a

ime of approximately t D /10, the solute, if placed in the proper positions,

ecomes better-mixed and using D mac is more appropriate (see Cirpka

nd Kitanidis, 2000a; Dentz and Carrera, 2007; Porta et al., 2012 ), if one

s forced to use a deterministic Eulerian model. However, in the next sec-

ion we will see that an effective, intermediate value D mol ≤ D eff ≤ D mac 

s better still. 

.1. Analytic/semi-analytic upscaling 

As discussed in the Introduction, two forms of upscaling have been

erived and/or suggested for the mixing versus spreading problem. One

xtends the approach of Porta et al. (2012) , who volume-average the

eactive transport equations. Those authors solve for the asymptotic

 t →∞) coefficients in upscaled equations that keep first-order terms

nly. We extend their approach for coefficients that are functions of
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Fig. 8. Results from the simulated upscaled 1-D equations: (a) Total reaction rates and (b) Total simulated domain moles of reactant A and product C . Black squares 

are volume-averaged equations (23) through (35) . Black circles are stream-tube model using D eff( t ) in (1) . Previously plotted results for the full 2-D and 260 initial 

A -particle 1-D models are included for reference. The streamtube model results are almost completely obscured by the 260 particle model results. 

47 
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Fig. 9. Concentrations of reactant A versus x -coordinate at time t D /10 ≈100 s in upscaled models: Solid red curve is 1-D finite-difference solutions of (1) for 

𝑖 = 𝐴, 𝐵, 𝐶 using 𝐃 = 𝐷 𝑒𝑓𝑓 ( 𝑡 ) . Light grey curves are 100 random placements of the red curve with spatial variance 2 𝑡 ∫ 𝑡 

0 [ 𝐷 𝑚𝑎𝑐 ( 𝜏) − 𝐷 𝑒𝑓𝑓 ( 𝜏)] 𝑑𝜏. The black dashed line 

is the superposition (ensemble average) of 1000 randomly placed grey curves. Blue diamond symbols are 100-realization ensemble average of the 260-particle RPT 

model. Calculated spatial centered second moments of model results (denoted m 2 ) show the close correspondence of the streamtube and ensemble particle results. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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r  
ime (Appendix). The result is two coupled transport equations, one for

 reactive species and another for the conservative species 𝐴 − 𝐵. 

A Galilean-invariant (i.e., 𝑣 = 0 ) set of these equations was solved on

 finite-difference grid using centered differences for first derivatives, a

lassical 3-point stencil for second derivatives, and operator-splitting for

eaction, so that the solution is  (Δ𝑥 2 , Δ𝑡 ) . Discretization was decreased

ntil convergence was observed with a final Δ𝑥 = 0 . 1 mm, Δ𝑡 = 0 . 001 s.
lots of the global reaction rate, and the masses of A and C , over time

 Fig. 8 ) show that the perturbation upscaling overpredicts the mixing

nd reaction rates, although the inclusion of an adjusted reaction rate

n (24) improves the results relative to a simple 1-D finite difference

olution of (1) using upscaled D mac ( t ) (compare Fig. 8 to Figs. 6 and

 ). The full perturbation-upscaled solution shown in Fig. 8 still over-

redicts reaction rates relative to the RPT solution either because of

he neglect of higher-order moments or other terms to achieve closure.

pecifically, the regime in question is defined by a moderately fast re-

ction rate ( 𝐷𝑎 = 10 as defined by Kapoor et al. or Da ≈100 by Porta’s

efinition), which is assumed to be infinite in order for (18) to reduce

o (19) . 

A second method (called the “streamtube-approach ” by Cirpka et al.)

erives two upscaled dispersion coefficients for a conservative tracer:

ne for effective mixing within a theoretically isolated streamtube ( D eff)

nd another for the spreading that includes the separation of the centers

f mass from different velocities among the streamtubes ( D mac ) ( Cirpka

nd Kitanidis, 2000a, 2000b; Dentz and Carrera, 2007; Dentz et al.,

000 ). Actual streamtubes allow mass transfer between each other; this

rocess promotes mixing. Therefore, the derivation of the effective diffu-

ion within an isolated (1- d ) streamtube must include the effects of cross-

treamtube mixing that is lost (see the Appendix). A practical application
48 
f this method requires solving the reactive system of transport equa-

ions (1) using D eff and mapping those solutions to the positions of the

treamtubes. At time t , the centers of mass have advected to a mean posi-

ion of 𝑣 𝑡 and accumulated some extra spreading. We may adopt the up-

caled (and Gaussian) approximation of the extra spreading by using the

ccumulated difference 𝐷 Δ( 𝑡 ) = ∫ 𝑡 

0 [ 𝐷 𝑚𝑎𝑐 ( 𝜏) − 𝐷 𝑒𝑓𝑓 ( 𝜏)] 𝑑𝜏. Calculation of

 mac ( t ) is already provided in the Appendix, and using the methodol-

gy in Dentz and Carrera (2007) we further calculate ( 𝐷 𝑚𝑎𝑐 − 𝐷 𝑒𝑓𝑓 ) as a

unction of time. The 1-D solution of the reactive system using D eff( t ) has

n excellent representation of the reaction rate and evolution of reactant

nd product moles ( Fig. 8 ). A superposition of these 1-D solutions with

andom mean positions given by 𝑣 𝑡 + 

√
2 𝑡𝐷 Δ( 𝑡 )  , where  is a standard

ormal yields plots very close to the ensemble RPT model using 260

articles ( Fig. 9 ). At the time shown in Fig. 9 ( 𝑡 = 100 s = 𝑡 𝐷 ∕10 ), the to-

al moles of A remaining in the ensemble streamtube and ensemble RPT

odels are 0.0466 and 0.0462, while the centered second moments are

28 and 519 mm 

2 , respectively. We speculate that, for this moderately

ast reaction ( 𝐷𝑎 = 100 ), the particle method is a stochastic implementa-

ion of the streamtube method: each particle moves by mean advection

nd macrodispersion, but transfers mass according to 1) the local diffu-

ive Green’s function ( Schmidt et al., 2018a ), and 2) the covariance of

oncentrations given by the particle support volume. An open question

s the regions of the Da, Pe and chemical sequestration parameter space

nder which the correspondence holds. 

. Conclusions 

In this technical note we show that the RPT method can accu-

ately simulate dimensionally upscaled transport and reaction for pre-
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a

symptotic times in Poiseuille flow. We used the time-dependent, up-

caled effective Taylor macro-dispersion coefficient D mac for random

alks and the isotropic molecular diffusion for locally diffusive mass

ransfer between particles. An accurate model using finite differences

ould require full specification of the velocity in 2-D and take tens

f millions of nodes using higher-order methods and hundreds of mil-

ions for first-order methods ( Benson et al., 2017 ). The properly up-

caled RPT model used 20 initial A (260 total) particles, and an en-

emble of 100 simulations ran in minutes on a laptop PC. The volume-

veraging upscaling method did not perform as well as the streamtube

ethod with effective diffusion for the Pe and Da values selected by

apoor et al. (1997) . The streamtube and RPT methods were essentially

dentical for this reactive scenario. This suggests that the RPT method

s performing an equivalent upscaling procedure automatically, because

he particles experience the velocity perturbations as well as the local

reen’s function of mixing. Both of those quantities are the key elements

f the streamtube approach. An interesting hypothesis is that the RPT

ethod will succeed in upscaling regardless of the Da, Pe regime because

t does not discard any terms. If true, the particle method would be not

nly convenient, but theoretically preferred because, at any scale above

he molecular scale in moving fluids, mixing, spreading, and chemical

inetics are completely different phenomena that should be simulated

s such. Furthermore, the RPT method can accommodate any velocity

eld (with variability in time and space) and any reactions, whether

uid/fluid as done here, or fluid/solid ( Schmidt et al., 2018b ). Because

he success of the RPT method depends on an accurate estimate of the

article numbers (densities), which in turn encodes the concentration

erturbation autocovariance, this study highlights the importance of

easuring or estimating these statistics. 
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ppendix A. Upscaling Calculations 

Begin with the 2-D equations of transport and reaction at the micro-

cale (1) with a total of three compounds 𝑖 = 𝐴, 𝐵, and C , with disper-

ion given by local diffusion ( 𝐃 = 𝐷 𝑚𝑜𝑙 ), reaction terms 𝑅 = − 𝑘𝑐 𝐴 𝑐 𝐵 for

 = 𝐴 = 𝐵, and 𝑅 = 𝑘𝑐 𝐴 𝑐 𝐵 for 𝑖 = 𝐶. An equation for pseudo-species con-

entration 𝑐 𝐷 = 𝑐 𝐵 − 𝑐 𝐴 , given by subtracting the equation for c A from

he same for c B , is conservative due to the cancellation of their respec-

ive reaction terms. In particular, the resulting equation for c D is just

1) with 𝑅 = 0 . 
We may decompose concentrations and the velocity field into mean

nd fluctuation terms 

𝑐 𝑖 ( 𝑡, 𝑥, 𝑦 ) = 𝑐 𝑖 ( 𝑡, 𝑥 ) + 𝑐 ′
𝑖 
( 𝑡, 𝑥, 𝑦 ) , 

𝑣 𝑥 ( 𝑦 ) = 𝑣 + 𝑣 ′
𝑥 
( 𝑦 ) , (5) 

here the overbar refers to the volume average across the y -direction

nd the prime to the zero-mean fluctuations about the average. 

1. Two-equation volume-averaged closure 

We take a perturbative approach for upscaling by volume-averaging

n the y -direction. In particular, we follow Porta et al. (2012) and

olster et al. (2011) with an extension to include time-variable upscaled

oefficients. This approach discards a number of second- and higher-

rder moments in order to reach closure with two PDEs. 
49 
For the conservative compound, place (5) and 𝑅 = 0 into (1) 

𝜕 𝑐 𝐷 

𝜕𝑡 
+ 

𝜕𝑐 ′
𝐷 

𝜕𝑡 
+ ( 𝑣 + 𝑣 ′) 

( 

𝜕 𝑐 𝐷 

𝜕𝑥 
+ 

𝜕𝑐 ′
𝐷 

𝜕𝑥 

) 

= 𝐷 𝑚𝑜𝑙 

𝜕 2 𝑐 𝐷 
𝜕𝑥 2 

+ 𝐷 𝑚𝑜𝑙 ∇ 

2 𝑐 ′
𝐷 

(6) 

n average across y gives 

𝜕 𝑐 𝐷 

𝜕𝑡 
+ 𝑣 

𝜕 𝑐 𝐷 

𝜕𝑥 
= 𝐷 𝑚𝑜𝑙 

𝜕 2 𝑐 𝐷 
𝜕𝑥 2 

− 

𝜕 𝑣 ′𝑐 ′
𝐷 

𝜕𝑥 
(7) 

he closure problem for 𝑐 ′
𝐷 

can be written by neglecting the second

rder term 

𝜕 𝑣 ′𝑐 ′
𝐷 

𝜕𝑥 
and subsequently subtracting (7) from (6) : 

𝜕𝑐 ′
𝐷 

𝜕𝑡 
+ 𝑣 

𝜕𝑐 ′
𝐷 

𝜕𝑥 
+ 𝑣 ′

𝜕 𝑐 𝐷 

𝜕𝑥 
= 𝐷 𝑚𝑜𝑙 ∇ 

2 𝑐 ′
𝐷 
. (8) 

ollowing Porta ( Porta et al., 2012 ), we assume that 

𝑐 ′
𝐷 
= 𝑝 

𝜕 𝑐 𝐷 

𝜕𝑥 
(9) 

hich, when plugged into (8) and assuming that transverse processes

re most important, implies that 𝑝 = 𝑝 ( 𝑦, 𝑡 ) satisfies 

𝜕𝑝 

𝜕𝑡 
+ 𝑣 ′ = 𝐷 𝑚𝑜𝑙 

𝜕 2 𝑝 

𝜕𝑦 2 
. (10) 

he solution of this boundary-value problem is 

 ( 𝑦, 𝑡 ) = − ∫
𝑡 

0 ∫
𝑏 

0 
𝑣 ′( 𝜂) 𝐺( 𝑦, 𝑡 − 𝜏|𝜂) 𝑑𝜂𝑑𝜏 (11) 

here G is the transverse diffusion Green’s function, namely 

( 𝑦, 𝑡, 𝜂) = 

1 
𝑏 
+ 

2 
𝑏 

∞∑
𝑛 =1 

cos 
( 

𝑛𝜋𝑦 

𝑏 

) 

cos 
( 

𝑛𝜋𝜂

𝑏 

) 

exp 
( 

− 𝐷 𝑚𝑜𝑙 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) 

. (12) 

hus, 

 ( 𝑦, 𝑡 ) = 

∞∑
𝑛 =1 

12 𝑏 2 𝑣 
𝐷 𝑚𝑜𝑙 𝑛 

4 𝜋4 cos 
( 

𝑛𝜋𝑦 

𝑏 

) [ 
1 − exp 

( 

− 𝐷 𝑚𝑜𝑙 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
(13) 

nd this further implies 

𝜕 𝑣 ′𝑐 ′
𝐷 

𝜕𝑥 
= − 𝑣 ′𝑝 

𝜕 2 𝑐 𝐷 
𝜕𝑥 2 

= − 𝐷 𝑚𝑎𝑐 ( 𝑡 ) 
𝜕 2 𝑐 𝐷 
𝜕𝑥 2 

, (14) 

here the upscaled hydrodynamic dispersion coefficient is given by 

 mac ( 𝑡 ) = 144 𝑣 
2 
𝑏 2 

𝜋6 𝐷 mol 

∞∑
𝑛 =1 

(
1 + ( −1 ) 𝑛 

) 1 
𝑛 6 

[ 
1 − exp 

( 

− 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
. (15) 

e also note that for the values of the physical problem chosen here, the

rst non-zero term (i.e., 𝑛 = 2 ) provides a reasonable approximation 

 𝑚𝑎𝑐 ( 𝑡 ) ≈
9 𝑣 2 𝑏 2 

2 𝜋6 𝐷 𝑚𝑜𝑙 

[ 
1 − exp 

( 

− 𝐷 𝑚𝑜𝑙 4 𝜋2 𝑡 

𝑏 2 

) ] 
≈ 4 . 75 𝑚𝑚 

2 

𝑠 
(1 − exp (− 𝑡 ∕25 . 3 𝑠 )) . (16) 

ote that at asymptotic times, as t →∞ the infinite series in (15) con-

erges to 𝑣 2 𝑏 2 

210 𝐷 𝑚𝑜𝑙 
, as it must given the original derivation of Taylor dis-

ersion originating back to Taylor (1953) . 

2. Reactive compounds 

Returning to the ADRE for the non-conservative compound B , aver-

ging vertically yields the equation 

𝜕 𝑐 𝐵 

𝜕𝑡 
+ 𝑣 

𝜕 𝑐 𝐵 

𝜕𝑥 
= 𝐷 𝑚𝑜𝑙 

𝜕 2 𝑐 𝐵 
𝜕𝑥 2 

− 

𝜕 𝑣 ′𝑐 ′
𝐵 

𝜕𝑥 
− 𝑘 

[ 
𝑐 𝐵 ( 𝑐 𝐵 − 𝑐 𝐷 ) + 𝑐 ′

𝐵 
( 𝑐 ′

𝐵 
− 𝑐 ′

𝐷 
) 
] 
. 

(17) 
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i  
o first order, the closure for 𝑐 ′
𝐵 

is 

𝜕𝑐 ′
𝐵 

𝜕𝑡 
+ 𝑣 

𝜕𝑐 ′
𝐵 

𝜕𝑥 
+ 𝑣 ′

𝜕 𝑐 𝐵 

𝜕𝑥 
= 𝐷 𝑚𝑜𝑙 ∇ 

2 𝑐 ′
𝐵 
− 𝑘 

[ 
𝑐 ′
𝐵 
( 𝑐 𝐵 − 𝑐 𝐷 ) + 𝑐 𝐵 ( 𝑐 ′𝐵 − 𝑐 ′

𝐷 
) 
] 
. (18)

or fast reactions ( Da > > 1) the reaction term dominates, i.e. the right

ost term is larger than any other terms in the equation such that these

an be neglected, meaning that the terms in the square parentheses sum

o zero. As such, solving for 𝑐 ′
𝐵 

yields 

 

′
𝐵 
= 

𝑐 𝐵 

2 𝑐 𝐵 − 𝑐 𝐷 
𝑐 ′
𝐷 
= 

𝑐 𝐵 

2 𝑐 𝐵 − 𝑐 𝐷 
𝑝 ( 𝑦, 𝑡 ) 

𝜕 𝑐 𝐷 

𝜕𝑥 
= 𝑀( 𝑥, 𝑡 ) 𝑝 ( 𝑦, 𝑡 ) 

𝜕 𝑐 𝐷 

𝜕𝑥 
(19)

here the mixing ratio is 

𝑀( 𝑥, 𝑡 ) = 

𝑐 𝐵 

2 𝑐 𝐵 − 𝑐 𝐷 
= 

𝑐 𝐵 

𝑐 𝐵 + 𝑐 𝐴 
. 

hus, we find 

𝜕 𝑣 ′𝑐 ′
𝐵 

𝜕𝑥 
= − 𝑣 ′𝑝 

𝜕 

𝜕𝑥 

( 

𝑀( 𝑥, 𝑡 ) 
𝜕 𝑐 𝐷 

𝜕𝑥 

) 

= − 𝐷 𝑚𝑎𝑐 ( 𝑡 ) 
𝜕 

𝜕𝑥 

( 

𝑀( 𝑥, 𝑡 ) 
𝜕 𝑐 𝐷 

𝜕𝑥 

) 

, (20)

nd using (9) , 

𝑐 ′
𝐵 
( 𝑐 ′

𝐵 
− 𝑐 ′

𝐷 
) = 𝑀𝑐 

′2 
𝐷 
( 𝑀 − 1) = 𝑀( 𝑀 − 1) 

( 

𝜕 𝑐 𝐷 

𝜕𝑥 

) 

2 𝑝 2 , (21)

here 

 

2 = 

∞∑
𝑛 =1 

144 𝑣 2 𝑏 4 

𝐷 

2 
mol 

𝑛 8 𝜋8 

(
1 + ( −1 ) 𝑛 

)[ 
1 − 2 exp 

( 

− 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) 

+ exp 
( 

−2 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
. (22)

herefore, our upscaled equations are: 

𝜕 𝑐 𝐷 

𝜕𝑡 
+ 𝑣 

𝜕 𝑐 𝐷 

𝜕𝑥 
= 

( 

𝐷 𝑚𝑜𝑙 + 𝐷 𝑚𝑎𝑐 ( 𝑡 ) 
) 

𝜕 2 𝑐 𝐷 
𝜕𝑥 2 

, (23)

𝜕 𝑐 𝐵 

𝜕𝑡 
+ 𝑣 

𝜕 𝑐 𝐵 

𝜕𝑥 
= 𝐷 𝑚𝑜𝑙 

𝜕 2 𝑐 𝐵 
𝜕𝑥 2 

+ 𝐷 𝑚𝑎𝑐 ( 𝑡 ) 
𝜕 

𝜕𝑥 

( 

𝑀( 𝑥, 𝑡 ) 
𝜕 𝑐 𝐷 

𝜕𝑥 

) 

− 𝑘 

( 

𝑐 𝐵 ( 𝑐 𝐵 − 𝑐 𝐷 ) + 𝑀( 𝑀 − 1) 
( 

𝜕𝑐 𝐷 

𝜕𝑥 

) 

2 𝐾( 𝑡 ) 
) 

, (24)

here 

 mac ( 𝑡 ) = 144 𝑣 
2 
𝑏 2 

𝜋6 𝐷 mol 

∞∑
𝑛 =1 

(
1 + ( −1 ) 𝑛 

) 1 
𝑛 6 

[ 
1 − exp 

( 

− 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
, (25)

nd 

 ( 𝑡 ) = 𝑝 2 = 

∞∑
𝑛 =1 

144 𝑣 2 𝑏 4 

𝐷 

2 
mol 

𝑛 8 𝜋8 

(
1 + ( −1 ) 𝑛 

)[ 
1 − 2 exp 

( 

− 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) 

+ exp 
( 

−2 𝐷 mol 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
. (26)

Note that while we have generally followed ( Porta et al., 2012 ), one

ifference does exist, which perhaps explains any possible discrepancies

etween our findings and theirs. In Porta’s work they do not consider an

xplicit time dependent reaction coefficient as above. Later work, also

y Porta et al. (2016) , suggests that more complex closures can be used

hen coefficients are time dependent, resulting in a nonlocal integro-

ifferential equation. However that system is significantly more com-

utationally intensive than this closure. Additionally, the closure ap-

roximation was originally postulated strictly for cases where Da ≫Pe ,

lthough it was verified also for cases where Da ≫1 and Pe and Da had

imilar values as here. 
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Let us define global first, second, and second centered moments: 

 1 ( 𝑡 ) = 

1 
𝑏 ∫

𝑏 

0 ∫
∞

−∞
𝑥𝑐( 𝑡, 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 

 2 ( 𝑡 ) = 

1 
𝑏 ∫

𝑏 

0 ∫
∞

−∞
𝑥 2 𝑐( 𝑡, 𝑥, 𝑦 ) 𝑑 𝑥𝑑 𝑦 

𝐾 2 = 𝑀 2 ( 𝑡 ) − 𝑀 

2 
1 ( 𝑡 ) . (27) 

he macroscopic dispersion coefficient is half the rate of change of the

econd centered global moment; i.e. 

 𝑚𝑎𝑐 = 

1 
2 
𝑑𝐾 2 
𝑑𝑡 

. (28) 

imilarly we can define local first, second, and second centered mo-

ents: 

 1 ( 𝑦, 𝑡 ) = ∫
∞

−∞
𝑥𝑐( 𝑡, 𝑥, 𝑦 ) 𝑑𝑥 

 2 ( 𝑦, 𝑡 ) = ∫
∞

−∞
𝑥 2 𝑐( 𝑡, 𝑥, 𝑦 ) 𝑑𝑥 

𝜅2 ( 𝑦, 𝑡 ) = 𝑚 2 ( 𝑦, 𝑡 ) − 𝑚 

2 
1 ( 𝑦, 𝑡 ) (29) 

ith these, we can define an alternative dispersion coefficient 

 𝑒𝑓𝑓 = 

1 
2 
𝑑 

𝑑𝑡 

( 

1 
𝑏 ∫

𝑏 

0 
𝜅2 ( 𝑦, 𝑡 ) 𝑑𝑦 

) 

, (30) 

hich is a better measure of mixing than D mac , which captures both

ixing and spreading ( Cirpka and Kitanidis, 2000b; Dentz and Carrera,

007 ). Consider the difference between the first local and global mo-

ent, 𝑝 ( 𝑦, 𝑡 ) = 𝑚 1 ( 𝑦, 𝑡 ) − 𝑀 1 ( 𝑡 ) . It is straightforward to show that its gov-

rning equation and solution is the same as (10) such that 

 ( 𝑦, 𝑡 ) = 

∞∑
𝑛 =1 

12 𝑏 2 𝑣 
𝐷 𝑚𝑜𝑙 𝑛 

4 𝜋4 cos 
( 

𝑛𝜋𝑦 

𝑏 

) [ 
1 − exp 

( 

− 𝐷 𝑚𝑜𝑙 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
(31) 

he global and local second centered moments can be related by 

𝐾 2 ( 𝑡 ) = 

1 
𝑏 ∫

𝑏 

0 
𝜅2 ( 𝑦, 𝑡 ) 𝑑𝑦 + 

1 
𝑏 ∫

𝑏 

0 
𝑝 2 ( 𝑦, 𝑡 ) 𝑑𝑦 (32) 

hich means that the macroscopic and effective dispersion coefficients

re related by 

𝐷 𝑚𝑎𝑐 ( 𝑡 ) − 𝐷 𝑒𝑓𝑓 ( 𝑡 ) = 

1 
2 
𝑑 

𝑑𝑡 

( 

1 
𝑏 ∫

𝑏 

0 
𝑝 2 ( 𝑦, 𝑡 ) 𝑑 𝑦 

) 

= 

1 
2 
𝑑 𝑝 2 

𝑑 𝑡 
(33) 

sing (10) gives 

 𝑚𝑎𝑐 ( 𝑡 ) − 𝐷 𝑒𝑓𝑓 ( 𝑡 ) = 

∞∑
𝑛 =1 

144 𝑣 2 𝑏 2 

𝐷 𝑚𝑜𝑙 𝑛 
6 𝜋6 ((1 + (−1) 𝑛 ) 

×
[ 
exp 

( 

− 𝐷 𝑚𝑜𝑙 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) 

− exp 
( 

−2 𝐷 𝑚𝑜𝑙 𝑛 
2 𝜋2 𝑡 

𝑏 2 

) ] 
(34) 

o leading order, 

 𝑚𝑎𝑐 ( 𝑡 ) − 𝐷 𝑒𝑓𝑓 ( 𝑡 ) 

≈ 9 𝑣 2 𝑏 2 

2 𝜋6 𝐷 𝑚𝑜𝑙 

[ 
exp 

( 

−4 𝐷 𝑚𝑜𝑙 𝜋
2 𝑡 

𝑏 2 

) 

− exp 
( 

−8 𝐷 𝑚𝑜𝑙 𝜋
2 𝑡 

𝑏 2 

) ] 
(35) 

4. Particle numbers 

The number of particles used in the RPT model is based on the spatial

ovariance of concentrations. Mixing in the Poiseuille system is domi-

ated by transverse concentration gradients, so we may examine the

ransverse autocovariance and reactant segregation that develops al-

ost immediately after the initial condition is distorted by the veloc-

ty field. To our knowledge, expressions for the concentration statistics
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Fig. 10. (a) Plot of autocovariance function for uniformly randomly placed Dirac delta function particles in a domain of size 1 mm. (b) Calculated y -direction 

autocovariance for nonreactive 260,000 particle 2-D model. Functions calculated at 40 transects from 95 ≤ x ≤ 115 mm. (c) Binned A concentrations from nonreactive 

260,000 particle 2-D model showing locations of y -transects used in subfigure (b). (d) Red squares: Calculated integrated autocovariances (areas) from the 40 transects 

in the center ( 𝑦 − 𝑙 = 0 ), positive parts of the autocovariance functions in (b), and Blue circles: calculated total initial numbers of A particles for upscaled 1-D models, 

based on calculated areas on the same plot. 
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ave not been developed for the reactive system. Indeed, even the con-

ervative system will experience dilution (and reduced total variance)

s time gets large, so we look at the concentrations that develop early

t a dimensionless time of 5 𝑡 𝐴 = 𝑡 𝐷 ∕20 = 5 s. This ensures plenty of ad-

ective distortion but minimal dilution. 

A 260,000 particle simulation was run with all parameters identical

o the reactive simulation, except that the reaction rate coefficient was

et to zero. At a time of 5 s, the A concentrations were binned ( Fig. 10 c)

nd the covariance functions at each of 40 y -transects were calculated

umerically ( Fig. 10 b). We are especially interested in the area corre-

ponding to the positive covariance portion at small spatial separations

n the center of these plots. A visual estimate of the “extent ” of the A

oncentrations is on the order of one-half pore width ( Fig. 2 ), which

s the number we used in our uncalibrated simulations. Of course the

 concentration covariance will be different along the length of the A

plume ”, so we examine the variability here. 

The autocovariance function ( Fig. 10 a) for uniformly randomly

laced Dirac-delta function particles placed in a finite domain was de-

ived by Schmidt et al. (2017) : 

𝐶𝑂𝑉 ( 𝐶 𝐴 ( 𝑦 ) , 𝐶 𝐴 ( 𝑙)) = 

𝑁 𝐴 𝑚 

2 
𝑝 

Ω

[ 
𝛿( 𝑦 − 𝑙) − 

1 
Ω

] 
= 𝐶 𝐴 𝑚 𝑝 

[ 
𝛿( 𝑦 − 𝑙) − 

1 
Ω

] 
, (36)

here 𝐶 𝐴 ≈ 𝐶 𝐴 ( 𝑡 = 0) is the initial, undiluted A concentration, N A is the

nitial number of A particles, m p is the mass of each particle, Ω is the

xtent of the domain (here 1 mm in the transverse direction), and 𝛿 is

 Dirac-delta function. Several studies have shown that equating the

ntegral of this covariance to the integral of the real covariance function

akes the particle model most closely match concentration evolution

n real and numerical systems with concentration segregation ( Bolster

t al., 2016; Ding et al., 2012; Ding et al., 2017; Paster et al., 2014;

chmidt et al., 2017 ). The fact that the delta particles have an atom of

ovariance at the origin ( Fig. 10 a) is not a problem as they assume a

aussian kernel shape when the mass transfer algorithm is applied. 

Integrating the covariance function means that the near-origin inte-

rated “area ” for the delta particles is C A m p . Because the particle mass

s 𝑚 𝑝 = 𝐶 𝐴 Ω∕ 𝑁 𝐴 , the area can be written 𝐶 

2 
𝐴 
Ω∕ 𝑁 𝐴 (with units [ C 

2 L ]).

quating this to the numerically estimated near-origin area (with units

 C 

2 L ]) gives a particle density 𝑁 𝐴 ∕Ω = 𝐶 

2 
𝐴 
∕ 𝐴𝑟𝑒𝑎 = 1 𝑀𝑜𝑙 2 ∕ 𝐴𝑟𝑒𝑎 . This

umber is particles per mm in the y -direction. The initial condition here

s 10 mm in the x -direction, so the total number of initial A particles is

0 × the density. A plot of the near-origin areas and the resultant total

umber of A particles ( Fig. 10 d) shows that the number ranges from 11

o 40 in the high-mixing regions, with an average of 21, supporting our

isual estimate of 20 for the initial condition. It may well be that a lower

umber would give an even better, i.e., slightly slower mixing, model,

ut we have not performed any calibration. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.advwatres.2018.11.001 
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