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Abstract
Measured (or empirically fitted) reaction rates at groundwater remediation
sites are typically much lower than those found in the same material at the
batch- or laboratory-scale. The reduced rates are commonly attributed to
poorer mixing at the larger scales. A variety of methods have been proposed
to account for this scaling effect in reactive transport. In this study, we use
the Lagrangian particle tracking and reaction (PTR) method to simulate a
field bioremediation experiment at the Schoolcraft, Michigan site. A deni-
trifying bacterium, Pseudomonas Stutzeri strain KC (KC), was injected to the
aquifer, along with sufficient substrate, to degrade the contaminant, Carbon
Tetrachloride (CT), under anaerobic conditions. The PTR method simulates
chemical reactions through probabilistic rules of particle collisions, interac-
tions, and transformations to address the scale effect (lower apparent reaction
rates for each level of upscaling, from batch- to column- to field-scale). In
contrast to a prior Eulerian reaction model, the PTR method is able to match
the field-scale experiment using the rate coefficients obtained from batch ex-
periments.

1 Introduction

Bioremediation is an important technology to remove contaminant mass,
especially organic pollutants, from aquifers. Application of an effective and
efficient remediation system depends in large part on prediction of the time
scale of contaminant degradation and/or removal. Thus, accurate charac-
terization of multiple reactive transport processes is critical for field-scale
bioremediation design [Steefel et al., 2005; Hesse et al., 2009; Scheibe et al.,
2009].

Numerous modeling efforts have focused on developing mathematical
equations to incorporate chemical reaction kinetics to the transport processes.
The most common model is the advection-dispersion equation with the re-
action as a source or sink term (ADRE) (e.g., [Hesse et al., 2009; Yabusaki
et al., 2011; Porta et al., 2012a; Ding et al., 2013]). However, a variety of
studies [Chapelle and Lovley, 1990; Scholl, 2000; Phanikumar et al., 2005;
Meile and Tuncay, 2006] indicated that the ADRE models using reaction pa-
rameters derived from laboratory experiments overestimated the field-scale
reaction rates—sometimes by orders-of-magnitude. One major reason is the
“scale effect” for chemical reactions [Lohse et al., 2009; Rubin et al., 2012];
for instance, Rubin et al. [2012] suggested three possible scaling reasons that
batch parameters may not be applicable to transport problems: 1) different
timescales to reach chemical equilibrium; 2) different transfer rates due to the
degree of mixing at different scales; and 3) different mass ratios of chemical
saturation at different scales. Of these, poorer mixing of reactants induced by
the increased heterogeneity of the transport media at larger scales may result
in significantly lower reaction rates [Dentz et al., 2011; Bolster et al., 2012].

Because parameters from laboratory-scale experiments have limited ap-
plicability to field-scale studies, effective reaction rates are usually used. The
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effective reaction rates vary from site to site and may change with time. The
estimated parameters are also model dependent and are not directly related to
any measurable property of the system [Pedretti et al., 2013]. Because of the
lack of model predictive ability, an accurate assessment of field-scale param-
eters would appear to require field-scale (in space and time) tests, severely
limiting the advantage of model simulations.

The limited predictive capability and uncertainty associated with the
ADRE model in practice has prompted the development of other models to
incorporate the effects of poor mixing. One of these is the Lagrangian par-
ticle tracking and reaction (PTR) algorithm, which simulates the reactive
transport via Monte Carlo simulation of particle collision and interaction
through probabilistic rules [Waite, 1957; Gillespie, 1976; Benson and Meer-
schaert, 2008; Paster et al., 2014]. Benson and Meerschaert [2008] proposed
a PTR method to simulate diffusion-controlled bimolecular reaction under
incomplete mixing conditions. Their method showed that self-organized pat-
terns of chemical heterogeneity engendered poor mixing and explained the
slowed reaction at late times. The method was extended to moving flows, and
the degree of mixing was linked to the number of particles used in a simula-
tion, which represents the non-uniform distribution of initial concentrations
(chemical heterogeneity) [Paster et al., 2014]. The PTR method also success-
fully reproduced the results of two benchmark laboratory-scale column exper-
iments that showed the “scale effect” of poor mixing relative to beaker-scale
reactions [Ding et al., 2013].

Moving toward the goal of simulating realistic field-scale experiments,
Ding and Benson [2015] extended the PTR method to the Monod-type re-
actions and applied the method to a column experiment of Carbon Tetra-
chloride (CT) biodegradation. The authors found that various mechanisms
that may contribute to slower biochemical reactions (e.g., crowding, enzyme
de-activation) all manifest as diffusion-limited mixing. Therefore, the intri-
cacies of bioremediation can be handled by the PTR method. In this study,
we focus on the application of the PTR method to accurately simulate reac-
tive transport associated with a bioremediation experiment at the Schoolcraft
site in Michigan, USA. Previous studies (e.g., [Dybas et al., 2002; Phaniku-
mar et al., 2002, 2005]) noted the scale effect when moving from flask- to
column- to field-scale biodegradation of CT. Our hypothesis is that the PTR
method will explain the scale-dependent chemical reactions through simula-
tion of the poor-mixing effect, rather than by adjusting the empirical kinetic
rates as in previous studies. In other words, we will test if the PTR method
using batch-scale derived reaction rates is able to simulate the field-scale be-
havior.

2 Background

In the 1990s, a comprehensive field-scale bioremediation campaign was
launched at the Schoolcraft site in Michigan (MI), USA [Dybas et al., 1998;
Hyndman et al., 2000; Phanikumar et al., 2005]. Numerous wells were in-
stalled, including many with continuous coring, to allow high-resolution mea-
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surements of hydraulic conductivities and chemical conditions. Cores were
taken across the site to allow detailed characterization of aquifer properties.
A line of wells (D1–D15) were installed in a manner that allowed injection
and/or withdrawal of bacteria and nutrients to stimulate bioremediation (Fig-
ure ??c). Finally, a series of multi-level wells was installed to monitor the
progress of the remediation experiment.

2.1 The basis of bioremediation: Laboratory work

Prior to conducting the field-scale bioremediation at the site, labora-
tory studies [Dybas et al., 1995; Mayotte et al., 1996] revealed that a deni-
trifying bacterium, Pseudomonas Stutzeri strain KC (KC), in the presence
of sufficient substrate, can rapidly degrade CT to carbon dioxide, formate,
and dechlorinated non-volatile byproducts under anaerobic conditions with-
out producing chloroform, a more persistent contaminant. With this finding,
biodegradation of CT by KC was tested in the laboratory and field. Tests in-
cluded batch (flask) experiments [Criddle et al., 1990; Tatara et al., 1993;
Dybas et al., 1995], column experiments [Witt et al., 1999; Phanikumar et al.,
2002], and pilot field studies [Dybas et al., 1998]. One level of upscaling was
achieved in the laboratory when a no-flow column experiment was conducted
by Witt et al. [1999]. In this experiment, a 100 cm-long column was filled
with sediments and groundwater extracted from site borings. The ground-
water was supplemented with initial concentrations of CT and nitrate at 0.1
and 25 milligrams per liter (mg/L), respectively. The column was inoculated
with KC, acetate, and base (to mediate the pH) at the center of the column
(between 44.4 and 59.6 cm) and was maintained as a static incubation to un-
derstand the role of chemotaxis. The inoculation had KC at 1.2 ± 0.1 × 108

colony-forming units per milliliter (CFU/mL) and an acetate concentration
of 1, 533 mg/L. One CFU/mL is approximately equal to 1.67 × 10−7 ppm
for strain KC [Phanikumar et al., 2002]. The column had 10 sampling ports
spaced at 7.6-cm intervals to monitor the concentrations of dissolved species
and biomass. Over the course of a month, a significant fraction of CT was de-
graded, demonstrating the viability of the technology.

2.2 Site Information

The unconfined aquifer at the Schoolcraft site is composed of glacioflu-
vial sediments overlying a thick clay unit, which acts as an aquitard [Kehew
et al., 1996; Phanikumar et al., 2005]. The top of the aquitard was found at
approximately 27.3 meters (m) below ground surface (bgs), while the water
table was around 4.5 m bgs [Hyndman et al., 2000]. The natural hydraulic
gradient at the site was roughly 0.001, with a general groundwater flow direc-
tion from northwest to southeast (Figure ??).

As part of the installation of the bioremediation delivery and monitoring
wells, 346 soil core samples were taken from 11 borings, repacked and placed
in constant-head permeameters. The repacked samples were shown to pro-
vide reasonable estimates of the horizontal hydraulic conductivity (K) values
according to a model verification of tracer tests against observed concentra-
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tion profiles [Biteman et al., 2004]. The K analysis and core logging revealed
4 stratigraphic zones, with mean ln(K) (cm/s) of −1.26, −1.81, −1.49, and
−1.86, from deepest to shallowest. In general, the highest K zone exists at
the bottom of the aquifer. The large number of samples allowed an estimate
of the anisotropic variograms in each zone. In general, the variogram ranges
in the horizontal directions were estimated to be from 3 to 18 m, and verti-
cal ranges were from 0.35 to 1.62 m. The overall variance of ln(K) is 0.634.
Flow and bromide tracer transport modeling (discussed in more detail below)
showed that the K-field generated from zonal (non-stationary) kriging was
superior to non-zonal kriging [Biteman et al., 2004]. We will use this K field
(Figure ??), as did Phanikumar et al. [2005], to simulate flow conditions dur-
ing the bromide tracer test and the bioremediation experiment.

There were several contaminant plumes reported in the aquifer [Hynd-
man et al., 2000; Dybas et al., 2002]. The field remediation experiment was
conducted within a plume, designated Plume A, which was contaminated
with carbon tetrachloride (CT) [Hyndman et al., 2000; Phanikumar et al.,
2005]. The CT contamination within plume A was 1, 600 m long and 160 m
wide [Phanikumar et al., 2005]. Concentrations from 221 locations indicated
that higher CT concentrations were in the deeper, high-conductivity part of
the aquifer, as illustrated in Figure ??.

2.3 Bioremediation Method

The field remediation system at the Schoolcraft site was designed to in-
oculate non-native microbes and recirculate the groundwater through a se-
ries of injection and extraction wells aligned perpendicular to the natural
gradient flow (Figure ??). These pumping wells were screened from 9.1 to
24.4 m bgs using 0.025 cm slotted screen [Hyndman et al., 2000]. A total
of 134 piezometers, each with 0.33 m-long screens across the vertical extent
of the plume, composed the monitoring array to record the concentrations.
Prior to the bioremediation, a bromide tracer test was conducted under the
approximate cyclic injection/withdrawal cycle for 20 days to assess transport
rates within the contaminated heterogeneous aquifer unit [Phanikumar et al.,
2005].

To initiate the bioremediation process, a single inoculation was con-
ducted using 18, 900 L of KC-laden groundwater through the fifteen (15) de-
livery wells, which were 1 m apart. The locations of these wells (names start
with D) are shown in Figure ??. Groundwater was recirculated for 6 hours
every week through pumping and injection. The recirculation consisted of: 1)
extracting from every other well (e.g., even numbered wells: D02, D04, . . . ,
D14) and re-injecting into intervening wells (e.g., odd numbered wells: D01,
D03, . . . , D15) after addition of constituents (acetate, bromide, pH amend-
ment, etc.) for 5 hours; 2) reversing the pumping/injection (e.g., pumping
from odd numbered wells and injecting back to the even numbered wells) for
1 hour; and 3) keeping natural flow condition for the rest of the week. The
extraction/injection orders (even or odd numbered) on wells in the first two
stages were switched in the following weeks. The details are described by
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Phanikumar et al. [2005]. The circulation and monitoring were conducted for
165 days.

3 Methods and Models

3.1 The Simple Form of Enzymatic Reaction

Biodegradation occurs as microorganisms metabolize accessible nutri-
ents (substrates) to grow. The substrates, including organic contaminants, are
degraded to inorganic compounds or smaller molecules by biomass [Alexan-
der, 1999; King et al., 2010]. A simple biodegradation (1) following this
mechanism under certain conditions can be characterized by the Monod equa-
tion [Monod, 1949]:

S + E
k f



kr

ES
kc
−→E + P, (1)

where k f , kr , and kc are forward, reverse and conversion (transform) rate
constants. The substrate S and the biomass or enzyme E form the interme-
diate enzyme/substrate complex ES through the initial bimolecular reaction
with a rate constant k f [M−1T−1]. The ES complex can dissociate to E and
S, with a rate constant kr [T−1], or proceed to form the product P, with a rate
constant kc [T−1].

Under perfectly-mixed conditions, the rates of concentration change are
quantified through the law of mass action:

d[S]/dt = −k f [E][S] + kr[ES] (2a)
d[E]/dt = −k f [E][S] + kr[ES] + kc[ES] (2b)

d[ES]/dt = k f [E][S] − kr[ES] − kc[ES] (2c)
d[P]/dt = kc[ES] (2d)

Michaelis and Menten [1913] originally proposed a simplified solution of (2)
by assuming that 1) only a vanishingly small fraction of substrate is bound
by enzyme, 2) the complex is very labile and decays to free enzyme, 3) the
substrate is in instantaneous chemical equilibrium with the complex, and 4)
the conversion rate is directly proportional to the concentration of enzyme.
Under these conditions, Eqs. (2) reduce to

d[P]
dt
= vmax

[S]
KS + [S]

= kc[E]0
[S]

KS + [S]
, (3)

where the conversion rate vmax ≡ kc[E]0, [E]0 is the initial enzyme concen-
tration, and KS is the half saturation coefficient, or Michaelis constant, de-
fined by (kr + kc)/k f .

3.2 ADRE-Based Model

Employing the Monod/Michaelis-Menten (hereafter called M-M) kinet-
ics, Phanikumar et al. [2005] developed a reactive transport model (Eqs. 4)
specifically for CT bioremediation to account for microbial-mediated reac-
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tions, advection, dispersion, attachment, and detachment of reactants:
∂E
∂t
= LE (E) +

[
µmax

S
KS + S

A
KA + A

− kdecay

(
1 −

A
KA + A

)
− katt

]
E

+kdet

(
1 −

A
KA + A

)
X +QsE s

(4a)

∂X
∂t
=

[
µmax

S
KS + S

A
KA + A

− (kdecay + kdet)

(
1 −

A
KA + A

)]
X + katt E (4b)

∂S
∂t
= LS(S) −

(
µmax

Yn

S
KS + S

A
KA + A

+ γ
S

KS + S

)
(E + X)−

kdecay

Ynd

(
1 −

A
KA + A

)
(E + X) +QsSs

(4c)

∂A
∂t
= LA(A) −

µmax

Ya

S
KS + S

A
KA + A

(E + X) +Qs As (4d)(
1 +

ρ f Kd

θ

)
∂c
∂t
= Lc(c) − k′c

(
E + X

ρ f Kd

θ

)
−
ρkdesc
θ
[(1 − f )Kdc − cS] +Qscs

(4e)

∂cS

∂t
= kdes [(1 − f )cKd − cS] − k′cS X (4f)

where we dropped the square brackets when denoting concentration, E is
the concentration of mobile bacteria; X is the amount of bacteria attached
to solids; S is the substrate, nitrate; A is the concentration of acetate; c is the
concentration of CT, and cS is the concentration of CT adsorbed to the solids.
The concentrations have units of mg/L, including the mobile and immobile
bacteria, which have the units converted from CFU/mL [Phanikumar et al.,
2005]. For each mobile species, there is a linear advection/dispersion opera-
tor L( f ) = −∇ · (v f − D∇ f ) that includes the effects of spatio-temporally
variable velocity v and species-dependent diffusion/dispersion tensor D. Qs

is the flow of source/sink term, and the s superscript denotes the concentra-
tion of each constituent in the source/sink term. KS and KA are half saturation
constants for nitrate and acetate, respectively, µmax is the maximum conver-
sion rate, kdecay is biomass decay rate, katt is the attachment coefficient of
biomass, kdet is the detachment coefficient of biomass, k′ is the degradation
rate for CT, and kdes is the desorption rate of CT. Yn, Ya, and Ynd are the cell
yields for nitrate, acetate, and biomass consuming nitrate, respectively. The
factor f is the fraction of exchange sites at equilibrium, Kd is the CT distri-
bution coefficient, ρ is the bulk density of soil, and γ is the nitrate utilization
rate by indigenous microflora or endogenous respiration. The population of
indigenous microflora is assumed proportional to the KC bacteria and its re-
actions have the same form as those of KC [Phanikumar et al., 2002].

In this model, a correction factor [1 − A/(KA + A)] was added to the
bacteria decay term to account for the increase of decay rate at low nutrient
concentration [Beeftink et al., 1990; Phanikumar et al., 2005]. However, re-
cent models (i.e., [Tan et al., 1994; Tufenkji, 2007; Ding, 2010]) assumed that
the decay rate is independent of the concentration of nutrient. Thus, we mod-
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ified the models as Eqs. 5 by ignoring the acetate concentration-dependency
terms. A comparison of RT3D simulations using Eqs. 4 and Eqs. 5, provided
in Appendix B: , indicates that the difference of model results is negligible.

∂E
∂t
= LE (E) +

(
µmax

S
KS + S

− kdecay − katt

)
E + kdet X +QsE s (5a)

∂X
∂t
=

(
µmax

S
KS + S

− kdecay − kdet

)
X + katt E (5b)

∂S
∂t
= LS(S) −

[(
µmax

Yn
+ γ

)
S

KS + S
+

kdecay

Ynd

]
(E + X) +QsSs (5c)

R
∂c
∂t
= Lc(c) − k′(E + X)c +Qscs (5d)

where R = 1 + ρ f Kd/θ is a modified retardation factor for CT.

This ADRE-type model was applied to simulate a series of tests of CT
biodegradation, from column-scale experiments [Witt et al., 1999; Phaniku-
mar et al., 2002] to field-scale pilot studies [Dybas et al., 1998; Phanikumar
et al., 2005]. This model is also used in this study for comparison with sim-
ulations using the PTR method, which simulates the reactions as a series of
elementary steps.

3.3 Particle Tracking Method

The PTR method used here simulates chemical reactions through prob-
abilistic rules of particle collisions, interactions, and transformations. For
a bimolecular reaction, the potential reaction between any two particles is
based on an explicit calculation of co-location probability multiplied by inde-
pendent thermodynamic probability that two particles react upon co-location
[Benson and Meerschaert, 2008; Ding et al., 2013; Paster et al., 2014].

Using the PTR method, the biodegradation or enzymatic reactions (1)
can be simulated as a series of chemical reactions or elementary steps (2).
The initial bimolecular reaction that transforms the substrate to the enzyme-
complex (i.e., the first part of the reaction: S + E → ES) is characterized by
a second-order kinetics: d[S]/dt = −k f [E][S]. Assuming each E and S par-
ticle carries the same amount of mass mp = Ω[S]0/NS(t = 0), where Ω [Ld]
is the domain size in d-dimensions, [S]0 is the average initial concentration of
S [M], and NS(t = 0) is the initial number of S particles, the probability com-
prises a co-location density function v(s) and the thermodynamic probability
function [Benson and Meerschaert, 2008]:

P(react) = k f∆tmpv(s) (6)

where ∆t is the numerical time step size and s is the separation of any pair of
S and E particles.

The co-location probability density function is the convolution of the
individual motion densities of two reactant particles (S and E) over a short
time period: v(s) =

∫
fS(x) fE (s + x)dx, where fS(x) and fE (x) denote

the motion densities of S and E particles away from their current positions
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through diffusion. Each is a Gaussian density if particles diffuse under Brow-
nian motion (see details in Benson and Meerschaert [2008]; Benson et al.
[2013]). The reaction probability P(react) is compared with a random num-
ber that is uniformly distributed between 0 and 1. If the probability of the re-
action is larger than the random number, the two particles are converted to
an intermediate ES complex particle. This reaction calculation requires that
k f∆tmpv(s = 0) < 1 [Benson and Meerschaert, 2008]. Other forms of bi-
molecular reaction, such as A+ B→ 0 and A+ B→ C + D, can be simulated
similarly.

For the monomolecular reactions with first-order kinetics of the general
form dC/dt = −kC, including the reverse dissociation reaction (ES → E +
S) and transform reaction (ES → P), the density of particles N represents
the local concentration C, thus the reactions can be expressed as dN/dt =
−kN . For a small time step, ∆t, the fraction change of numbers of particles
is ∆N/N = −k∆t. If the particle transitions are independent of each other,
the left hand side is the probability that any particle will transform. In any
time step, each particle is chosen and if k∆t is greater than a uniform random
variable [0, 1], the particle is converted. This first-order kinetics simulation
requires that k∆t < 0.1 for suitable accuracy.

The series of reactions (2a)-(2d), which characterize the M-M type of
reaction that bacteria consume substrate and nutrients, are simulated as fol-
lows. For every time step, each E particle is selected sequentially to find nearby
S particles, and the probability of co-location for each pair of S and E par-
ticles is calculated. If one reaction occurs, an intermediate particle ES is
placed randomly between the pair of reactant particles, which are removed.
The intermediate particle ES either transforms to a product particle, or re-
verses to the initial S and E particles, or stays intact. These three processes
are independent and are characterized by first-order kinetics. One random
number is generated to check the probability for each of these reaction pro-
cesses at every time step. The impact on the reaction from the locations of
released S and E particles was found to be minor [Ding and Benson, 2015].
Thus, we assume here that the released reactant particles are randomly dis-
tributed around an intermediate ES particle within a diffusion distance

√
2D∆t.

3.4 Particle Transport Model

Our goal is to assess the differences in the transport and reaction algo-
rithms, not to re-create the underlying hydraulics at the site. To that end, we
use the exact 3-dimensional velocity fields that were generated (using MOD-
FLOW) in the initial study [Phanikumar et al., 2005]. Between each reaction
step, each particle is moved based on its specific location and the flow field
around it using the numerical random walk particle tracking code RW3D
[Fernàndez-Garcia et al., 2005].

RW3D simulates solute transport by partitioning the solute mass into
a large number of representative particles. The evolution of a particle’s lo-
cation is driven by a drift term that includes the advective movement, and a
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superposed Brownian motion responsible for dispersion. The displacement of
a particle is modified from the Itô-Taylor integration scheme by substituting
the drift vector with a modified velocity vector that includes the effects of a
gradient of the dispersion tensor components [Salamon et al., 2006]:

Xp(t + ∆t) = Xp(t) + ∆t[v(Xp(t)) + ∇ · D(Xp(t))] +
√

2D(Xp(t))∆t · ξ, (7)

where ∆t is the time step, Xp(t) is the position of a particle at time t, v is the
velocity vector, D is the dispersion coefficient tensor made diagonal in the di-
rection of transport, and ξ is a vector of independent standard normal random
variables. The random walk code uses a hybrid scheme for the velocity inter-
polation that provides divergence-free velocity fields and a continuous disper-
sion tensor field that enforces mass balance at grid interfaces of adjacent cells
with any degree of hydraulic conductivity contrast [Salamon et al., 2006].

3.5 Schematic of Modeling Procedure

A schematic of calculation algorithm of the PTR simulations, with the
developed particle tracking algorithm of reactions incorporated into the flow
code, is shown in Figure ??. At any time step, the simulation follows the model
procedures: i) the CT and bacteria KC experience attachment and detachment
processes, which are assumed to follow a linear isotherm (see e.g. [Benson
and Bolster, 2016]). These processes follow the first-order kinetics; ii) The
biomass particles are looped over to find all potential nitrate particles that
may bind together into the intermediate complex in the presence of sufficient
acetate as an electron donor, acetate, as described in Section 3.3; iii) The
complex either transforms to the product, reverses back to the reactants, or
stays intact as the complex. If the intermediate complex particle transforms
to a product, the bacteria particle is released; at the same time, the bacteria
grow by randomly adding bacteria particles according to their growth yield.
If the reverse reaction occurs, a substrate and a microbe particle are regener-
ated. iv) Concurrently with reactions between biomass and substrate (ii and
iii), the degradation of CT by bacteria is simulated as a bimolecular reaction.
v) The biomass also experiences decay, which is simulated first-order kinetics
related to mass/concentration of bacteria. vi) The mobile particles move via
random walks after the elementary steps to the next time step.

The elementary steps and model parameters, as quantified in Eqs. 5, are
listed in Table 1. Reactions also occur between mobile and immobile parti-
cles (including the attached KC and adsorbed CT), similar to the steps shown
in Figure ??. However, the probability function, particularly the co-location
density, for the bimolecular reaction is modified to account for the immobility
of attached particles, as described by Ding and Benson [2015].

4 Results and Discussion

4.1 Kinetic Parameters

The PTR model uses chemical reaction parameters from batch experi-
ments directly in the field-scale simulation. As introduced in Section 2.1, a
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Table 1. Elementary steps of the reactions

Step Equation Parameter

Adsorption of CT c→ cS kads 1

Desorption of CT cS → c kdes
Attachment of mobile bacteria KC 2 E → X katt
Detachment of immobile bacteria KC 2 X → E kdet
Nitrate binds to mobile bacteria S + E → ES ks 3

Nitrate binds to immobile bacteria S + X → XS ks 3

CT biodegradation by mobile bacteria c + E → P 4 k ′

CT biodegradation by immobile bacteria c + X → P 4 k ′

Bacteria biodegrade adsorbed CT cS + E → P 4 k ′

Intermediate ES reverts to nitrate and mobile KC ES → S + E kr
Intermediate XS reverts to nitrate and immobile KC XS → S + X kr
Transformation of ES and growth of mobile KC ES → (1 + Y )E + p 5 kc
Transformation of XS and growth of immobile KC XS → (1 + Y )X + p 5 kc
Decay of mobile bacteria KC E → 0 kdec
Decay of immobile bacteria KC X → 0 kdec
1 The rate is calculated based on the fraction of exchange sites and distribution coefficient. Linear
isotherm is assumed.
2 Indigenous microflora are assumed to have the same steps as KC.
3 The reaction rates involving indigenous microflora are calculated based on the ratio of γ and
µmax in Eq. (5).
4 P represents the product of CT biodegradation.
5 Y is the growth yield of biomass, and p is the products of nitrate transformation.

series of batch experiments under different conditions were conducted to esti-
mate the reaction rates prior to the column- and field-scale studies. The batch
parameters used for the simulation are tabulated in Table 2. For instance,
in evaluating the role of trace metals on CT degradation rate, Tatara et al.
[1993] found that the second-order rate coefficient decreased as culture age
increased from 48 to 72 hours, which were the times for the culture to grow
prior to the inoculation [Dybas et al., 1995; Del C. Sepulveda-Torres et al.,
1999]. Phanikumar et al. [2002, 2005] reported the reaction rate as 2.70 L
mg−1day−1 by taking the reaction rate for cultures aged 72 hours and grown
under iron-limiting conditions without the precipitate in [Tatara et al., 1993].
The attachment and detachment coefficients were derived from a column ex-
periment on the transport of KC. In addition, the microbial decay rate, which
is the only parameter not measured directly, was from literature, however,
the value was shown to be applicable in the simulation of CT biodegradation
[Phanikumar et al., 2002].

4.2 Simulation of the Column Experiment in Witt et al. [1999]

The capability of the PTR method for biodegradation reactions was tested
first on a column-scale experiment. We incorporated the PTR simulation of
reactions into the RW3D code [Salamon et al., 2006] to simulate the no-flow
column experiment conducted by Witt et al. [1999], as introduced in Section
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2.1, for verification. The simulation used the procedures introduced in Sec-
tion 3.5. The mobile particles move purely by diffusion via random walks
with different diffusion coefficients for the solutes and biomass. The diffu-
sion coefficients for solutes (e.g., nitrate) and the bacteria, estimated from the
concentration profiles and the detection time for each component to reach dif-
ferent ports, were 6 × 10−6 and 7.8 × 10−5 m2/hour, respectively [Ding and
Benson, 2015]. Possibly due to the heterogeneities, whether physical, biolog-
ical, or chemical, the measured initial concentrations (ICs) at different sam-
pling ports at day 0 were not uniform through the column length [Witt et al.,
1999]. To represent the non-uniform initial condition, the particles were as-
signed individually in the 12 sections, which are separated by the 10 ports,
based on the concentrations measured at adjacent ports. Figures ??a and ??b
show the simulations of PTR model for CT and nitrate, respectively, at days 2
and 26. This heterogeneous IC is reflected in the asymmetric concentrations
at later time. We ran 150 simulations and obtained the smoothed concentra-
tion profiles by simple binning of particle numbers to account for the stochas-
tic nature of the simulations. The plots reflect the ensemble mean values plus
or minus one standard deviation. With the total domain initial number of par-
ticles of 3,300, 2,640, and 13 (proportional to the initial concentrations) as-
signed to nitrate, biomass, and CT, the PTR model in RW3D when populated
with the batch rate parameters showed good matches of measured concen-
trations in the column experiment. Due to the lack of data on the covariance
structure of initial concentration perturbation, we tested the simulations via
trial-and-error to achieve a reasonable match of the observations to obtain the
numbers of particles. The simulation was consistent with [Ding and Benson,
2015], in which the same column experiment was simulated with the PTR
model in a Matlab code.

In contrast, the ADRE type of model (Eq. (5)) needed to adjust the ef-
fective kinetic parameters to match the column measurements [Ding and Ben-
son, 2015]. In particular, because of incomplete mixing and lower apparent
transport rates, the fitted CT reaction rate k′ was reduced more than an order-
of-magnitude, from 2.70 to 0.189 L mg−1day−1. Additionally, the decay rate
of microbes was increased from 0.10 to 0.221 day−1, and the detachment co-
efficient was changed from 0.018 to 0.043 day−1. The adjustment of effec-
tive parameters is consistent with the simulation of a later column experiment
under flowing conditions [Phanikumar et al., 2002]. Phanikumar and Hyn-
dman [2003] further improved the model simulation by including a degra-
dation term in the sorbed phase and solved with a code based on a fourth-
order accurate compact Hermitian scheme, the degradation rate of CT was
lowered further to 0.121 L mg−1day−1. The rate was later used for the field-
scale bioremediation simulation [Phanikumar et al., 2005]. The comparison
of kinetic parameters values used in the various previous grid-based codes is
listed in Table 2.
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Table 2. Laboratory Measured and ADRE Model Fitted Parameters for CT Biodegradation.

Parameter Symbol Units Batch
value

Column-ADREa Field-
ADREb

Field-PTR c

Biodegradation rate k ′ L mg−1 d−1 2.70 0.189 0.121 2.70
Maximum specific growth rate µmax d−1 3.11 3.11 3.11 3.11
Nitrate utilization by microflora γ d−1 0.0 18.89 18.89 0.0
Microbial decay rate kdecay d−1 0.1 d 0.221 0.13 e 0.1
Attachment coefficient katt d−1 0.9 f 0.9 0.9 / 9 g 0.9
Detachment coefficient kdet d−1 0.018 f 0.018 0.04 0.018
Growth yield for nitrate Yn – 0.25 0.25 0.25 0.25
Growth yield for biomass Ynd – 0.46 0.46 0.46 0.46
Half saturation coefficient of nitrate Km mg/L 12.0 12.0 12.0 12.0
Binding rate constant k f L mg−1 d−1 0.36 h – – 0.36
Longitudinal dispersivity D m – – 0.01 i 0.03 i

Diffusion coefficient of solute Dms m2/hour – 6 × 10−6 j – 6 × 10−6

Diffusion coefficient of KC DmE m2/hour – 7.8 × 10−5 j – 7.8 × 10−5

a Fitted from the simulation of the no-flow column experiment in [Ding and Benson,
2015].
b Effective parameters used in the field-scale ADRE-based RT3D model [Phanikumar
et al., 2005].
c Values used in the currrent PTR simulation of the field-scale bioremedation.
d The value is from literature, as noted in [Phanikumar et al., 2002].
e The decay rate was 0.00016 after conversion from Eq. 4 to first-order rate in Eq. 5 by
multiplying the acetate correction factor.
f The attachment and detachment rates were estimated from a column experiment of KC
transport.
g 10 times higher attachment coefficient was used during the inoculation period
([Phanikumar et al., 2005]).
h This rate, calculated from [Tatara et al., 1993], is used only in elementary reaction
steps but not in the Monod equation.
i The dispersivity was estimated from tracer test prior to the bioremediation using PTR
method and ADRE method, respectively.
j The diffusion coefficients were estimated from the concentration profiles and the detec-
tion time for each component to reach different ports in [Witt et al., 1999].
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4.3 Simulation of the Field-Scale Non-Reactive Tracer Test

As shown in section 4.2 and in [Ding and Benson, 2015], the PTR method
is able to simulate the relatively small degree of upscaling from batch to col-
umn scales without adjusting reaction rates. The reduced degree of mixing
was achieved by fitting the particle numbers. The particle numbers code the
“smoothness” of the initial concentrations and are determined by the concen-
tration autocovariance function(s), if they are estimated with sufficient accu-
racy [Paster et al., 2014]. This data was not available in the column studies,
but is available for the field site, so we hypothesize that the particle method
can accurately simulate the field experiment without adjusting any rate pa-
rameters from their thermodynamics, batch-scale values, as long as the ve-
locities are well represented by the particles. This hypothesis follows from
an analysis of the subgrid velocity and concentration fluctuation terms in the
ADRE that need to be accounted for to numerically track imperfect mixing
(Appendix D: ).

Prior to bioremediation at the Schoolcraft site, a non-reactive tracer test
using bromide was conducted for 20 days [Phanikumar et al., 2005]. For
the first five hours, groundwater was pumped out of the odd numbered wells
(D01, D03, . . . , D15) at a total rate of approximately 9.085 m3/hr. The ex-
tracted water, with the addition of Br− at different concentrations (from 14 to
18 mg/L), was injected into the even numbered wells (D02, D04, . . . , D14);
see well locations in Figure ??. Then approximately 9.085 m3 groundwa-
ter was pumped out of the even-numbered wells for one hour and injected
back into the odd-numbered wells after Br− was added at the concentration
of 23.5 mg/L. After the pumping-injection cycle, the natural flow condition
was maintained until day 20. The breakthrough curves of Br− were recorded
at five monitoring wells (9, 10, 11, 12, and 13, as shown in Figure ??) each
with five slotted intervals of 0.609 m at depths of 10.7 m, 13.7 m, 16.8 m,
19.84 m, and 22.9 m bgs, respectively [Hyndman et al., 2000]. These depths
correspond to approximately 35, 45, 55, 65, and 75 feet bgs, which was how
the five intervals were named (e.g., Fig. 1).

Phanikumar et al. [2005] used MODFLOW on the grid shown in Fig-
ure ??b to calculate heads and discharges. On the same grid, they applied the
RT3D model, a mixed Lagrangian and Eulerian finite-difference (FD) imple-
mentation of the ADRE, to simulate the transport of the tracer. The advection
was (mostly) performed by particles in the hybrid method of characteristics
(HMOC), but the dispersion and reaction operations were performed by av-
eraging particle concentrations back to a grid for standard FD calculations.
Through calibration, they found that the RT3D model with a longitudinal dis-
persivity value of 0.01 m and an effective porosity of 0.3 matched the field
measurements. The relatively small dispersion coefficient implied that the
variations of velocity were captured with the heterogeneous and nonstation-
ary kriged hydraulic conductivity field. Moreover, the relatively rapid break-
through of tracer (and higher mass recovery) in the deeper region, and slow
and low concentration breakthrough in the shallow region, reflected the dif-
ferent hydraulic conductivity zones.
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Using the exact same velocities from the MODFLOW model, we simu-
lated the bromide tracer transport using the RW3D model. The re-circulation
process was simulated by extracting particles within a radius of 0.1 m of pump-
ing wells and transferring them to the injection wells. The injected particles
were distributed randomly within the screened interval of injection wells with
probability based on the flux rates at different depths. The PTR method simu-
lated the injection, re-circulation, and transport of 94, 100 particles represent-
ing the total mass of 94.1 grams of Br− in the system. We chose the number
for the balance of simulation variations and the computation time for a single
run, because the numbers of particles do not affect the average of simulated
results in the conservative tracer simulation. A small number of particles
would lead to a high variation of the simulations, but less computation time
for each run. Through model tests, the number of particles used (94, 100)
based on the assumption that each particle carries 1 mg mass was sufficient
to obtain a smooth curve of simulation.

The mean breakthrough curves (normalized by a concentration of 30
mg/L) from an ensemble of 50 PT (RW3D) simulations match somewhat bet-
ter than those of RT3D model (Fig. 1). In particular, the total mass recov-
ery is better for the PT method in 16 of the 25 observation locations, and the
RMSE is lower in 24 of the 25 locations (Fig. 1). The means of the ensemble
of PT models are used in the comparison. Mass recovery is calculated using
the Matlab function trapz, which calculates the area under a set of concen-
tration data by breaking the region into trapezoids. The RMSE is the square
root of the sum of square differences between simulations and measurements.
When these values are not coincident in time, the simulation values are in-
terpolated to the measurement times using Matlab interp1 function. It is im-
portant to stress that we seek to compare RW3D and RT3D when reactions
are included, so that we have not tried to make the new model fit the Br− data
any better. The better fits by RW3D are simply a result of zero numerical dis-
persion — this feature tends to keep the Br− more separated in layers than the
FD model was able to simulate for the chosen grid resolution.

Through a limited trial-and-error effort, we found that RW3D performed
well enough with a longitudinal dispersivity value of 0.03 m, which is larger
than that of RT3D model (0.01 m). The parameters for the RT3D model were
taken directly from Phanikumar et al. [2005]. The difference is due to ei-
ther numerical dispersion generated from discretization in the FD scheme
and/or recirculation well concentration calculation methods. Regarding the
first point, finer mesh or sub-scale grid models (e.g., regridding the RT3D
model) might allow the dispersivities to match, but that effort is irrelevant to
this study. Regarding the second point, the RT3D concentrations of ground-
water pumped out of wells were weighted by the hydraulic conductivity of
model cells that the pumping wells penetrate, rather than transmissivity, which
overestimated the contribution from the layers with small thicknesses and un-
derestimated the contribution from layers with large thicknesses. However,
the two models match the measurements from the complex tracer test remark-
ably well, so that the RW3D model can be applied to the bioremediation ex-
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periment to assess the effect of maintaining batch-scale reaction rates in the
field-scale model.

4.4 Simulation of the Field-Scale Bioremediation

Our goal here is to compare the Eulerian grid-based (RT3D) and PTR
(RW3D) methods, so we duplicate as closely as possible the modeling ef-
forts of Phanikumar et al. [2005]. We incorporated the reactions listed in
Eqs. (5) into the RW3D code to simulate the field-scale CT biodegradation.
The initial condition and boundary conditions were consistent with those in
the RT3D model [Phanikumar et al., 2005]. As described in Section 2.2, the
aquifer had a plume of CT at concentrations from 1.23 to 42.9 µg/L and ni-
trate concentrations from 21.62 mg/L to 44.25 mg/L from 10.6 m bgs to the
top of the aquitard (27.3 m bgs). The RW3D model simulates the transport
of CT and nitrate without any reaction for the first 67 days. At this point, the
inoculation medium (with KC and acetate) was added, the bacteria then con-
sume nitrate and acetate to grow and biodegrade CT. Throughout the biore-
mediation, the pumping-injection recirculation scheme was conducted as de-
scribed in Section 2.3 and 4.3 (see details in [Phanikumar et al., 2005]).

Regarding the initial conditions for the particle simulations, Paster et al.
[2014] showed that the number of particles is directly related to the “smooth-
ness” of the initial concentrations, as given by the autocovariance functions
of the concentration fluctuations. In other words, the particles represent con-
centration fluctuations as well as the mean, so the number is important for ac-
curate reactant interaction probabilities (see Appendix A: ). They equated the
effective correlation function for the Dirac-delta particles and the covariance
function of measured concentration data C to find that the particle density (in
d-dimensions) should follow ρ ≈ C̄2

0/(σ
2
Cld), where C̄0 is the mean concen-

tration, σ2
C is concentration variance, and ld is the autocorrelation volume,

or the integral of the correlation function in d-dimensions. Ideally, the CT
concentrations from groundwater samples would be used to estimate the au-
tocovariance function. We only have the CT concentrations that were kriged
from the original data and used in the RT3D model. We calculated the auto-
covariance function from these initial conditions separately in the horizontal
and vertical directions (Appendix A: ). In the vertical direction, we estimated
an average particle density of approximately 2 particles per meter. In the hor-
izontal direction, we estimated a much lower density (because of greater cor-
relation lengths in the horizontal space) of approximately 0.1 to 0.3 parti-
cles per square meter. To save computation time, only initial concentrations
within the well field area were considered. The appropriate well field area
was determined by MODFLOW capture zone analysis (traced by backward
tracking of inert particles), which suggested that only the area 0 < x < 42 m,
15 < y < 41 m, and 2 < z < 20 m are inside the influence of the well field
for the duration of this test. So the volume of aquifer in which we simulate
transport and reaction is 42 m × 26 m in area × 18 m thick and must contain
an initial distribution of 4, 000 to 12, 000 CT particles based on the CT spatial
statistics (Appendix A: ).
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One main objective using the PTR method is to evaluate if the observed
overall reduced reaction rates in the field scale can be attributed to the incom-
plete mixing. Therefore, the PTR model within RW3D used all prior labora-
tory (batch) parameters. This is different from the RT3D model, which over-
predicted degradation significantly using the batch CT reaction rate k′.

Because the concentration of injected acetate (electron donor) was more
than 20 times higher (800 versus 30 mg/L) than that of nitrate (electron ac-
ceptor), the concentration profile of acetate was reported to resemble that of
non-reactive tracer Br−, even though a small amount of acetate is consumed
during the reactive transport [Witt et al., 1999; Phanikumar et al., 2005].
Hence, for the sake of brevity, we only show the comparison of simulated and
observed concentrations of CT and nitrate at monitoring wells. The simu-
lation results include those from the RT3D model from [Phanikumar et al.,
2005] based on the fitted reaction rate [Phanikumar and Hyndman, 2003] and
the PTR method within RW3D. Concentrations of CT and nitrate were mea-
sured at wells 9, 10, 11, 12 and 13 at five observation depths, 10.7 m, 13.7
m, 16.8 m, 19.84 m, and 22.9 m bgs. The breakthrough curves of CT and ni-
trate were normalized with concentrations of 0.032 and 42 mg/L, respectively
[Phanikumar et al., 2005]. The measured and simulated breakthrough curves
of CT and nitrate are plotted in Figures ?? and 3, respectively.

Given the estimated range of initial number of CT particles from auto-
covariance analysis, we ran simulation tests by varying the mass each particle
carries (mp) and found that 4, 612 initial particles — on the lower-end of the
range of 4, 000 to 12, 000 — provided a good match of concentration profiles.
The low end was derived based on ignoring the hole effect when integrat-
ing CT autocovariance, which may be a numerical artifact at large variogram
lags. In other words, the particle number is more closely associated with the
estimation of positive correlation. The CT initial particle number dictates the
mass of every particle in a simulation, hence the numbers of nitrate particles,
for example, is fixed by the initial mass in the aquifer. The total number of
initial sorbed CT particles was calculated as 27, 460 based on distribution co-
efficients at different layers [Dybas et al., 2002]. The number of nitrate par-
ticles within the influence area of the well field was calculated as 2, 867, 400.
The distribution of the initial particles was calculated from individual con-
centrations at each MODFLOW model cell and the mass each particle carries
(see details in Appendix C.1). During the inoculation, 471 KC particles were
added. The number of KC particles grew rapidly, especially in the attached
phase, so that 100 days after inoculation approximately 1,760 detached and
76,000 attached KC particles were present in the model domain. In addition,
the consumption of nitrate by the native flora was assumed to occur where the
nutrient (acetate) and nitrate were both available. We also assumed, as did
Phanikumar et al. [2002], that the population of native flora is proportional
to that of KC. The calculated number of microbe particles representing the
native bacteria is described in Appendix C.2. This is different from the simu-
lation of the column experiment, where we assumed that the impact of native
microbes was negligible because the column was flushed 4 weeks to achieve
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a denitrifying condition [Witt et al., 1999]. However, measurements of nitrate
in the field suggested that the consumption rate of nitrate was beyond the ca-
pability of the limited amount of KC injected (see also [Phanikumar et al.,
2005]).

To account for the stochastic nature of the PTR method, we ran 50 simu-
lations to obtain ensemble statistics for simulated concentrations, and plotted
the ensemble means ± one standard deviation (Figs. ?? and 3). We found that
the relevant statistics of the simulations at most wells converged at around
30 to 40 realizations, as shown in Appendix E: . Similar to the Br− break-
through curves, good matches between measured and PTR simulated nitrate
and CT are found in all the monitoring well locations. Simulated concentra-
tions from both models in the upper low K zone were generally lower than
those of observations, especially at the depth of 13.7 m (45 ft), similar to the
breakthrough curves of bromide, as shown in Figure 1. This implies that the
preferential flow was not fully captured in the MODFLOW flow field, par-
ticularly in the low K zone. This under-prediction might also be due to the
kriging method interpolating hydraulic conductivities, which smoothed the
variability of K . Fractal interpolation methods, such as used by Dogan et al.
[2014], would likely improve simulation results.

As also shown in Figures ?? and 3, the standard deviation of the simu-
lated results in some zones was relatively large. This is because the fast mov-
ing or easy reacting particles may or may not be captured in the small count-
ing bins (capture zone) of individual wells in different model runs. The ran-
domness of the numbers of particles reflects the imperfect mixing condition.
If an infinite number of particles, which represents a complete mixing condi-
tion, were used for the simulation, the variance would be close to zero and we
would expect results similar to the Eulerian model. In other words, the finite
number of particles accounts for the degree of mixing in the site (Appendix
D: ), which explains why the apparent reaction rate was more than one order
of magnitude lower in the field than obtained from the batch experiment.

The over-prediction of CT reaction rates by the RT3D model using laboratory-
optimized rates was thought to be linked to the availability of electron accep-
tor and limitation of microbial growth at the field scale [Phanikumar et al.,
2005]. These factors contribute to the overall process of reactants mixing at a
range of scales. To match the field measurements, Phanikumar et al. [2005]
increased the kinetic attachment value and lowered the CT degradation rate.
In contrast, the PTR model did not adjust the kinetic parameters; instead,
the number of particles, which represents the mass of solutes and biomass,
as well as the variability of concentrations within a fixed volume, were esti-
mated to account for the incomplete mixing [Benson et al., 2013].

Moreover, attachment/detachment process combined with the differ-
ence of degradation capability between the mobile and immobile microbes
were thought to lead to the increase in CT observed in the high conductiv-
ity layers for some wells after the post-inoculation decline (e.g., well 10-75
at 22.9 m (75 ft) depth) [Phanikumar et al., 2005]. Because only limited in-
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formation is available for the difference of reaction rate constants between
mobile and immobile bacteria, the reaction rates are assumed to be the same
for both phases, as used in the RT3D model [Phanikumar et al., 2005]. Dur-
ing the inoculation period (2 hours), the attachment coefficient for bacteria
was increased by one order of magnitude by Phanikumar et al. [2005]. In
the PTR method, the attachment coefficient is kept constant and equal to the
laboratory-measured batch values. We assumed that 90% of the microbes are
attached on the aquifer material during injection. This is consistent with pre-
vious studies on bacteria transport and field observations [Ding, 2010; Dybas
et al., 2002].

As shown in Figures ?? and 3, the biodegradation of CT and consump-
tion of nitrate during the field-scale bioremediation are well-simulated us-
ing the PTR method with batch-scale parameters. The RMSE of the simu-
lations from the two numerical models were calculated for both CT and ni-
trate. By this measure, the PTR method better predicted the CT concentration
breakthrough curves in 23 of 25 wells (Fig. ??). On the other hand, the PTR
method predicted a slower decline, or consumption rate, of nitrate. This is
most likely because we assigned the numbers of particles based on the au-
tocovariance of initial CT concentrations. To maintain stoichiometry, a very
large number of nitrate particles were needed, which may or may not repre-
sent the spatial heterogeneity of the nitrate initial condition. The large num-
ber implies that nitrate consumption is not limited by mixing due to its high
concentration and smoothness. This smoothness is reflected in the gradual
overall breakthrough of nitrate in many wells in the PTR simulations. The
PTR model results also show more high-frequency variability in the BTC,
which most likely represents the impact of the re-circulation (pump/inject)
process on the concentrations. On the other hand, the RT3D model provides
smooth curves that could be the result of numerical dispersion (especially
vertical mixing). The better nitrate RMSE fit is evenly split (12 to 13) be-
tween the two models.

5 Discussion and Conclusions

This study presents a series of novel developments, including the first
implementation of complex reaction kinetics at the field-scale using a purely
Lagrangian particle transport and reaction (PTR) code. The reasons to im-
plement such a code are primarily: 1) to avoid the spurious mixing that grid-
based Eulerian algorithms can impart; and 2) represent subgrid velocity and
concentration perturbations. The difficulty that grid-based codes have in ac-
curately simulating the degree of mixing between chemical species is accu-
rately handled by the particle methods [Benson et al., 2017; Herrera et al.,
2017].

The column experiment of CT biodegradation that was performed in
support of the Schoolcraft field-scale experiment was simulated using the
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PTR method within RW3D. Kinetics parameters from batch experiments
were directly used in this method. The results are consistent with those from
the PTR simulation using a Matlab code, as presented by Ding and Benson
[2015]. Observed concentration profiles at 10 sampling ports at both days 2
and 26 were closely matched with most measurements within one standard
deviation of the ensemble mean. This contrasts with Eulerian simulations of
the columns, which required reductions of the CT degradation rate parame-
ter from 2.70 to 0.189 L mg−1day−1 [Ding and Benson, 2015]. The column
experiment simulation suggests that the PTR method within RW3D can simu-
late CT biodegradation, which involves processes of first-order, second-order,
and Monod-type reactions, as well as attachment/detachment, growth, and
decay of biomass. The upscaling of mixing that accompanied moving to the
column scale was handled by the particle method through the calibration of
particle numbers. These numbers are dictated by the chemical autocovariance
functions that were not measured (because of the paucity of sample ports) at
the beginning of the column test.

On the other hand, the statistics of the CT initial condition were mea-
sured at the Schoolcraft field site. The input files to RT3D from the study of
Phanikumar et al. [2005] gave us an estimate of the covariance functions, and
we calculated the initial particle numbers prior to PTR simulations of biore-
mediation. Because the PTR method explicitly accounts for subgrid mixing
via the particle numbers’ representation of the concentration autocovariance,
the overall rates of reaction will depend on an accurate assessment of the ini-
tial concentration statistical structure (Appendix D: ). Our goal here was to
test the hypothesis that the PTR method is capable of differentiating the mix-
ing effects from the empirical reaction rate reduction (or scale effect). We did
not systematically assess the sensitivity on the initial condition in this paper:
we leave that for a future study of model sensitivities.

Before running those simulations, we simulated the transport of bro-
mide tracer test at the Schoolcraft site using particle tracking (RW3D) and
the same velocities as an RT3D model. The RW3D simulations matched Br−
measurements with a longitudinal dispersivity value of 0.03 m, which is about
3 times larger than that used in the RT3D model. Due to the lack of numeri-
cal dispersion that arises from transferring back and forth from Lagrangian
and Eulerian schemes, the RW3D model better matches the breakthrough
curves in most observation wells.

Finally, we applied the PTR model to simulate the site bioremediation.
The simulation involved the processes of solute and bacteria transport, at-
tachment/detachment, growth and decay of biomass, as well as the reactions
among CT, bacteria KC, electron donor (acetate), and electron acceptor (ni-
trate). The comparison between simulated and measured breakthrough curves
at 25 monitoring well locations, as well as the comparison between RT3D
and RW3D simulations, indicate that the PTR method can accurately simu-
late the field experiment without adjusting any parameters from the batch- to
field- scales, particularly the CT biodegradation rate, which needed to be re-
duced by a factor of 22 in the RT3D model [Phanikumar et al., 2005]. How-
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ever, the success of the PTR method requires accurate velocity fields and an
accurate assessment of the spatial autocovariance of the reactant initial con-
dition, because these factors are the primary controls of potential mixing and
dictate the number of particles used in the domain.

A large number of sites have shown the scale effect of reaction rates.
One source is chemical heterogeneity, especially subgrid or unrepresented
fluctuations. Another source has received more recent attention: the ADRE
contains only one term that must simultaneously account for both spreading
and mixing of solutes (e.g., Kapoor et al. [1998]; Battiato et al. [2009]; Le
Borgne et al. [2010]; Dentz et al. [2011]; Le Borgne et al. [2013]; de Anna
et al. [2014]; Porta et al. [2016]). Only at the very smallest scales are these
two quantities of similar magnitudes. As solutes encounter more heteroge-
neous Darcy velocities, the spreading grows faster than the local mixing. For
the ADRE to accurately describe spreading, it must overpredict mixing and
vice-versa: accurate representation of mixing will under-disperse solutes
and place reactants in the wrong places. A corollary is that perfectly homo-
geneous sites (i.e., VAR(ln(K) → 0)) would not suffer from this particular
effect. A notable example of a reactive transport experiment in relatively ho-
mogeneous material is the petroleum hydrocarbon injection/biodegradation
experiment in the Borden aquifer [Schirmer et al., 2000]. With VAR(ln(K)) =
0.244, Schirmer et al. [2000] used laboratory-estimated M-M parameters in a
finely-discretized Eulerian field-scale model to accurately simulate aerobic
degradation of injected contaminants (under natural gradient conditions). For
comparison, the Schoolcraft aquifer’s overall VAR(ln(K)) = 0.634, about 2.6
times greater than Borden’s. Because 2nd-order (including M-M) or higher
reactions introduce a nonlinear amplification into any transport errors [Ben-
son et al., 2017], we conclude that the scale effect due to velocity fluctuations
will manifest at all but the most homogeneous sites. Going from VAR(ln(K))
= 0.244 to 0.634 appears to have made a significant difference, although there
were other differences in the two experiments that may have contributed, in-
cluding aerobic versus anaerobic conditions, small and relatively homoge-
neous injected contaminant volumes at the Borden site, and the natural-flow
versus forced-recirculation conditions.

In this study, we used the original PTR method from Benson and Meer-
schaert [2008], which requires that all reactant particles carry the same amount
of mass. Because of the large difference in concentrations of CT and nitrate,
a very large number of nitrate particles (≈ 3 million) were assigned in the
simulation and thus it requires a large computational effort relative to the
prior RT3D model (approximately 22 versus 4 hours on a 3.4 GHz i7-3770
processor with 24 Gb RAM). However, new PTR methods address the prob-
lem of large particle numbers and concentration discrepancies, by either al-
lowing particles to have variable mass [Bolster et al., 2016; Benson et al.,
2017], allowing particles to carry multiple species [Benson and Bolster, 2016],
or larger “footprints” by using kernels with optimal particle influence instead
of the current Dirac-delta functions [Fernàndez-Garcia and Sanchez-Vila,
2011; Rahbaralam et al., 2015; Schmidt et al., 2017]. Much shorter com-
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Figure A.1. Estimated horizontal autocovariance functions in each of 39 non-zero layers from the initial
CT concentrations from the RT3D file [Phanikumar et al., 2005]. The thickness weighted average of the
layers is shown with a thick black line.

Figure A.2. Estimated vertical autocovariance functions for CT in the entire model domain using the initial
CT concentrations from the RT3D file [Phanikumar et al., 2005].

putation times should be expected with these methods and a more rigorous
benchmarking of the current study, including parameter uncertainty, could be
performed.

In summary, the PTR method with RW3D is capable of simulating field-
scale bioremediation with equal or better accuracy than traditional methods.
Furthermore, the reaction parameters transfer from the smallest scale, sepa-
rating the scale-dependence of reaction rates from the underlying source of
reduced reaction: poor mixing at larger scales.

A: Estimation of intial CT particle numbers (density)

Estimation of the CT autocovariance function is performed on the input
files for RT3D, which has 39 non-zero layers. In the horizontal direction, the
autocovariance is calculated individually in each layer using standard meth-
ods and assuming isotropy with respect to lag separation. Data pairs were
grouped in lag intervals (0 0.5), (0.5 1.5), (1.5 2.5), ... (23.5 24.5). A plot of
each layer’s estimated autocovariance function versus radial lags is shown in
figure A.1. Also plotted is the layer-thickness weighted average autocovari-
ance, which has a summed correlation function (which includes the “hole
effect” of negatively correlated values) of l = 3.2 m. Ingoring the negative
values gives a visual estimate of the correlation length on the order of 5 m.
Extending to 2-d, it is safe to say that the 2-d correlation volume is on the
order of 10 to 30 m2. The total CT mean and variance within the non-zero
layers in the RT3D input file are 0.0127 and 5.3 × 10−5, respectively, so that
the average initial particle density (see Paster et al. [2014] for a derivation) in
the horizontal is ρ = C̄2/(σ2ld) ≈ 3/ld ≈ 0.3 to 0.1 particle per square me-
ter. In the vertical, more noise was resolved, and the average autocovariance
function has a 1-d correlation length of about 1.5 m (Fig. A.2), so that the
average particle density in the vertical direction is about 2 particles per meter.

B: Modification on the ADRE-based model and differences in the simulation

In the ADRE-based model in [Phanikumar et al., 2005], as listed in
Eqs. 4, a correction factor [1 − A/(KA + A)] was added to the bacteria de-
cay term to account for the increase of decay rate at low nutrient concentra-
tion [Beeftink et al., 1990; Phanikumar et al., 2005]. However, Beeftink et al.
[1990] proposed this correction term because they considered the growth and
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decay of biomass together (or net growth) in their study. Moreover, during
the bioremediation in the Schoolcraft field, the concentration of acetate was
nearly three orders of magnitude higher than the half saturation constant (800
mg/L versus. 1 mg/L) and acetate has been continuously added to the system,
the correction term was always close to zero in the well field. This results in
nearly no decay in the equation.

To assess the effect of the modification from Eqs. 4 to Eqs. 5, we ran
the RT3D model with both equations in parallel. As shown in Figures B.1
and B.2, the differences using these two equations were minor, especially at
locations with high concentrations (deeper part, e.g., wells at 65 and 75 feet
bgs), RT3D simulations using the two equations were nearly overlapped. This
is because the concentration of injected acetate (electron donor) was more
than 20 times higher (800 versus 30 mg/L) than that of nitrate (electron ac-
ceptor). Moreover, it is common in field bioremediation systems that more
electron donor (e.g., acetate) than needed is added to promote the reactions
[Alexander, 1999; Dybas et al., 1998; Finneran et al., 2002; Anderson et al.,
2003; Williams et al., 2011]. As reported by Witt et al. [1999] and Phaniku-
mar et al. [2005], the concentration profile of acetate resembles that of Br−,
even though a small amount of acetate is consumed during the reactive trans-
port. Similarly, the correction factor applied to the detachment term has neg-
ligible effect on the simulations.

C: Correlation of particle numbers with initial concentrations and injections

C.1 Initial concentrations

Initially, CT and nitrate were present in the groundwater system. In the
PTR simulation, initial numbers of CT and nitrate particles were calculated
based on the concentrations from the RT3D model and groundwater volumes.

C.1.1 CT in groundwater

The observed CT values were divided into six layers (28−15.5 m, 15.5−
11.5 m, 11.5−8 m, 8−5 m, 5−2 m, and 2−0 m bgs, respectively) and kriged
as separate zones [Phanikumar et al., 2005].

The RT3D model has the kriged CT initial concentrations (ci), which
were used directly to calculate the number of particles at each MODFLOW/RT3D
model cell. The total number of particles is based on the total mass of CT in
groundwater, MCT :

MCT =

r×n×l∑
i=1

ci · Vi · θ (C.1)

where Vi = finite-difference cell volume; θ = porosity; r = number of rows in
the model; n = number of columns in the model; and l = number of layers in
the model. The total number of CT particles is pre-determined by the the au-
tocovariance (Appendix A: ), i.e., NCT is within the range of 4000 to 12, 000.
Model simulations suggested that simulations with NCT = 4, 612 provided a
reasonable match of measurements, so the the mass of each particle of each

This article is protected by copyright. All rights reserved.



Fi
gu

re
B.
1.

RT
3D

-s
im

ul
at
ed

br
ea
kt
hr
ou

gh
cu
rv
es

of
C
T
us
in
g
Eq

s.4
an
d
5.

Sy
m
bo

ls
ar
e
th
e
m
ea
su
re
d
co
nc
en
tra

tio
ns
;t
he

bl
ac
k
so
lid

lin
es

ar
e
RT

3D
si
m
ul
at
io
ns

us
in
g
Eq

s.4
,a
nd

th
e

m
ag
en
ta
da
sh
ed

lin
es

ar
e
si
m
ul
at
ed

re
su
lts

fr
om

RT
3D

m
od

el
us
in
g
Eq

s.
5.

Su
bp

lo
ts
fo
ri
nd

iv
id
ua
lw

el
ls
ar
e
th
e
sa
m
e
lo
ca
tio

ns
as

in
Fi
gu
re
s?

?
an
d
3.

–26–
This article is protected by copyright. All rights reserved.



Fi
gu

re
B.
2.

RT
3D

-s
im

ul
at
ed

br
ea
kt
hr
ou

gh
cu
rv
es

of
ni
tra

te
us
in
g
Eq

s.4
an
d
5.

Sy
m
bo

ls
ar
e
th
e
m
ea
su
re
d
co
nc
en
tra

tio
ns
;t
he

bl
ac
k
so
lid

lin
es

ar
e
RT

3D
si
m
ul
at
io
ns

us
in
g
Eq

s.4
,a
nd

th
e
m
ag
en
ta
da
sh
ed

lin
es

ar
e
si
m
ul
at
ed

re
su
lts

fr
om

RT
3D

m
od

el
us
in
g
Eq

s.
5.

Su
bp

lo
ts
fo
ri
nd

iv
id
ua
lw

el
ls
ar
e
th
e
sa
m
e
lo
ca
tio

ns
as

in
Fi
gu
re
s?

?
an
d
3.

–27–
This article is protected by copyright. All rights reserved.



species is given by
mp =

MCT

NCT
(C.2)

The concentration of CT was from 0 to 0.00429 mg/L. The total mass was
calculated as 371.04 g. The mass within the influence area of the well field
was about 73.3 g and the mass each particle carries is 0.016 g.

C.1.2 Sorbed CT

The initial sorbed CT is assumed to be in equilibrium of aqueous CT.
The distribution coefficients were reported vary with the depth, from 0.145
to 0.353 L/kg [Dybas et al., 2002; Phanikumar et al., 2005]. The numbers of
sorbed CT particles are calculated from the aqueous CT concentration and
distribution coefficients at different depth.

MSCT =
c · Kd · ρb

θ
=

r×n×l∑
i=1

ci · Kdl · ρb

θ
(C.3)

The number of sorbed CT particles would be Eq. C.4.

NSCT =
MSCT

mp
(C.4)

C.1.3 Nitrate

Initial nitrate concentrations were fairly constant across the region, the
layer averaged concentrations were used for the current simulation. The num-
ber of particles used for initial nitrate in the system is calculated similarly as
that of CT.

NNitrate =
MNitrate

mp
=

S · V · θ
mp

(C.5)

The concentration of nitrate (S) at each layer are constant, thus, the calcula-
tion of mass is conducted on layers, instead of model cells. The concentra-
tions were found ranging from 21.62 mg/L to 44.25 mg/L from 10.6 m bgs to
27.4 m bgs. Linear interpolation is used to assign nitrate concentration to dif-
ferent layers. The mass of initial nitrate was calculated as 116, 514 g within a
smaller influence zone of the well field with length of 41.43 m, width of 14.4
m, and the effective porosity of 0.3. Model tests indicated that a smaller zone
for nitrate did not affect the simulation results due the uniform distribution of
nitrate, but it saved the computational time.

C.2 Injected mass

During inoculation, at day 67, the concentrations of KC and acetate in-
jected to the biocurtain were 106 CFU/mL and 800 ppm, respectively [Phaniku-
mar et al., 2005]. Certain numbers of particles were simulated to be injected
based on the fluxes of injection and the addition of constituents.

The injection contained the concentrations of KC at 106 CFU/mL, while
1 CFU/ mL is approximately equal to 1.67×10−7 ppm for strain KC [Phaniku-
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mar et al., 2002], thus, the concentration of KC in the injection was 0.167
mg/L.

The total number of KC particles added to the injection wells is given
by:

NKC =
MKC

mp
=

E · Qin j · t
mp

=

∑15
i=1

∑2
j=1 Ei, j · Qin ji, j · t j

mp
, (C.6)

where MKC = mass of KC injected through the inoculation, Qin j, j = volume
of groundwater injected to well i at period j, and t j is the duration of injec-
tion at period j. The stress periods 45 and 47 had durations of 0.05555 and
0.04514 day, respectively, with injection volumes of approximately 12 m3

and 9.75 m3, respectively. The number of acetate particles is proportional to
the nitrate particles based on the ratio of concentrations in the injection of
re-circulation processes, which were 800 mg/L for acetate and 30 mg/L for
nitrate. After inoculation, acetate concentrations injected were one order-of-
magnitude lower, 80 mg/L.

C.3 Consumption of Nitrate by indigenous microflora

The consumption of nitrate by the native flora was assumed to occur
where acetate was available. The consumption is represented with parame-
ter γ. Even though endogenous respiration is the process by which microbes
consume cell reserves in the absence of an electron donor (acetate) and con-
tinue to use an electron acceptor (nitrate), we use the same assumption that
Phanikumar et al. [2002] made, which states that the population of native
flora is proportional to that of KC.

Phanikumar and Hyndman [2003] estimated the γ term as 18.89 day−1.
Based on the model of nitrate consumption in Phanikumar et al. [2005], the
proportion of native flora over KC is related to the ratio of γ over µmax/Yn
as shown in (4)c. Given the laboratory-obtained specific growth rate (nitrate
utilization rate), µmax = 3.11day−1, and the yield for nitrate, Yn = 0.25 mg
cells/mg substrate. The population of native microflora would be 4.554 times
greater than KC.

D: Perturbation analysis

We adopt the methodology of deAnna et al. [2011], Tartakovsky et al.
[2012], and Paster et al. [2014] to examine the components of the ADRE that
contribute to reduced effective reaction rates and to assess whether the La-
grangian method is an appropriate tool to simulate these components. As-
sume that the ADRE with bimolecular reaction has random components v,
CA, and CB with means denoted by overbars and zero-mean fluctuations de-
noted by primes. For simplicity we assume that the local dispersion is rela-
tively constant:

∂(C̄i + C′i )
∂t

= −∇ · [(v̄ + v′)(C̄i +C′i )+D∇(C̄i +C′i )] − k(C̄A+C′A)(C̄B +C′B). (D.1)
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Taking the ensemble mean,
∂Ci

∂t
= −∇ · [vCi − D∇Ci + v′C′i ] − k(CACB + C′AC′B). (D.2)

So to first order, the new terms relative to the ADRE are a macrodisper-
sion term and a modification of the macroscopic reaction rate by the con-
centration cross-covariance as in the case of purely diffusive transport [Tar-
takovsky et al., 2012; Paster et al., 2014]. It is worth discussing each of the
terms on the right hand side of (D.2) with respect to “subgrid” quantities.
The mean advection and local dispersion of the of the mean concentration
(the first and second terms) as well as the reaction of the mean concentra-
tions (the fourth term) are the only terms solved at a grid scale by typical
Eulerian transport codes. Particle methods also represent these mean veloc-
ities and mean concentrations. However, the subgrid velocity perturbations
are also solved by particles [Herrera et al., 2017], i.e., velocities are interpo-
lated between grid velocities to particles depending on their position within
a cell [LaBolle et al., 1996]. Therefore, shear, compression and dilation (all
of which contribute to mixing and reaction [de Barros et al., 2012; Engdahl
et al., 2014]) can be tracked by particles within cells. Furthermore, properly
defined, the particles can also represent concentration perturbations at any
scale as demonstrated by Paster et al. [2014] and Schmidt et al. [2017]. It is
also worth noting that no study has examined the solution of (D.2) by par-
ticles in the most general cases, but several have looked at simpler systems
where the velocity perturbations are known functions of space. In particular,
Porta et al. [2012a] examined Poiseuille flow in which v′ is parabolic across
an aperture, and Porta et al. [2012b, 2013] did numerical volume averaging
in an idealized unit cell. The former study showed that the particle method
was an accurate simulator of the volume-averaged reacting system. The latter
study showed that naively upscaled ADRE equations will follow the reaction-
rate scaling that we seek to eliminate by representing subgrid fluctuations. To
isolate the term that modifies the reaction rate in (D.2), first subtract the mean
from the total equation:
∂C′i
∂t
= −∇ · [vC′i + v

′Ci + v
′C′i + v′C

′
i −D∇C′i ]+ kC′AC′B− k(CAC′B+CBC′A+C′AC′B).

(D.3)
Now take (D.3) for i = A multiplied by C′B and add to (D.3) for i = B mul-
tiplied by C′A. Discarding third-order in perturbation terms and using fluid
incompressibility yields
∂C′AC′B
∂t

= −v · ∇C′AC′B + D∇2C′AC′B − C′Bv
′ · ∇CA − C′Av

′ · ∇CB − 2D∇C′B · ∇C′A

−k(CAC′2B + CBC′AC′B + CBC′2A + CAC′AC′B).(D.4)

Define g = C′AC′B, fA = C′2A and fB = C′2B and taking the ensemble
average of (D.4) gives

∂g

∂t
= −v · ∇g + D∇2g − C′Bv

′ · ∇CA − C′Av
′ · ∇CB − 2D∇C′B · ∇C′A

−k(CA fB + CBg + CB fA + CAg). (D.5)
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Similarly for fi (i = A, B); j = (B, A)

∂ fi
∂t
= −v · ∇ fi + D∇2 fi − 2C′i v

′ · ∇Ci − 2D∇C′i · ∇C′i

−2k(Cig + C j fi). (D.6)

It was this system of equations, with v̄ = v′ = 0, that was solved by
Paster et al. [2014] both analytically and with the particle method. They showed
that the particle method was more accurate in that case because it does not
throw out any higher-order terms (required for analytic closure). The inter-
esting aspect of (D.5) and (D.6) is that the concentration auto- and cross-
covariances follow an advection-diffusion equation with additional “macro-
mixing” terms. Classic long-term closures for the terms C′i v

′ for conservative
tracers are often assumed to take the form Dmacro∇Ci [Taylor, 1953; Gelhar
et al., 1979]. Inclusion of these types of terms would lead to additional terms
of the form Dmacro∇Ci · ∇Cj , which have been shown to represent the local
mixing of constituents i and j [Le Borgne et al., 2010]. It is also worth not-
ing that an attempt to analytically quantify the relative contributions of the
various terms in (D.5) and (D.6), which dictate the evolution of g and devi-
ations of the overall reaction rate (from (D.2)), will depend in complex and
spatially variable ways according to local Peclet and Damkohler numbers as
well as the initial conditions of g and fi. A recent relevant discussion of the
influence of the configuration of initial condition perturbations on early ef-
fective reaction rates in diffusion-only systems is given by Ostvar and Wood
[2016]. They emphasize that the statistical chemical structure at the subgrid
scale strongly influences small-time effective rates, but at late time (relative
to mixing times) the subgrid fluctuations are of less importance.

To summarize, (D.5) and (D.6) show that concentration perturbations’
auto- and cross-covariance are advected, dispersed, macro-mixed, micro-
mixed, and source/sinked in a coupled manner. The evolution of the cross-
covariance, which is responsible for the decreased overall reaction rate in
(D.2) is non-stationary and may be difficult to close accurately in an analytic
sense. But prior (and separate) work has shown that the particle method can
simulate all of the terms in these equations.

E: Ensemble Statistics

Because of the stochastic nature of the PTR simulation, a number of re-
alizations were conducted to assess the sample mean concentrations and stan-
dard deviations. In this study, we ran 50 simulations , each with 25 monitor-
ing wells and 40 timesteps. The moving averages (Cm − Cave)/Cave (where
Cm is the moving average at realization m, and Cave is the average for all 50
realizations) of nitrate concentration from all 25 wells and 50 realizations
are plotted at three different times: before (day 30), during (day 72), and af-
ter (day 122) the inoculation process. The normalization is used because of
the large differences in mean concentrations between wells and over time.
Visually, the ensemble average of the simulations at most wells appears to
converge at around 30 − 40 realizations (Fig. E.1). The ensemble sample
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Figure E.1. The ratio of the difference between moving average (Cm) and final average (Cave) over final
average of nitrate concentrations at 25 well locations at days 30 (a), 72 (b), and 122 (c), which correspond to
before, during, and after the inoculation process, respectively.

Figure E.2. a) Ensemble nitrate standard deviation plotted for each well as a function of simulation time.
b) Ensemble coefficient of variation (standard deviation divided by ensemble mean concentration) at the same
wells and timesteps.

Figure E.3. (a-c) Running coefficient of variation (CV) of the running mean nitrate concentrations at 25
well locations at days 30 (a), 72 (b), and 122 (c). (d-f) Running coefficient of variation (CV) of the running
nitrate concentration variance at 25 well locations at days 30 (d), 72 (e), and 122 (f)

standard deviations may be plotted as functions of simulation time at each
well (Fig. E.2a). The standard deviations at the simulation start are dictated
by the initial particle numbers, among other factors such as the characteristics
of the flow field. These standard deviations are on the order of 0.7 to 1 ppm.
As the simulation progresses, nitrate is consumed, and the standard devia-
tions drop by one to two orders of magnitude. To get a better idea of relative
variability, we also plot the standard deviation normalized by the ensemble
means - i.e., the coefficient of variation (Fig. E.2b). As the nitrate concentra-
tions drop significantly by consumption, the concentration variabilities rise in
about half the wells from about 1% to 10%. This rise implies that the reac-
tion process is creating additional heterogeneity, in a manner consistent with
older [Benson and Meerschaert, 2008] and more recent studies [Bolster et al.,
2016; Ostvar and Wood, 2016]. This feature might give the impression that
the convergence of the ensemble statistics is adversely affected, but we also
checked the rate of convergence of both sample means and variances by plot-
ting the coefficients of variation (CV) of both the running means and running
variances (C̄m and V AR[Cm]) over m = 1 to 50 realizations. As do Ballio
and Guadagnini [2004], we approximate the CV by plotting the running root-
mean-squared (RMS) deviations of the mean divided by the running mean
(Fig. E.3a-c) and the RMS of the variance versus the running variance (Fig.
E.3d-f) . These measures clearly show that the ensemble statistics are con-
verging at the expected rate of m−1/2, consistent with the central limit theo-
rem.
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