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Abstract Prediction of effective transport for mixing-driven reactive systems at larger scales, requires
accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending
on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian
might have advantages. Here we propose and test a novel hybrid model which attempts to leverage bene-
fits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging pro-
cedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian
Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the
Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms
required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spa-
tial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early
times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise,
the Eulerian reaction method is efficient, because it does not require calculation of distances between par-
ticles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to
accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

1. Introduction

Predicting chemical reactions in porous media can be challenging due to the complex and nonuniform
nature of flows at pore scales (Dentz et al., 2011). One of the perhaps most obvious but critical features to
recognize in any reactive system is that for reactions to occur, the reactants involved must physically come
into contact with one another. Mixing is the physical process that enables this (De Simoni et al., 2007; Gram-
ling et al., 2002; Le Borgne et al., 2010). When the flow is complex, prediction of mixing can be challenging,
particularly if one desires to make predictions at scales larger than the pore scale, requiring an upscaled
modeling framework. Development of such an upscaled framework, using traditional upscaling approaches
can be challenging and lead to models that require assumptions so restrictive as to limit the models’ utility
(Battiato et al., 2009; Battiato & Tartakovsky, 2011). Thus, novel approaches to tackling such problems are
needed.

In order to understand and ultimately accurately predict mixing-driven reactions, it is common to begin by
studying the simple bimolecular reaction of the form A1B! C. While this may seem excessively simple to
anyone with detailed knowledge of complex subsurface geochemistry, this very reaction is the fundamental
ingredient for many reactive transport models and Gillespie (2007) shows theoretically that understanding
it is key to understand arbitrarily complex reaction systems. Therefore, in the context of porous media, this
simple reactive setting has been widely studied in the literature, experimentally (e.g., de Anna et al., 2013a;
Gramling et al., 2002; Kapoor et al., 1997; Tartakovsky et al., 2008), theoretically (e.g., Gramling et al., 2002;
Kapoor et al., 1997) and numerically (e.g., Ding et al., 2012; Edery et al., 2010; Zhang et al., 2009).

A primary challenge in modeling bimolecular transport over scales of practical interest (e.g., Darcy scales) is
in accurately accounting for the degree of mixing at the subscale (e.g., pore scales). Reactions in many
instances of interest are limited by how quickly mixing can bring reactants together and even in very simple
purely diffusive systems incorrect assumptions of complete mixing can dramatically over predict actual
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rates of reaction (Bolster et al., 2012; de Anna et al., 2011; Kang & Redner, 1985; Tartakovsky et al., 2012). In
porous media, experimental observations (Gramling et al., 2002; Kapoor et al., 1998; Raje & Kapoor, 2000)
and numerical models (Ding et al., 2012; Edery et al., 2010; Tartakovsky et al., 2009) continually show that
when the rate of reaction is fast compared to the rate at which solutes come together by diffusion, the over-
all rate of reaction scales slower than would be predicted by the thermodynamic reaction rate under the
assumption of perfect mixing. Pore-scale mixing has a large effect on overall reaction rate and thus accu-
rately representing it in an upscaled framework is key (Alhashmi et al., 2015).

One way around these limitations is to develop improved upscaled models that naturally account for sub-
scale fluctuations in an accurate manner. To date various such models have been developed with the gen-
eral goal of reducing the error caused by overprediction of mixing, and thus overprediction of overall
reaction rates (Chiogna & Bellin, 2013; Herrera et al., 2017; Rubio et al., 2008; Sanchez-Vila et al., 2010). A
review of many of these approaches, both Lagrangian and Eulerian is available in Dentz et al. (2011).
Lagrangian or particle tracking models have been shown to be quite natural at capturing incomplete mix-
ing effects, because while they can recover the correct continuum level equations (Bolster et al., 2016; Pas-
ter et al., 2013), the discrete nature of the particles results in inherently noisy concentration distributions,
which can be related physically to true subscale concentration fluctuations (Fern�andez-Garcia & Sanchez-
Vila, 2011; Paster et al., 2014). Additionally, the absence of numerical dispersion in particle-based methods
is appealing, as it artificially enhances mixing effects, overpredicting reaction rates (Benson et al., 2017).
While improvements are continuously being made, particle-based methods can still be expensive relative
to their Eulerian counterparts and infrastructure for efficient large-scale computing of Eulerian models is to
date more widespread (typically for reactions, Lagrangian methods tend to be OðN2Þ where N is the number
of particles and Eulerian methods tend to be OðhnÞ where h is the grid scale and n depends on the solution
method). As with all methods, there are benefits and weaknesses to each, summarized nicely in an intermo-
del comparison paper by Boso et al. (2013).

One particular upscaled Eulerian model of bimolecular reactive transport was developed in Porta et al.
(2012b), which results from volume averaging of the advection diffusion reaction equation. This framework
very naturally captures incomplete mixing effects, which mathematically are represented by the product of
subscale fluctuations of concentrations, by making some simplifying assumptions and defining a closure
problem for such terms. While the proposed model works well at capturing certain incomplete mixing
effects that more traditional approaches might miss, the closure problem is quite complex, involving nonlo-
cal convolutions in space and time (Hansen et al., 2014; Porta et al., 2016), which, while calculable numeri-
cally, can be computationally expensive, challenging to compute accurately, and difficult to physically
interpret.

On the Lagrangian side, a promising model for upscaling conservative transport is the Spatial Markov model
(SMM) (Le Borgne et al., 2008a, 2008b), which has been very successful at upscaling transport across a
diverse and complex set of flows and geometries (Bolster et al., 2014; de Anna et al., 2013b; Kang et al.,
2011, 2015; Le Borgne et al., 2011; Sund et al., 2015a). It has also been adapted to model reactive transport
in a pore-scale system with a nonuniform spatially dependent first-order reaction rate by Sund et al.
(2015b). However, in all of these cases, it has only ever been used to predict mean transport and average
concentrations, which does not provide sufficient information for accurate prediction of mixing-driven
reactions.

Given the SMM’s proven accuracy and flexibility, it seems a natural choice of model to extend to modeling
of bimolecular transport. Likewise, given the theoretically rigorous Eulerian approach of volume averaging,
it seems appealing to work in this framework. Here we propose that by appropriately modifying the SMM,
we can indeed use it to predict mixing processes, which in turn allows us to use it to more efficiently calcu-
late the closure terms in the volume-averaging approach of Porta et al. (2012b). Indeed, the SMM has been
shown to predict global mixing measures, such as the scalar dissipation rate and dilution index, very accu-
rately using a trajectory-based downscaling approach (Sund et al., 2017). Here we take a slightly different
approach, based on the ideas of Porta et al. (2015), who mapped the complex velocity distribution in a
porous medium on to an equivalent shear velocity distribution, using this as the basis for a successful
upscaling procedure. Our current proposed model is referred to as the Lagrangian Transport Eulerian Reac-
tion Spatial Markov model, or the LATERS Markov model. Our goal is a hybrid approach that capitalizes on
the respective strengths of both Lagrangian and Eulerian approaches. This approach has the advantage of
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naturally embedding nonlocal terms. To demonstrate the feasibility of this model, we apply it to a bench-
mark problem, described in the following section.

2. Reactive Transport Setting

The porous medium and setup that we focus on is identical to that of Porta et al. (2013), which reports
high-resolution numerical simulations of flow and reactive transport at the pore scale for the purposes of
testing an upscaled model based on volume averaging. The domain is made up of a periodic array of cylin-
ders and has porosity / � :34. A subset of the domain and a unit cell is depicted in Figure 1. The specific
reactive transport problem that we focus on is a displacement setup, where the domain is initially filled uni-
formly with species A at concentration Ĉ 0; then chemical species B is injected through the inlet (left hand
boundary) of the domain at the same concentration. As species A and B come into contact, they can react
together to form the product C (A1B! C takes place) at some rate k as prescribed by the law of mass
action. For completeness, we briefly describe the setup here, but note that the model, results and data are
exactly those of Porta et al. (2013) and further details are available in that paper.

2.1. Pore-Scale Setting
Flow is considered to be low Reynolds number and governed by the Stokes equations,

r̂p̂5l̂r̂2
û; r̂ � û50 (1)

where û5½û v̂ �> is the fluid velocity, p̂ is the pressure of the fluid, and l̂ is the viscosity of the fluid. Here
hats denote dimensional quantities. The fluid-solid boundary is no slip (û50). The external boundaries of
the cell are periodic: ûðx̂50Þ5ûðx̂5l̂Þ; ûðŷ50Þ5û ŷ5 5

3 l̂
� �

, where l̂ is the distance between cylinder cen-
ters in the longitudinal direction and 5

3 l̂ is the distance between cylinder centers in the transverse direction.
In order to induce flow, a unit pressure drop is imposed from the left to right boundaries of the unit cell. In
the transverse direction, there is no pressure drop and thus no mean flow. The velocity field is then rescaled

Figure 1. (top) Beginning section of the transport domain shaded by magnitude of longitudinal velocity (û). (bottom)
A zoomed in region of the domain that makes up a unit cell. The color contours show the magnitude of longitudinal
velocity and streamlines of the flow are shown in white.
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as needed to match the P�eclet number, which can be done due to the Stokes flow assumption. Figure 1
shows the transport domain shaded by magnitude of longitudinal velocity (û) and a zoomed in region of
the domain that makes up a unit cell along with streamlines of the flow.

Transport of each species is governed by the advection diffusion reaction equation,

@Ĉi

@ t̂
1r̂ � ûĈi

� �
5r̂ � D̂r̂Ĉi

� �
2r̂ AB i5A; B (2)

@ĈC

@ t̂
1r̂ � ûĈC

� �
5r̂ � D̂r̂ĈC

� �
1r̂ AB; (3)

where Ĉi is the concentration of reactive species i, û is the pore-scale velocity field, and D̂ is the molecular
diffusion coefficient, which is assumed equal and constant for all species. The reaction rate is determined
by the law of mass action such that r̂ AB5k̂ Ĉ AĈ B, where k̂ is the kinetic reaction rate constant. This reaction
term is what couples the transport equations for each of the considered species.

A dimensionless form of (2) is created by introducing the following quantities,

Ci5
Ĉi

Ĉ0
; u5

û
hûi ; t5t̂

hûi
l̂
;

r5r̂ l̂ ; x5
x̂

l̂
; y5

ŷ

l̂
;

Pe5
hûîl

D̂
; Da5

k̂ Ĉ 0̂l
2

D̂
;

(4)

where Ĉ 0 is the initial concentration of species A and hûi is the longitudinal component of velocity aver-
aged over the fluid within the unit cell. The initial concentration Ĉ 051 mol

m3 , P�eclet number Pe 5 96, and Dam-
kohler number Da 5 1,038, which are the values used in Porta et al. (2013). Let us also define a conservative
component CD5CB2CA11; note the 1 is not required, but added to force the concentration CD to be posi-
tive. With these we recast our problem as,

@CD

@t
1r � uCDð Þ5 1

Pe
r2CD (5)

@CB

@t
1r � uCBð Þ5 1

Pe
r2CB2

Da
Pe

CB CB2CD11ð Þ: (6)

The initial conditions are,

CDðx; 0Þ52 Hð2xÞ; CBðx; 0Þ5 Hð2xÞ; x 2 Xl ; (7)

where H is the Heaviside step function and Xl is the fluid-filled portion of the domain. The boundary is split
into various regions, Cls is the liquid-solid boundary, Ctop;Cbot;Cin, and Cout are the top, bottom, left, and
right boundaries, respectively. The boundary conditions are zero concentration gradient (no diffusive flux)
in the normal direction with respect to Cls, Ctop;Cbot , and Cout and constant flux along Cin,

n � rCiðx; tÞ50 i5B;D x 2 Cls;Ctop;Cbot;Cout (8)

u � nCiðx; tÞ2 1
Pe

n � rCiðx; tÞ5
_mi

Að0Þ x 2 Cin: (9)

where n is the inward unit vector normal to the boundary, _mi is the rate of mass injection of species
i through the inlet boundary which has area A(0), which for this setup is the length of the fluid-filled portion
of the domain along inlet x 5 0. Note that as velocity in the normal direction is equal to zero on boundaries
Cls, Ctop;Cbot these boundaries are associated with zero solute flux. The full domain is made as large as
needed so that Cout is never reached by the invading species. These equations were solved numerically in
Porta et al. (2013) using a reactive random walk particle tracking method, the details of which are provided
in Porta et al. (2012a).
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Henceforth, the results of this simulation are referred to as ‘‘benchmarks’’; these are the results we treat as
the ground truth which we aim to capture with our proposed upscaled LATERS Markov model.

2.2. Volume-Averaged Bimolecular Reactive Transport
So far we have focused on the microscale equations, that is, the equations which resolve the full flow and
transport at the pore scale, but if we wish to predict transport over larger scales, it is desirable to work in an
upscaled framework. As noted above, we propose to do so in a hybrid form, which partially relies on volume
averaging. Therefore, let us decompose quantities into average and fluctuation terms. Quantities are aver-
aged over the volume of the fluid within a unit cell; quantity � averaged in this way is defined as,

h�i5 1
Vf

ð
Vf

� dV; (10)

where Vf is the averaging volume. Then the fluctuation of the quantity � is defined as,

�05 �2h�i: (11)

Volume averaging of (5) and (6) leads to a nonlocal transport formulation which we hope to solve with the
LATERS Markov model,

@hCDi/
@t

1 /hui � rhCDi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
advection

5
1

Pe

�
/r2hCDi1r/rhCDi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

1r � /
Vf

ð
Cls

C0DndA

� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

2r � hu0C0Di|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dispersion

;
(12)

@hCBi/
@t

1 /hui � rhCBi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
advection

5
1

Pe
½/r2hCBi1r/rhCBi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

1r � /
Vf

ð
Cls

C0BndA

� 	
�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

2r � hu0C0Bi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dispersion

2 /
Da
Pe
½hCBiðhCBi2hCDi11Þ1hC0B C0B2C0D

� �
i�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

reaction

(13)

where / is the porosity of the unit cell. For Pe� 1 and Da� Pe the following relationships can be
proposed,

C0B5MC0D M5
hCBi

2hCBi2hCDi11
(14)

Details of the volume-averaging procedure, as well as details on assumptions and restrictions, are available
in Porta et al. (2012b). This yields a continuum-scale integro-differential system of equations, which is nonlo-
cal in time. Solution of these equations via a closure variable, used in the volume-averaging method, can be
cumbersome and resource intensive. In the following we assume that the Spatial Markov model naturally
accounts for the advective, diffusive, and dispersive terms in these equations, including the nonlocal in
time terms that arise in volume averaging, which are particularly relevant to model dispersion in the early
times, i.e., for the preasymptotic (non-Fickian) dispersive regime. Our primary goal here is to extend the Spa-
tial Markov model to account for the reactive term. By substituting (14) in the last term appearing in (13),
the reactive term can be expressed as

r5/
Da
Pe
½hCBiðhCBi2hCDi11Þ1M M21ð ÞhC02D i�: (15)

For our purposes, we are concerned with solving for all of the volume-averaged quantities. As noted earlier,
the Spatial Markov model has already been shown to accurately model average concentrations of conserva-
tive species, so it should model hCDi well. The primary challenge in our upscaling approach is then to ade-
quately model the fluctuation term hC02D i appearing in (15). This term physically reflects the degree of
incomplete mixing at the pore scale. If the system were perfectly mixed this would be zero. If the Spatial
Markov model can accurately represent this term, then it can adequately represent mixing and thus it is
suited to modeling mixing-driven reactions. Thus, the goal of this work is to augment the Spatial Markov
model in such a way as to accurately model this term and thus accurately predict concentrations of reactive
species.
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3. The LATERS Markov Model

Here we describe the development of the LATERS Markov model, how it is parameterized, and how it is
used to predict average concentrations and also to reconstruct subscale concentration distributions. We
first recount the parameterization and the procedure followed for approximating longitudinal transport of a
conservative species, which is in line with previous implementations of the Spatial Markov Model. Then, we
describe how the information obtained from the transport parameterization is employed to model reaction,
which is the key innovative element of this contribution. This requires an approximation of subscale fluctua-
tions within each cell, which is performed here through a novel closure procedure. The approximation of
subscale fluctuations of concentrations is finally employed to approximate the longitudinal upscaled reac-
tive transport problem.

3.1. Parameterization of the LATERS Markov Model Via Direct Simulation of Transport
As with many Spatial Markov modeling approaches, the model is parameterized by investing computational
effort into running high-resolution particle tracking simulations over a pair of unit cells and then using infor-
mation from these high-resolution runs to parameterize the model and predict transport over much larger
scales. This saves significant computational expense, as simulating transport over only two unit cells is sig-
nificantly cheaper than simulating transport over the full domain. Furthermore, even though we are param-
eterizing the model for use in reactive transport modelling, we only simulate conservative transport at high
resolution.

To obtain the flow field, equation (1) is solved with a finite element method with triangular elements and
linear basis functions using the Galerkin method. Boundary conditions are those described in section 2.1
and the velocity field is rescaled to obtain Pe 5 96. The velocity field is interpolated at all spatial locations
through the P1 finite element basis functions.

For the particle tracking, we use a random walk method, where particles of equal mass follow Langevin
equation,

xn115xn1uDt1

ffiffiffiffiffiffiffiffi
2Dt
Pe

r
nn (16)

yn115yn1vDt1

ffiffiffiffiffiffiffiffi
2Dt
Pe

r
gn n50; 1; 2; . . . ; (17)

where u and v are the dimensionless x and y components of the velocity field u, fng and fgg are indepen-
dent identically distributed samples from the standard Gaussian distribution (with mean 0 and variance 1),
and Dt is a fixed time step. The initial condition is flux weighted along the inlet x 5 0. Fluid-solid boundaries
are no flux, which are treated as elastic reflections for particles. Top and bottom external boundaries are
periodic.

We simulate transport by this method across two unit cells in order to create distributions to be used in the
LATERS Markov model. We simulate the transport of 106 particles and for each particle we store three pieces
of information:

1. y05 the particle’s initial y position at the inlet
2. s15 the amount of time it takes the particle to traverse the first unit cell
3. s25 the amount of time it takes the particle to traverse the second unit cell

From this information, we obtain a joint distribution f ðy0; s1; s2Þ, which is used to create the LATERS Markov
model. Note that compared to previous implementations of the SMM we store one piece of information
that is typically not gathered, which is y0. This is required for the purposes of predicting subscale fluctua-
tions, i.e., provides all the information that is required to obtain a continuum scale solution of (13), as will be
explained in the following sections.

3.2. Longitudinal Transport of A Conservative Solute
Longitudinal transport of the conservative component, defined as D in the previous sections, is modeled
through a Lagrangian Spatial Markov model, consistent with previous contributions (Le Borgne et al., 2008a,
2011). We recall here the main features of the involved modeling procedure.
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We aim to model transport along direction x, longitudinal to the average flow velocity for some time win-
dow t 2 ½0; Tend�. We also introduce a discrete set of time levels tj with j51; . . . ;Nt , with t150 and tNt 5Tend ,
which we employ to discretize the solution in time. We set these time levels such that the time step dt5tj11

2tj is constant along the simulation.

The mean concentration of the conservative component D is solved using the standard Spatial Markov
Model, in which the one-dimensional distribution of solute mass along the x axis is discretized into particles
(pi) of equal mass, each starting at ðxð0Þ50; tð0ÞÞ. First we assign the mass to each particle used for computa-
tion of the conservative component of concentration. This is done so that the mass flux is the same as that
in the pore-scale simulation,

mDðpiÞ5
_mdt
np

; (18)

where mDðpiÞ is the mass assigned to particles used to approximate the transport of the conservative compo-
nent D, _m is the rate of mass injection of the conservative component through the boundary in the pore-
scale simulation, dt is the time step in the LATERS Markov model simulation, and np is the number of particles
injected per time step. The simulation time step dt is chosen based on the smallest amount of time it took
any particle to traverse the first unit cell in the simulation we used to parameterize the model such that,

dt5
minðs1Þ

10
: (19)

Now, we can march our simulation through time t. In order to simulate the constant flux boundary condi-
tion in equation (9), we inject a fixed number of particles (np) at each time step tj throughout the simulation,
starting at time t 5 0. Each particle enters the domain at some random time throughout the time step of
length dt, so that each particle’s starting time is given by,

tð0Þ5tj1Udt; (20)

where U is a uniform random number between 0 and 1. Each particle’s subsequent motion is governed by
Langevin equation,

xðn11Þ5xðnÞ11 (21)

tðn11Þ5tðnÞ1sðn11Þ n50; 1; 2; . . . ; (22)

where sðn11Þ is a sampled from the distribution f ðsÞ, which we create from the joint distribution of s1 and s2

obtained from the pore-scale simulation described in section 3.1,

f ðsÞ5
f ðs1Þ n50

f ðsðn11ÞjsðnÞÞ n51; 2; . . .

(
(23)

We model f ðsðn11ÞjsðnÞÞ using a spatially homogeneous Markov chain. The Markov chain is created by dis-
cretizing the travel time distribution f ðs1Þ into 20 equiprobable states and recording the cutoff times that
split up the states. A travel time s is in state i if limi � s < limi11 where limi is the cutoff time for state i and
lim1 	 0. Using the joint distribution of s2 and s1 we then define a transition matrix (Tji), which represents a
discrete form of f ðs2js1Þ,

Tji5Pðs2 2 state jjs1 2 state iÞ � f ðs2js1Þ: (24)

By modeling f ðsðn11ÞjsðnÞÞ as a spatially homogeneous Markov chain, we are assuming that
f ðsðn11ÞjsðnÞÞ5f ðs2js1Þ, and use the transition matrix Tji for all following steps. Figure 2 shows the entire Mar-
kov chain, which consists of f ðs1Þ and Tji. Because the P�eclet number here is relatively low, the transition
matrix looks homogeneous in parts, implying that particles may transition between states readily. There are,
however, a few states that particles have a high probability of remaining in, most notably the higher num-
bered states, which correspond to large travel times. This finding is ubiquitous has been explored in detail
in Bolster et al. (2014). Further details on the creation of the Markov chain used in the Spatial Markov model
are available in Le Borgne et al. (2008a, 2011) and Bolster et al. (2014).
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3.3. Closure Approximation
To have (15) as a closed equation requires an approximation of not only the average concentration of the
conservative component hCDi but also the average intensity of the fluctuations hC02D i in each cell. This is in
practice equivalent to predict mixing of the concentration of species D within the pore-space. Here we
employ a closure procedure to approximate this quantity, i.e., our goal is to recover from the parameters of
the LATERS effective (upscaled) model an estimate of hC02D i.

To calculate this term, we resort to a mapping of the actual physical unit cell X to a reference cell eX, follow-
ing a conceptual idea proposed in Porta et al. (2015), who map the heterogeneous velocity field in a com-
plex porous medium on to an equivalent monotonic shear flow. To this end, we formulate the following
assumptions:

1. Reference unit cell eX is defined such that it has the same total dimension as the original cell, i.e., as the
rectangle ½0; 1�3½0; Y�, but it is defined as a an equivalent shear flow configuration, i.e., as a planar flow
between two parallel plates. Therefore, the fluid is distributed evenly throughout the cell, rather than
confined between the large cylinders in the actual unit cell

2. Particles travel along straight streamlines in eX, each with different longitudinal velocity, depending on
their transverse location. This allows us to represent pore-scale fluctuations of velocity and concentration
by assigning to each individual particle a different velocity. This is obtained via the characterization of
travel time distribution and particle location obtained from the approach described in section 3.1, which
accounts for both advective and diffusive contributions to space-time particle transitions within cell X.

The rationale behind these assumptions is to extract salient features from pore-scale information available
from the parameterization described in section 3.1, consistent with the discussion in Porta et al. (2015). Our
goal is to select meaningful pore-scale information necessary to obtain a characterization of pore-scale mix-
ing. This corresponds in practice to quantitatively estimating hC02D i. In contrast with the technique proposed
in Sund et al. (2017), we do not perform a direct downscaling of the particle position to the actual pore-
scale geometry. The use of the reference cell eX allows us to avoid issues which may arise from the mapping

Figure 2. (left) Travel time distribution split up into equiprobable states (f ðs1Þ). (right) Transition matrix (TjiÞ, which shows
the probability of a particle transitioning between travel time states.
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of particle positions into the real unit cell due to the presence of liquid-solid boundaries, as discussed in
Sund et al. (2017). Our numerical closure procedure has the two following steps:

1. For each particle pi assign a position along the longitudinal and transversal direction within eX, labeledexðpiÞ;eyðpiÞ
2. Estimate hC02D i at time tj from the spatial distribution of particles within eX. The two steps are separately

introduced in the following subsections.
3.3.1. Approximation of Particle Location in eX
From the Spatial Markov model, we know at any time level tj which unit cell each particle pi is in and how
long it will take the particle to travel through that unit cell, i.e., the particle is somewhere within cell n 1 1 if
tðnÞðpiÞ � tj < tðn11ÞðpiÞ. Consistent with the simplified assumptions introduced above, we consider the par-
ticle’s velocity within the unit cell as constant. That is, the particle travels at a constant effective velocity of,

Ueff 5
1

sðn11Þ ; (25)

over the n 1 1st unit cell. The amount of time that the particle has spent in that unit cell at time tj is tj2tðnÞ.
Thus,

ex ½piðtjÞ�5n1
tj2tðnÞ

sðn11Þ tðnÞ � tj < tðn11Þ: (26)

Note that even though we consider a constant transition velocity through the cell for each individual particle
pi, variability of pore-scale velocities is maintained in our model by assigning Ueff consistent with the charac-
terization of pore-scale transition times, obtained as described in section 3.1. Therefore, the distribution of
velocities associated with an ensemble of particles pi within a given cell and at a given time will honor the dis-
tribution of longitudinal effective velocities obtained from pore-scale information. Also note that the effective
velocity Ueff includes information on both advective and diffusive longitudinal displacements.

We focus now on the estimation of the transversal position ey ½piðtjÞ�. We start from the quantity y0, which is
introduced section 3.1, corresponding to the starting position of a particle along the inlet portion of the
cell. We can then introduce the conditional distribution of y0 given the state k, defined as

P0ðy0; kÞ5PðyðnÞ0 ðpiÞjsðnÞ 2 state kÞ (27)

To obtain this probability distribution numerically, we employ a discretization of the fluid portion Cl of the
inlet boundary Cin into a number Ny of intervals Im. Let us define the length of the fluid portion of the
inlet Cl as L0 and the length of the full inlet boundary Cin as Y. We define a set of discretization intervals
Im5ðy0;m21; y0;mÞ with m51 . . . Ny , with y0;050 and y0;Ny 5L0. The discretized probability distribution of
the inlet positions y0 for each state k is then defined as

P0ðIm; kÞ5PðyðnÞ0 ðpiÞ 2 ImjsðnÞ 2 state kÞ (28)

This distribution is shown in the left plot of Figure 3, upon setting Ny 5 10. Due to the symmetry of the velocity
field, the distribution of y0 positions for each state is approximately symmetric. It can be seen that particles in
the lower numbered states (those with the smallest travel times) have a higher probability of starting near at
locations y0 � 0:25 and y0 � 1:25 where the velocity is higher. By contrast, particles in the higher numbered
states (those with the largest travel times) have a higher probability of starting near the top or bottom of the
unit cell, where the velocity is lower. There is a large section in the middle of the unit cell ( 5

12 < y0 < 1:2) where
no particles can begin, due the presence of a solid cylinder. We note however that the distribution P0ðIm; kÞ
embeds the boundary condition employed at the stage of model parameterization, i.e., flux-weighted boundary
condition in the case considered here. For this reason, we define the following rescaling,

P0;velðIm; kÞ5P0ðIm; kÞ

ð
Im

1
uðx50; yÞdyð

Cin

1
uðx50; yÞdy

; (29)

which is shown in the middle plot of Figure 3. Notice that if the flux over an interval Im is less than or equal
to zero, we run into numerical problems of negative or infinite probabilities. To remedy this issue, we
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ensured that the number of intervals was small enough that this would not be the case. Another option
would have been to create intervals of varying lengths.

This correction is consistent with the discussion provided in Dentz et al. (2016), regarding the conceptual
differences between Eulerian and Lagrangian approaches in terms of the effective velocity of trans-
ported solute mass. As noted in section 3.1, in order to match the Eulerian constant flux boundary condi-
tion, the distribution of y0 assigned to Lagrangian particles is flux weighted in the parameterization
stage. To understand why, consider two locations on the inlet, one of which has twice the flux of the
other. Because twice as much fluid is flowing through this location, it requires injection of twice as many
particles as the other in order to maintain a constant flux of concentration. To convert back to the Euler-
ian perspective, we need to correct for this flux weighting when we map the particle positions, because
we are not concerned with the probability that a particle is injected at a location along the inlet, but
rather with the probability that a particle was injected at a location along the inlet and has yet to flow
out of the unit cell. In other words, if we neglect the correction in (29) the longitudinal position imposed
in our Eulerian mapping would be forced to follow a flux-weighted transversal distribution at all spatial
locations and times.

Upon relying on the input information introduced above, we pursue the following procedure to determineey ½piðtjÞ�:

1. at time tj and given the state k associated with particle pi sample the distribution P0;velðIm; kÞ to deter-
mine y0½piðtjÞ�

2. map the location y0½piðtjÞ� to the unit cell eX through

ey 0½piðtjÞ�5m
Y

Ny
1

Yðy02y0;mÞ
L0

y0;m21 < y0 � y0;m: (30)

3. consistent with the assumed shear flow configuration assign ey ½piðtjÞ�5ey 0½piðtjÞ�.

The right plot of Figure 3 shows the distributions P0;velðIm; kÞ mapped onto ey 0. The cyan loop of Figure 4
summarizes these Lagrangian steps of the algorithm.
3.3.2. Approximation of hC02D i
Once the positions ex ½piðtjÞ�;ey ½piðtjÞ� are computed for all particles, we need to create a spatial grid within
the reference cell eX, in order to compute a spatial distribution of the particles’ concentration and thereby
the quantity hC02D i, which is the final goal of our closure procedure. The benchmark simulation, to which we
will compare our results, discretizes the fluid portion of the unit cell into 371 squares. In order to keep
roughly the same discretization, we discretize the reference cell eX into nvox 5 10x37 rectangular voxels. To
ensure our mapped cell eX contains the same amount of fluid as the unit cell X, we normalize the concentra-
tion in each voxel by the porosity / of the cell, i.e., we set the volume of each voxel, Vvox5/VF=nvox , where

Figure 3. Probability of starting y position, yðnÞ0 , given each travel time state. On the left is the original distribution (P0ðIm; kÞ). In the middle is the distribution
rescaled by the inverse of the flux (P0;velðIm; kÞ). On the right is the distribution rescaled for the reference cell (P0;velð ~Im ; kÞ).
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VF is the total amount of fluid contained in the unit cell X. This, in effect is giving each voxel an internal
porosity equal to the porosity of the full original unit cell. Now the predicted concentration of species D
within each voxel of the domain can be found by adding up the number of particles in each cell of mass
mDðpiÞ, and dividing by the volume of fluid in the voxel, that is,

eC w
D 5

1
Vvox

Xnw
p

k51

mDðpiÞ; (31)

where eC w
D is the concentration of species D in voxel w, nw

p is the number of particles in voxel w, and mDðpiÞ
is the solute mass carried by particle i.

We can now obtain the quantities hCDi, and determine the quantity hC02D i through the discrete version of
(10),

hCDi5
1

nvox

Xnvox

w51

eC w
D ; (32)

hC02D i5
1

nvox

Xnvox

w51

ðeC w
D 2hCDiÞ2; (33)

where eC w
s is the concentration of species s, in voxel w of the unit cell eX.

3.4. Reactive Transport Modeling Procedure
In this section, we describe how the modeling tools introduced so far are combined together to come up
with an algorithm providing an upscaled solution strategy for the reactive transport setting introduced in
section 2.1.

To model longitudinal transport of a reactive species, our goal is now to predict the reactive term of the
volume-averaged reactive transport equations (equation (13)). To this end, we introduce a reactive species, B,
and compute concentrations of both the reactive and conservative components. Introduction of reactive

Figure 4. Definition sketch of the proposed reactive transport algorithm applied for each LATERS time level tj. (Lagrangian
cyan loop) For each particle pi, we assign the longitudinal position ~x according to the travel time, while the transversal
position ~y is randomly chosen from the distribution P0;velð ~Im ; kÞ. (Eulerian orange steps) Once all particles are mapped to
the reference cell, we compute concentration moments in each cell, evaluate the reactive term, and update the mass of
each B particle.
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species B only requires the assignment of appropriate mass to each individual particle in the random
walk simulation described above. Each particle pi in the LATERS model carries mass mB of species B and a
mass mD of the D component. While the latter is constant, the former changes as the simulation progresses
due to reactions. The mass of all particles used to compute the concentration of B as they are introduced in
the system is,

mBðpiÞðt5tð0ÞÞ5 mDðpiÞ
2

: (34)

Recall that we added 1 to the concentration of D so that it would be positive. This means that as B particles
are injected into the domain (i.e., prior to reaction) the mass of the conservative component associated
with each particle pi is twice that of the reactive component, B.

We now detail our numerical methodology to approximate the longitudinal profiles of volume-averaged
concentrations of all chemical species at a given time level tj. To do so let us assume that all quantities
related to the time tj21 are known. We perform the following steps (which are also graphically reported in
the orange steps in Figure 4):

1. Approximate the position of the particles at time tj (cyan-filled loop in Figure 4). This is obtained as
detailed in section 3.3.

2. Compute hCDi; hCBi in each cell along x and determine the quantity hC02D i using (33).
3. Compute rðtjÞ by replacing the volume-averaged quantities approximated using by (32)-(33) into defini-

tion (15).
4. Reduce the mass of B particles appropriately. This is done by first computing the change in average con-

centration that must occur,

/DhCBi52rðtjÞdt; (35)

where DhCBi5 hCBðtj11Þi2hCBðtjÞi is the change in concentration of B over the time step dt. We then calcu-
late the new mass mB of the particles in the cell as,

mBðpiÞðtj11Þ5
hCBðtj11ÞiVF

np
; (36)

where np is the number of particles in the cell and i is the index of a particle within the cell. It is not neces-
sary for particles within the cell to have equal mass to each other, but this eliminates possible numerical
issues (particles with negative mass).

Steps 2–4 in the above list are represented by orange-filled items in Figure 4.

Average concentrations of reactive species A and the reaction product C can be computed for each time tj

from hCBi and hCDi as,

hCAi5hCBi2hCDi11 (37)

hCCi5
hCDi

2
2hCBi: (38)

4. Results

4.1. Predicting Concentrations of Reactive Species
Here we compare the predictions of the LATERS Markov model to the results of the high-resolution
pore-scale simulation of bimolecular reactive transport, described in section 2. Dimensionless time tD5 t

Pe

will be used to denote intercomparison times so that tD 5 1 corresponds to the Taylor or diffusion time
scale t̂ D5̂l

2
D̂.

Practically speaking, the most relevant metrics for evaluation of our model are how well we predict the
average concentration of the reactive components, hCAi; hCBi, and the reaction product, hCCi relative to the
benchmark measured values. Thus, we focus on these first. Figure 5 shows these comparisons. The
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predictions of average concentrations of the reactive species and the product are qualitatively and quantita-
tively good. This can be seen more clearly from the scatter plot in the bottom plot, which shows the pre-
dicted value of hCii versus the benchmark value at all times (from.02 to 1 at intervals of.02) and at every cell
in the domain, where the coefficient of determination, R2 > :99 for all species. Focusing on some specific
aspects that are key to capture we take a closer look at peak concentrations (e.g., Chiogna & Bellin, 2013;
Gramling et al., 2002). Figure 6 directly compares the peak values of the concentration of species C, which
demonstrates that indeed the peaks are well matched by the LATERS Markov model. We also include the
results of a LATERS Markov model which assumes complete mixing. This is done by running the LATERS
Markov model and setting hC02i50 in equation (15) and can be seen as the green squares in Figure 6 which
persistently overpredict the peaks.

4.2. Successes and Failures of Intermediate Steps
The previous subsection highlights the success of our proposed LATERS model in achieving our end objec-
tive to predict reactive transport with our proposed upscaled model. We now discuss in detail all the inter-
mediate steps which lead to the final results, discussing successes and limitations of the proposed

Figure 5. (top and middle) Average concentration of reactive species A and B and product species C at various times. Circles indicate benchmark values and solid
lines are the predictions of the LATERS Markov model. (bottom) Scatter plot of average concentration of reactive species A and B and product species C for all cells
in the domain and all times.
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approach. The first metric we compare is the average of the conservative component of concentration,
hCDi. We expect the LATERS Markov model to accurately predict hCDi, because for average longitudinal
transport the LATERS Markov model is equivalent to the standard Spatial Markov model, which as noted in
the Introduction has had great success in reproducing conservative transport in many settings. Figure 7
shows the comparison of benchmark and predicted values of hCDi at various times. Not surprisingly, the
predicted values of hCDi closely match the benchmark values. This is evident from the scatter plot in the
right plot, where again R2 > :99.

The next metric for comparison is the variance of the conservative component, hC02D i. Recall that
hC02D i is a key contributor to the amount of reaction that takes place, so it is important that the
LATERS Markov model can predict this value accurately. The key to accurately predicting hC02D i, is in
reasonably mapping particle positions. We made many simplifying assumptions when going through
this step, so here we check how much of an effect these assumptions had on the model’s predictive
capability.

Figure 8 shows the spatial distribution of benchmark and predicted values of hC02D i at various times with the
reactive region (where both CA and CB are nonnegligible, having values of at least 1024) highlighted. For

Figure 6. Peak concentration of product species C at various times.

Figure 7. (left and middle) Average concentration of conservative component D at various times. Circles indicate benchmark values and solid lines are
the predictions of the LATERS Markov model. (right) Scatter plot of average concentration of conservative component D for all cells in the domain and
all times.
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the most part, the predicted values of hC02D i match closely to the benchmark values, while the predicted val-
ues consistently overpredict hC02D i behind the concentration front location.

The cyan-shaded region on Figure 8 shows the range of acceptable error. A certain amount of numerical
background noise occurs in the calculation of hC02D i in both the benchmark and the LATERS Markov mod-
els due to the fact that we are using a limited number of discrete particles on a discrete grid. To quantify
this amount in the benchmark simulation, we consider a region of the domain far past the front of spe-
cies B. Recall that the domain is initially filled with a uniform concentration of species A, thus, at large

Figure 8. Variance of concentration of conservative component D at various times. The figures correspond to t5:2; :4; :6; :8; and 1.
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distances where species B has yet to reach, the concentration should be uniform (hC02D i50). Since in this
region of the domain the only cause for hC02D i > 0 is numerical noise, we calculate hC02D i at the last cell of
the domain, which species B does not reach. We consider error in the prediction of the LATERS Markov
model to be acceptable if it is within this amount of the calculated benchmark value of hC02D i.

The predictions deviate outside the acceptable error range by a small amount for t 5.2, which leads to a
slight overprediction of the peak of the product species shown in Figure 6 and after the reactive region,
where they consistently underpredict hC02D i. The latter is due to the fact that the LATERS Markov model does
not simulate A particles, and thus predicts no variance where no B species is present. Note that this has no
impact on the reactive simulation, i.e., if there are no B particles present, the reactive term is zero (because
hCBi50), so our prediction of hC02D i at these locations is irrelevant. The region of importance is highlighted
explicitly by the yellow strip in Figure 8. Outside of this region any mismatches have no consequence on
upscaling of the reaction.

Next, in order to determine how quantitatively good the model predictions are, we consider two error
measures, the mean absolute error (MAE(s)) and the relative error in total mass (�s), defined as follows,

MAEðsÞ5 1
ncells

Xncells

j51

jhCspred i
j
2hCsact i

jj (39)

�s5

Xncells

j51
hCspred i

j
2hCsact i

jXncells

j51
hCsact i

j
; (40)

where ncells 5 600 is the total number of unit cells in the domain such that the full domain extends far
beyond the concentration front, hCsact i

j is the average concentration of species i in the benchmark
simulation, and hCspred i

j is the average concentration of species i predicted by the LATERS Markov
model in the jth unit cell. Figure 9 shows these error measures. Note that �D should be identically
zero, because D is a conservative component, however, due to the fact that we cannot create a con-
stant injection with discrete particles, there is a small amount of error. Notice that the error in the
mass of the product species changes sign throughout time: at the very earliest time we are overpre-
dicting the amount of product produced and then we proceed to underpredict and finally at t 5.8 we
go back to overpredicting. At first, this may seem strange, but it can be explained by careful consider-
ation of Figures 6 and 8. Up until t � :2, the peak concentration of product species C is overpredicted,
because the variance of the conservative species hC02D i is underpredicted. This overreaction causes the
overlap between the reactive species A and B to be small behind the concentration front, thus leading
to underprediction of reactions behind the front. Later, around t 5.6, the peak concentration of

Figure 9. (left) Mean absolute error of predictions (MAE(s)) of average concentrations of all components throughout time. (right) Error in predictions of total mass
(�s) of all components throughout time.
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product species C is underpredicted, because the variance of the conservative species hC02D i is overpre-
dicted in the reactive region (even though it is still within the acceptable range). This lower reaction
causes the overlap between reactive species A and B to be large behind the concentration front, thus
leading to overprediction of reactions behind the front. While the relative errors in total mass of the
reactive and product species are greater than those of the conservative component, they only go
above 5% at the very earliest time measured, when very little mass is present in the system. The vast
bulk are below 1% for all but the product species.

Error convergence analyses to look at discretization effects were also conducted, exploring the influence of
both particle numbers as well as number of travel time bins used. For the interested reader, these results
are available in the supporting information (Bolster et al., 2014; Le Borgne et al., 2011; Sund et al., 2015b,
2016).

5. Conclusions

The LATERS Markov model proposed here was able to accurately predict mean concentrations of not only
conservative species, but also reactive species involved in a benchmark bimolecular mixing-driven reactive
system. The key idea of this approach is to combine Lagrangian transport models with the Eulerian deriva-
tion of effective reaction rate obtained through volume averaging. Our proposed model provides a numeri-
cal methodology to approximate the closure formulation associated with formal upscaling of bimolecular
reactive transport, under advection-dominated transport conditions and when local reaction rates are asso-
ciated with small time scales if compared to transport (i.e., large Pe and Da). The model in its current form is
restricted to a periodic flow domain. It is also subject to the same assumptions and constraints as the Spatial
Markov model and Volume Averaging method (i.e., spatially stationarity steady velocity and multiple length
and time-scale constraints).

The LATERS Markov model is built using pore-scale simulation of conservative solute transport across
two unit cells, like many previous implementations of the spatial Markov model. Starting from this infor-
mation, we devise a methodology to reconstruct local fluctuations of a conservative component, which
are the key to modeling mixing-driven bimolecular transport. To this end, we resort to a closure
approach, which relies on a simplified unit cell. This latter is characterized on the basis of pore-scale
information. Our approach combines advantages of the Lagrangian and Eulerian modeling perspective:
the Lagrangian transport method naturally accounts for nonlocal transport terms, while the Eulerian
upscaled reaction model allows for the application of formally derived upscaled reaction rate
expressions.

We test the LATERS Markov model by comparing the results with those obtained from the pore-scale simu-
lation of mixing-driven bimolecular reaction within a simple two-dimensional porous medium. The LATERS
Markov model, within this context, appears able to predict the space-time evolution of the variance of local
concentration of a conservative solute, indicating that the proposed procedure may be well suited to pre-
dict mixing. Accurate predictions are also obtained in predicting the space-time evolution of the concentra-
tions of the two reactants and of the product. Most noteworthy, a close match is obtained in the early time
mixing regime (preasymptotic regime), which is the regime where it is most challenging to make accurate
predictions by means of standard Eulerian upscaling formulations.

While this initial study shows the potential promise of the LATERS Markov model, the considered flow
domain is relatively simple. As such future research should focus on application to more complex bench-
marks, that include larger-scale heterogeneity, both at pore (e.g., Porta et al., 2016) and Darcy scales
(e.g., Herrera et al., 2017), in particular extending the methodology to nonperiodic systems, where for
example the Spatial Markov model has been shown to work well for conservative transport (e.g., Kang
et al., 2017; Le Borgne et al., 2008a; Massoudieh et al., 2017). Additionally a full and detailed comparison
between the LATERS Markov model and other upscaled reactive transport models that exist is warranted.
For example, while we have weak evidence suggesting the LATERS Markov model can run faster than
previous purely Eulerian volume averaging approaches, none of the considered codes were optimized or
written with efficiency and benchmarking in mind and as such rigorous comparison studies may be
interesting.
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