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a b s t r a c t 

It may often be tempting to take a fractional diffusion equation and simply create a fractional reaction- 

diffusion equation by including an additional reaction term of the same form as one would include for 

a standard Fickian system. However, in real systems, fractional diffusion equations typically arise due to 

complexity and heterogeneity at some unresolved scales. Thus, while transport of a conserved scalar may 

upscale naturally to a fractional diffusion equation, there is no guarantee that the upscaling procedure in 

the presence of reactions will also result in a fractional diffusion equation with such a naive reaction term 

added. Here we consider a multicontinuum mobile-immobile system and demonstrate that an effective 

transport equation for a conserved scalar can be written that is similar to a diffusion equation but with 

an additional term that convolves a memory function and the time derivative term. When this memory 

function is a power law, this equation is a time fractional dispersion equation. Including a first-order re- 

action in the same system, we demonstrate that the effective equation in the presence of reaction is no 

longer of the same time fractional form. The presence of reaction modifies the nature of the memory 

function, tempering it at a rate associated with the reaction. Additionally, to arrive at a consistent effec- 

tive equation the memory function must also act on the reaction term in the upscaled equation. For the 

case of a bimolecular mixing driven reaction, the process is more complicated and the resulting memory 

function is no longer stationary in time or homogenous in space. This reflects the fact that memory does 

not just act on the evolution of the reactant, but also depends strongly on the spatio-temporal evolution 

and history of the other reactant. The state of mixing in all locations and all times is needed to accu- 

rately represent the evolution of reactants. Due to this it seems impossible to write a single effective 

transport equation in terms of a single effective concentration without having to invoke some approxi- 

mation, analogous to a closure problem. For both reactive systems simply including a naive reactive term 

in a fractional diffusion equation results in predictions of concentrations that can be orders of magnitude 

different from what they should be. We demonstrate and verify this through numerical simulations. Thus, 

we highlight caution is needed in proposing and developing fractional reaction-diffusion equations that 

are consistent with the system of interest. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Anomalous transport, that is, transport where dispersion, as

haracterized by the spreading of a second centered moment, does

ot display a scaling consistent with Fickian behavior, has been

bserved in so many settings that Eliazar & Klafter were motivated

o write a paper entitled ’ Anomalous is Ubiquitous ’ [1] . Physical

ystems where anomalous transport has been observed include

lectron transport in semiconductors [2,3] , flow and transport in

orous media [4–6] , streams and rivers [7–9] , fractured media
∗ Corresponding author. 

E-mail addresses: bolster@nd.edu , diogobolster@gmail.com (D. Bolster). 

s  

a  

s  

ttp://dx.doi.org/10.1016/j.chaos.2017.04.028 

960-0779/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
10,11] , turbulence [12,13] , biofilms [14] , gels [15] and plasmas

16] ; optical media [17] ; sediment transport [18–20] ; surficial

arth processes [21,22] ; biology [23,24] ; ecology [25,26] ; eco-

omics [27,28] and many many more. The common thread across

ll of these systems is that some initial distribution of a scalar

ithin (e.g., tracer concentration in turbulent flow) spreads at

ub- or super-diffusive rates, leading to fundamentally different

istributions displaying features such as heavy tailing, which are

nexpected with conventional Fickian models. These disparities

ypically occur due to very broad distributions and separation of

patial or temporal scales that arise due to structural complexities

ssociated with the systems of interest (e.g. imperfections in

emiconductors, hierarchical structure of eddies in turbulence and
s in multicontinuum systems: When might time fractional equa- 
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naturally occurring geologic heterogeneities that give rise to broad

distribution of permeabilities in porous media). 

The literature on anomalous transport is vast and many differ-

ent approaches to modeling anomalous behaviors have emerged,

including, but in no way limited to, continuous time random

walks [29,30] , multicontinuum models [31,32] , projector for-

malisms [33,34] , Markov chain random walks [4,6,35–38] and

fractional dispersion models [5,39,40] . Most of these frameworks

share commonalities, are different mathematical conceptualiza-

tions of the same problem, or are limit cases of one another.

In this paper, we will focus on a form of fractional transport

equations, whose application spans many of the aforementioned

physical systems (e.g. [24,41–44] ), namely a specific form of time

fractional dispersion equation [45] that can be rigorously derived

as the equation for effective transport for a specific and important

microscale model system. 

The bulk of work to date has focused on modeling the transport

of conserved scalar quantities. However, in almost all of the phys-

ical systems mentioned above, chemical reactions or reactive-like

processes are also important. These reactions may either be (i)

single species or (ii) multispecies interaction-based reactions. For

example, in the context of transport through highly heterogeneous

porous media (i) degradation reactions are commonly modeled as

first-order reactions (e.g. [46] ) and (ii) mixing-driven multispecies

reactions can occur at the interfaces between two geochemically

distinct waters [47–50] . Similar applications of interest occur in

cell biology (e.g. [51–53] ) and economics (e.g. [54,55] ). However,

given that any observed anomalous transport typically occurs due

to complexity and heterogeneity at some unresolved scale, it is

not immediately clear how one should include chemical reactions

in anomalous transport models, or at least so we argue here. 

In Fickian transport systems it is common to model chemi-

cal reactions by simply adding a reaction term r to the governing

equation for transport, i.e. 

∂C i 
∂t 

− D 

∂ 2 C i 
∂x 2 

= −r, (1)

where C is concentration and D a dispersion coefficient. For a first-

order reaction i = 1 and r = λC 1 or for a second-order mixing drive

reaction i = 1 , 2 and r = kC 1 C 2 . In this paper we will work with

a time-fractional dispersion equation, which was the focus of the

work of [45] . For transport of a conserved scalar the governing

equation is 

∂C i 
∂t 

+ β
∂ γ C i 
∂t γ

− D 

∂ 2 C i 
∂x 2 

= 0 , (2)

where β—the so-called capacity coefficient—is a measure of the ra-

tio of immobile to mobile mass at any moment, and 0 < γ < 1 if

the exponent of the fractional time derivative. Thus, given (1) and

(2) it may be tempting to look at these equations and simply pro-

pose an equation of the exact same form, namely 

∂C i 
∂t 

+ β
∂ γ C i 
∂t γ

− D 

∂ 2 C i 
∂x 2 

= −r (3)

where r takes the exact same form as above. We refer to this as the

naive approach. Indeed, in the broad and general context of frac-

tional dispersion equations, not only limited to the specific struc-

ture of (2) , many authors, including us, have done precisely this

(e.g. [56–59] ). Here we challenge this idea and pose whether it re-

ally makes sense to do so at all. It is already known in the litera-

ture that in certain instances just plugging in a reaction term r in

the same format as for a diffusion equation is not only a bad idea,

but can actually lead to unphysical results [60] , including predic-

tions of negative concentrations in the context of time-fractional

diffusion-reaction equations. In the context of fractional dispersion

equations [61] developed a consistent manner of incorporating first

order chemical reactions, while in the context of a continuous time
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
andom walk [62] demonstrated how to include mixing driven bi-

olecular reactions. While such progress is invaluable, open ques-

ions still remain. For example, is the upscaled equation unique?

urely different microscale configurations can result in identical

pscaled frameworks for conservative transport, but not for reac-

ive systems. Also, some nonlocal model derivations, including that

f [62] , require an assumption of perfect mixing at a certain scale

nd without a rigorous upscaling it is not clear if and when such

n assumption might be valid. Here we add to this discussion in

he goal of ultimately developing more correct and accurate effec-

ive anomalous reactive transport models. In particular, we will fo-

us on a physical problem setup where the time-fractional disper-

ion equation emerges very naturally as the governing equation for

he evolution of total concentration for a conservative species [45] .

y working within the same framework we then try to derive the

ppropriate reactive transport equation to see if it still emerges as

 fractional dispersion equation with a simple additional r term to

epresent reactions. Note that for the sake of simplicity we have

ot included a drift (advection) term in any of the above transport

quations, but it is relatively straightforward and does not change

he fundamental message we wish to convey here. 

. A system where a time fractional dispersion equation for 

onservative transport emerges naturally 

.1. Theory - infinite parallel multicontinuum with power law 

emory 

One very natural and practically important way of obtaining a

ractional dispersion equation for transport of total concentration

as developed by [45] who then applied it to model two distinct

ydrologic systems: transport in highly heterogeneous porous me-

ia and transport in a mountain stream. By mixing their formalism

ith some of the ideas developed in [63] , we can readily derive a

ime-fractional dispersion equation from first principles to describe

he concentration evolution of a conservative tracer. To begin, con-

ider a multicontinuum system made up of one mobile and a con-

inuum of immobile regions that can exchange mass with the mo-

ile region. Transport of the mobile and immobile components are

overned by 

∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −β

∫ 
f (α) α(C m 

− C im 

(α)) dα (4)

∂C im 

(α) 

∂t 
= α(C m 

− C im 

(α)) ∀ α 0 ≤ α ≤ ∞ (5)

here the density function f ( α) describes the volume fraction of

mmobile regions associated with exchange rate α, and β is the

atio of immobile to mobile volume. C m 

is the concentration asso-

iated with the mobile phase and C im 

( α) is the immobile concen-

ration associated with exchange rate α. Without loss of generality

ere we set β = 1 . Note that in (5) we have also neglected the

resence of any advection, which could be present in many real

ystems. While these are important effects that can influence the

xact final outcome, neither of these assumptions affects the cen-

ral messages of this paper and so for the sake of simplicity we

o not consider them as they merely add length, but not content,

o the mathematics. Additionally, replicating conditions associated

ith typical experiments (e.g. [9] ), for all situations we consider

he initial concentration in the immobile regions to be zero; i.e.,

 im 

(α, t = 0) = 0 . Thus (5) can readily be solved such that 

 im 

(α) = αC m 

∗ e −αt , (6)

here ∗ represents convolution in time. Taking the time deriva-

ive of this and defining the total immobile concentration
s in multicontinuum systems: When might time fractional equa- 
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Fig. 1. Numerical Solutions for Conservative Transport corresponding to a narrow 

pulse (top) and step (bottom) initial condition. The solid lines correspond to the 

solution of the full system as described in Eqs. (4) and (5) and the dots to the so- 

lution of the upscaled fractional dispersion Eq. (11) . The different colors correspond 

to different times t = 0 . 1 (black), 0.5 (blue), 1 (red), 2.5 (green), 10 (cyan) and 50 

(magenta). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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e  
 IM 

= 

∫ 
f (α) C im 

(α) dα we can write 

∂C IM 

∂t 
= 

∫ 
f (α) 

∂C im 

(α) 

∂t 
dα = g(t) ∗ ∂C m 

∂t 
+ g(t) C m, 0 (7)

here g(t) = 

∫ 
α f (α) e −αt dα is known as the memory function.

ombining (4) and (5) we can write 

∂C m 

∂t 
+ g(t) ∗ ∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −g(t) C m, 0 . (8) 

xcept for some requirements on the form of g ( t ), such as mono-

one decreasing [64] , this is a very general formulation. However,

y choosing a specific distribution of exchange rates, such that

(t) = 

t −γ

�(1 −γ ) 
, the second term above is a Caputo fractional deriva-

ive and (8) may be written as 

∂C m 

∂t 
+ 

∂ γ C m 

∂t γ
− D 

∂ 2 C m 

∂x 2 
= − t −γ

�(1 − γ ) 
C m, 0 . (9) 

sing (7) , we can solve for C m 

and 

∂C m 
∂t 

in terms of C IM 

; combining

ith (4) and (5) we can also write an equation for the transport of

mmobile concentration such that 

∂C IM 

∂t 
+ 

∂ γ C IM 

∂t γ
− D 

∂ 2 C IM 

∂x 2 
= 

t −γ

�(1 − γ ) 
C m, 0 . (10) 

efining total concentration C tot = C m 

+ C IM 

and noting that based

n our chosen initial condition for immobile concentration C tot (t =
) = C m 

(t = 0) , transport for total concentration is governed by 

∂C tot 

∂t 
+ 

∂ γ C tot 

∂t γ
− D 

∂ 2 C tot 

∂x 2 
= 0 . (11) 

Thus we have a system where a time fractional dispersion equa-

ion emerges naturally as the equation describing transport of a

olute in this complex system. This equation, and related, has

ad great success in replicating observed anomalous transport in

iverse systems including subsurface [45] and surface hydrology

65] and surface processes in the earth sciences [41] among many

thers. 

.2. Numerical example 

As an example to visually highlight the rigorous link between

qs. (4) and (5) and Eq. (11) we present some sample results by

olving the two distinct systems numerically. While the theoreti-

al link is rigorous as shown, we develop this numerical capabil-

ty mainly for later comparison of the systems with chemical re-

ctions. In all cases we consider a finite domain −5 ≤ x ≤ 5 with

o flux boundary conditions at x = −5 and x = 5 . For all exam-

les we set D = 1 . Eqs. (4) and (5) are solved via finite differences

ith backward differences in time and central differences in space.

he continuous density f ( α) is approximated by a discrete counter-

art following the methods of [66,67] and [68] , who in the con-

ext of conservative and reactive multicontinuum transport models

emonstrated how to generate power-law memory functions over

ny desired range as the sum of a large number of discrete ex-

onential ones. While they showed that using as few as 20 dis-

rete states was sufficient to obtain excellent results, we chose to

se 100 as we found that with this value our results converged for

ll problems and remained unchanged if we included more (tested

gainst 10 3 and 10 4 ). By using a finite number, this means that the

emory function has some maximum truncation time, which was

hosen to be 6 orders of magnitude larger than the largest time

cales simulated, meaning that over the time scales of simulation

he truncation should play no role. Eq. (11) is also solved by finite

ifferences with the time derivative and diffusion term solved as

bove. The fractional derivative term is numerically approximated

ollowing the finite difference approximations presented by [69] . 

Fig. 1 shows a comparison of the solution for total concentra-

ion obtained by both approaches. Two different initial conditions
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
re considered, which were chosen as they best highlight some of

he features that will be important for the reactive system exam-

les in the following sections. These are a step initial condition

here half the domain is filled unit concentration (i.e. C(x, t = 0) =
 − �(x ) ) and a narrow unit concentration pulse in the center of

he domain (i.e. C(x, t = 0) = �(x + 0 . 1) − �(x − 0 . 1) ), where �( x )

s the Heaviside step function. In both cases we show results for

= 0 . 25 , which will be used in all subsequent examples. Various

ther values of γ were tested with similar outcomes and this value

as chosen as it lies in the heavier tail range enabling certain re-

ults to be highlighted visually in a more clear manner. As is clear

rom the figure, for both initial conditions, the predictions by both

odels are virtually identical as one would expect given the rig-

rous link between the two, suggesting our numerical approach is

obust. 

. First order reactions 

.1. A naive approach to including first order reactions and why it is 

rong 

As noted in the introduction, now that we have a governing

quation for total concentration like (11) , it may be tempting to
s in multicontinuum systems: When might time fractional equa- 
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l  

t  

l  
simply write that the reactive counterpart for a first-order reaction

for this system would be 

∂C tot 

∂t 
+ 

∂ γ C tot 

∂t γ
− D 

∂ 2 C tot 

∂x 2 
= −λC tot . (12)

Before deriving a consistent equation for the total concentration,

following the methods in Section 2 , let us point out an important

potential physical problem with the model in (12) . If the system is

truly representing a first-order reaction, where concentration de-

grades at rate λ in all compartments of the multicontinuum, then

if we inject a unit of mass into the system, the total mass in the

system must decay exponentially at rate λ irrespective of where

that mass is located. Integrating (12) over all space, assuming natu-

ral boundary conditions at x = ±∞ or no flux boundary conditions

for a finite domain, we can write 

∂M 

∂t 
+ 

∂ γ M 

∂t γ
= −λM M(t = 0) = 1 (13)

where M = 

∫ ∞ 

−∞ 

C tot dx . Laplace transforming ( t → s ) we can write a

solution 

˜ M = 

1 + s γ −1 

s + λ + s γ
� = 

1 

s + λ
, (14)

where the tilde denotes a Laplace transformed variable. Eq. (14) is

clearly not the correct exponential decay at rate λ, suggesting that

(12) is not a physically consistent equation. In fact, for small s , cor-

responding to large times, to leading order ˜ M ∼ s γ −1 , which means

that at late time the total mass will decay as a power law in time

with scaling M(t) ∼ t −γ , much slower than the expected exponen-

tial decay. 

3.2. Correct effective equation for total concentration from first 

principles 

Following all the steps for conservative transport in Section 2 ,

we start by writing transport equations for mobile and immobile

concentrations assuming a first-order reaction of rate λ in all com-

partments of the multicontinuum such that 

∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −

∫ 
f (α) α(C m 

− C im 

(α)) dα − λC m 

(15)

∂C im 

(α) 

∂t 
= α(C m 

− C im 

(α)) − λC im 

(α) ∀ α 0 < α < ∞ . (16)

Solving (16) we can relate immobile and mobile concentrations: 

∂C IM 

∂t 
= 

∫ 
f (α) 

(
α

∂C m 

∂t 
∗ e −(α+ λ) t + αC m, 0 e 

−(α+ λ) t 

)
dα

= 

ˆ g (t) ∗ ∂C m 

∂t 
+ 

ˆ g (t) C m, 0 , (17)

where ˆ g (t) = g(t) e −λt is now a modified memory function. Com-

bining (15) and (16) and solving for C m 

: 

∂C m 

∂t 
+ 

ˆ g (t) ∗ ∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −λ(C m 

+ 

ˆ g (t) ∗ C m 

) − ˆ g (t) C m, 0 . 

(18)

As before we can write an equation for the transport of the immo-

bile concentration by solving for C m 

in (17) and substituting into

(18) 

∂C IM 

∂t 
+ 

ˆ g (t) ∗ ∂C IM 

∂t 
− D 

∂ 2 C IM 

∂x 2 
= −λ(C IM 

+ 

ˆ g (t) ∗ C IM 

) + 

ˆ g (t) C m, 0 . 

(19)

With this, the governing equation for total concentration is 

∂C tot 

∂t 
+ 

ˆ g (t) ∗ ∂C tot 

∂t 
− D 

∂ 2 C tot 

∂x 2 
= −λ(C tot + 

ˆ g (t) ∗ C tot ) . (20)
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
This looks very similar to the time fractional dispersion equa-

ion for conservative transport in (11) , but a careful look reveals

hat this not entirely the case. First, the modified memory func-

ion ˆ g (t) is not the conservative memory function g ( t ), which is

hat gave rise to the fractional derivative. Rather it is g(t) e −λt ,

hich merges a power law and a tempering effect. Physically, this

ffect arises because after a sufficiently long time, particles are

ore likely to have reacted than remain trapped in an immobile

hase and so will not be released back into the mobile region. An-

ther important feature that is worth noting is that the reactive

erm on the right hand side is not the naive term, discussed in

ection 3.1 , but a more complicated expression that also includes

he new modified memory function. Because it acts on the concen-

ration and not the time derivative of concentration, this is more

ike a fractional integral than a fractional derivative, although again

he exponential tempering must be noted. Now integrating (20) in

pace and assuming an initial unit mass we can write an equation

or total mass, which in Laplace space reads 

 

˜ M − 1 + 

˜ ˆ g(s ˜ M − 1) = −λ( ˜ M + 

˜ ˆ g ˜ M ) ⇒ 

˜ M = 

1 + 

˜ ˆ g 

(s + 

˜ ˆ gs + λ + λ ˜ ˆ g) 

= 

1 

s + λ
⇒ M(t) = e −λt (21)

hich is the correct exponential decay that we expect to occur and

s consistent with the first order reaction system we proposed. 

.3. Numerical comparison 

Using the same numerical methods as described for the con-

ervative transport case, here we present numerical results for a

rst-order reaction problem. We chose the second initial condi-

ion setup, a unit concentration block in the center of the do-

ain (i.e. C(x, t = 0) = �(x + 0 . 1) − �(x − 0 . 1) ) as this best high-

ights certain features. Three different reaction rates λ = 0 . 1 , 1 , and

0 are chosen. For this comparison we solve three model systems:

i) Eqs. (15) and (16) , which represent the full multicontinuum sys-

em, (ii) (12) , which we argue is the naive and incorrect approach

o including chemical reactions in this system and (iii) (20) , which

e argue should be the correct upscaled representation of case (i).

Representative concentration profiles for multiple different re-

ction rates and at two distinct times are shown in Fig. 2 . In all

ases except for the very smallest reaction rate at the smallest

ime, it is abundantly clear that the concentrations predicted with

he naive approach in (12) do not match those of the full multi-

ontinuum system, while the consistently derived Eq. (20) matches

ell everywhere. For the largest reaction rate at the largest con-

idered time the mismatch in concentration is on the order of 40

rders of magnitude. It is unsurprising that all three models match

easonably well for the smallest reaction rate at the smallest time,

ecause at that point very little reaction will actually have oc-

urred and transport is still close to conservative and so this agree-

ent needs to be taken with a grain of salt. Fig. 3 shows plots of

otal mass against time. In these, the mismatches and agreements

tand out even more clearly. In particular, in the right-hand figure

here mass against time is shown a logarithmic scales, it is imme-

iately clear that for systems (i) and (iii) the total decay in mass is

xponential as we had predicted, while for naive model (ii) a late

ime scaling of t −1 / 4 , consistent with (14) , emerges. 

. Bimolecular reactions 

The previous example of a first-order reaction already high-

ighted significant complications in simply extending fractional

ransport equations from conservative to reactive transport prob-

ems. While we were able to derive a consistent reactive transport
s in multicontinuum systems: When might time fractional equa- 
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Fig. 2. Numerical Solutions for a first-order reaction with a pulse initial condition. Concentration profiles at two different times t = 1 and 10 are shown in the top and 

bottom rows respectively. Three different rates of reaction λ = 0 . 1 , 1 and 10 are considered also. The magenta circular dots correspond to the solution of the full system as 

describe in Eqs. (15) and (16) . The blue lines are associated with solving the naive incorrect approach equation in (12) , while the green line corresponds to the numerical 

solution of the consistently upscaled Eq. (20) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The evolution of total mass over time for a first-order reaction with the pulse initial condition. (11) . The magenta circular dots correspond to the solution of the full 

system as described in Eqs. (15) and (16) . The blue lines is associated with solving the naive incorrect approach equation in (12) , while the green line corresponds to the 

numerical solution of the consistently upscaled Eq. (20) . The figure on the right is the same as the one on the left, but with logarithmic axes to highlight the late asymptotic 

time power law scaling of the red lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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quation and see commonalities with the conservative problem,

hat system was remarkably simple, given that a first-order re-

ction system is still linear and so benefits from superposition.

n this section, we attempt to extend the approach to a more

omplex, but important and fundamental reaction: a kinetic ir-

eversible bimolecular reaction A + B → C. We do this to further

ighlight that great caution must be taken when extending ideas

rom conservative transport to reactive scenarios. Consider trans-

ort equations for species A and B in mobile and immobile regions

uch that 

∂C m,i 

∂t 
− D 

∂ 2 C m,i 

∂x 2 
= −

∫ 
f (α) α(C m,i − C im,i (α)) dα − kC m,A C m,B 

i = A, B (22) 

∂C im,i (α) 

∂t 
= α(C m,i − C im,i (α)) − kC im,A (α) C im,B (α) ∀ α

0 < α < ∞ (23) 

here k is the rate of reaction and the term kC A C B represents the

ate of reaction following the law of mass action. To proceed as

n the previous examples we need a solution for (23) , which can
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
ormally be obtained. For example, for i = A 

 im,A (α) = 

(∫ 
αC m,A exp 

[ ∫ 
kC im,B (α) + αdt) 

] 
dt 

)

× exp 

[ 
−

∫ 
kC im,B (α) + αdt 

] 
= αC m,A ∗ e −αt−∫ 

kC im,B (α) dt (24) 

ut note the resultant expression is complicated and highly

oupled to the time-varying concentration of the other species

hrough the integral over time in the exponential term. It is com-

lex and, in principle, requires unknown knowledge, given that

he concentration of the other species B will have a very similar

olution that depends on the time history of the concentration

f species A in this same fashion. Nonetheless, for the sake at

ttempting completeness, let us continue as we did for the con-

ervative and first-order reaction cases. Taking the time derivative

f (24) 

∂C im,A (α) 

∂t 
= α

∂C m,A 

∂t 
∗ e −αt−∫ 

kC im,B (α) dt + αC m,A, 0 e 
−αt−∫ 

kC im,B (α) dt . 

(25) 
s in multicontinuum systems: When might time fractional equa- 
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Multiplying this by f ( α) and integrating results in 

∂C IM,A 

∂t 
= ğ (x, t) ∗ ∂C m,A 

∂t 
+ ğ (x, t) C m,A, 0 . (26)

This resembles the solutions for the conservative and first-order

reaction systems, but like the first-order reaction system a new

modified memory function ğ (x, t) = 

∫ 
α f (α) e −αt−∫ 

kC im,B (α) dt dα
emerges. However, this memory function is much more struc-

turally complex than the previous cases. It depends explicitly on

the evolution of the other reactant B throughout all of the immo-

bile zones, which itself is governed by a similarly complicated ex-

pression. Recall, the memory function arises in these systems, be-

cause of memory effects that integrate time history. Thus it makes

sense that for a coupled reactive system, the time history of the

other reactant matters also, yielding a function that now also de-

pends on space, due to possible spatial variability of reactant B . In

particular, unlike the previous linear examples, it is not unique and

very dependent on the specific initial conditions of the problem,

meaning that it is perhaps not usefully predictable. Similar compli-

cations for upscaling of bimolecular reactions via volume averaging

have been noted by [70] , who emphasize that for coupled reactive

systems initial condition is everything [71] . It may be possible, using

assumptions and approximations similar to [70] , to simplify this

memory function and obtain a reasonable approximation. Similarly

a perturbation-type solution for small reaction rate, analogous to

that in [72] , may yield a more manageable and decoupled system

and be reasonable for small reaction rates k . However, while pos-

sible, neither of these approaches is as universally satisfying as the

conservative and first-order reaction case, as they are not exact and

would require potentially strong and limiting assumptions (e.g., the

approximate models can only be applied over a small and restric-

tive range of Damkohler or Peclet numbers), which limit applica-

bility (e.g., [73] ). 

Also developing or proposing such a closure would distract

from the central question here, which is whether an effective

transport equation with the form of a fractional dispersion equa-

tion emerges naturally for this setup, as it did for conservative

transport. To this end, recall that the fractional derivative in the

transport equation for total concentration arises due to the struc-

ture of the memory function. While there may be a fractional-like

structure hidden in the new modified memory function ğ (x, t) ,

due to the tight coupling with the spatio-temporal evolution of

the other reactant, there is also an additional exponential temper-

ing that is non-homogenous in space and time. Combining (22),

(23) and (25) yields 

∂C m 

∂t 
+ ğ (x, t) ∗ ∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 

= −k 

(
C m,A C m,B −

∫ 
f (α) C im,A (α) C im,B (α) dα

)
− ğ (x, t) C m, 0 (27)

and unlike the previous cases it is much more difficult to write an

equation for the immobile concentration. Following the procedure

from the previous examples, solve for C m 

in (26) and substitute

into (27) , which in Laplace space yields 

s ̃  C IM 

− ˘̃
 g(x, s ) C m, 0 + s ̆̃  g(x, s ) C IM 

− D ̆̃

 g(x, s ) 
∂ 2 

∂x 2 

˜ C IM 

˜ g (x, s ) 

= −k ̆̃  g(x, s ) 

(
˜ C IM,A 

˜ g (x, s ) 
∗

˜ C IM,B 

˜ g (x, s ) 
−

∫ 
f (α) ̃  C im,A (α) ∗ ˜ C im,B (α) dα

)
. 

(28)

While one might be able to formally invert the above, one has

to question what the utility of this would be and there are some

important features to be highlighted. In the previous two cases it

was critical to the derivation that the memory functions in the nu-

merator and denominator in the diffusive term canceled out. Since
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
he memory function now depends on space this can no longer

e done as it cannot be pulled out of the Laplacian, resulting in

 much messier system. Likewise the mobile reactive term, which

s a product in real space becomes a convolution in Laplace space

nd it is not straightforward to get rid of the memory functions

here either, or invert back into real space. 

Writing the mobile concentration equation in Laplace space 

 ̃

 C m 

− C m, 0 + 

˜ g (x, s )(s ̃  C m 

− C m, 0 ) − D 

∂ 2 ˜ C m 

∂x 2 

= −k ̃  g (x, s ) 
(

˜ C m,A ∗ ˜ C m,B −
∫ 

f (α) ̃  C im,A (α) ∗ C im,B (α) dα
)

− ˜ g (x, s ) C m, 0 . (29)

Following what we did for the conservative and first-order re-

ctive systems, we would add Eqs. (29) and (28) to obtain a single

quation in C tot . Clearly there is no immediately reasonable way

f adding these two equations together to yield a single transport

quation in terms of C tot alone, and certainly not one that is an

bvious time-fractional dispersion equation for total concentration

ith a reaction term resembling the law of mass action. While per-

aps frustrating that we cannot arrive at an elegant solution as we

id for our other cases, this is nonetheless important as it high-

ights that the tightly coupled evolution of species A and B com-

licates writing an effective equation based on total concentration

lone. 

Essentially, the total concentration is not a good measure of

ctual concentrations taking place in the localized reactions. This

s very similar to the complications associated with upscaling bi-

olecular reactions in advective-diffusive systems in the presence

f incomplete mixing, an area of active research in many of the

elds where anomalous transport models are also popular (e.g.

47,50,57,74–76] ). While approximate solutions and improved clo-

ure models have enabled the development of improved predictive

nd numerical models (e.g. [77–79] ) a single governing equation

n terms of only average/total concentrations still does not, to our

nowledge, exist. 

Thus for this particular problem that we focus on here, writing

 reactive transport equation in terms of only total concentration

eems impossible without making some further assumptions or in-

oking something analogous to a closure argument (e.g. [70,77,78] ),

hich could yield a reasonable approximation, but would still be

n approximation, unlike the results derived for the conservative

nd first-order reactive systems. 

.1. The nai v e approach and numerical examples 

While we have not been able to write a formal equation for

he evolution of total concentration in a single equation that only

epends on total concentrations, as we were able to in our previ-

us two examples, it is still interesting to consider numerical solu-

ions for the bimolecular reaction case and compare those to what

ould be obtained if one followed the naive approach and simply

rote 

∂C tot,i 

∂t 
+ 

∂ γ C tot,i 

∂t γ
− D 

∂ 2 C tot,i 

∂x 2 
= −kC tot,A C tot,B i = A, B. (30)

As noted in the introduction, such naive approaches, in the gen-

ral context of anomalous transport models and for fractional dis-

ersion equations, have been taken in the past and it is important

o understand what the consequences of such an approach may be,

s well as if it might ever be at least a reasonable approximation.

hus, using the same numerical methods as listed previously, we

ill solve (30) and compare this to the results of the full system,

btained by solving (22) and (23) . We consider a step-like initial

ondition, where half of the domain is filled with unit concentra-

ion of A and the other half with unit concentration of B. We con-

ider four reaction rates of k = 0 . 1 , 1 , 10 and 100. 
s in multicontinuum systems: When might time fractional equa- 
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Fig. 4. Numerical solutions for the bimolecular reaction system. Concentration profiles at time t = 10 are shown for four different values of reaction rate k = 0 . 1 , 1, 10 and 

100. Magenta colors correspond to concentrations of species A, while red to species B. The circular dots correspond to the solution of the full multicontinuum set of Eqs. 

(22) and (23) , while the solid lines correspond to the solution of naive Eq. (30) . (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Concentration profiles for the four cases at a single time t = 10

re shown in Fig. 4 . In all four cases a similar trend is observed.

he model built with naive equation (30) has much lower concen-

rations of the species invading into the other half of the domain

han the concentrations calculated with the full multicontinuum

ormulation (i.e. concentration of species A in the right hand side

f the domain). As the reaction rate becomes larger this disparity

ecomes more apparent with deviations in predicted concentra-

ions as large as ten orders of magnitude for the highest reaction

ate. Again, for the smallest reaction rate the differences between

he two models look relatively minimal, but this is likely due to

he limited amount of actual reaction that has actually happened,

eaning that the behavior is still close to conservative. 

Fig. 5 shows the evolution of total mass of the reactants over

ime for the two models and the results may be somewhat sur-

rising relative to what was just discussed about the concentration

rofiles. The differences in total amount of mass predicted by the

aive and full multicontinuum model look smallest for the highest

eaction rate system. This is likely because even though concen-

ration differences appear very large for the highest reaction rate

ystem, the concentrations in these tail regions are small and neg-

igible in terms of the total mass in the system and the bulk of

eaction is happening at the interface between the two reactants

ocused around x = 0 . Once solute passes into the other half of the

omain due to dispersion, its likelihood of reaction is very high

nd so concentrations there are very low. Indeed for the case of

nfinitely fast chemical reactions for this particular setup, it can be

hown that the naive and full multicontinuum equation approach

re analogous (see Appendix A ). This is likely not universally true

nd initial condition specific. For example, the inclusion of a drift

ith the exact same initial condition would break the require-

ents. Additionally in the limit of k → ∞ the entire problem can

e recast in terms of solutions to conservative transport equations,

or which the connection between the fractional dispersion equa-

ion and multicontinuum model have been shown to be rigorous.

n Appendix A we explain these details and highlight conditions
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
hat must hold, which again appears to be initial condition and

roblem specific and thus likely not universal. 

. General discussion - a generic reactive system 

The previous examples have already yielded some interesting

nsights into limitations of extending fractional transport equations

or conservative transport to a reactive counterpart, but we have

ocused on some important, but specific examples. For the sake of

 more general discussion, let us consider a generic reactive sys-

em, where reactions occur in mobile and immobile parts of the

omain. We follow the same procedure as above with the hope of

etting an effective equation for transport of total concentration.

e denote the reaction in the mobile zone as r m 

and r im 

( α) as that

ssociated with the immobile region with exchange rate α. Given

he local nature of reactions, these are assumed to only depend on

oncentrations in that same zone; i.e. r m 

( C m 

) and r im 

( α, C im 

( α)),

ut their form remains unspecified. Now the governing equations

or mobile and immobile concentration are 

∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −

∫ 
f (α) α(C m 

− C im 

(α)) dα − r m 

(31) 

∂C im 

(α) 

∂t 
= α(C m 

− C im 

(α)) − r im 

(α) ∀ α 0 ≤ α ≤ ∞ . (32) 

Eq. (32) can solved such that 

 im 

(α) = αC m 

∗ e −αt − r im 

(α) ∗ e −αt . (33)

Note that because we have not chosen to specify the form of r im 

hat this may be an implicit solution. Taking the time derivative of

33) 

∂C im 

(α) 

∂t 
= α

∂C m 

∂t 
∗ e −αt + αC m, 0 e 

−αt 

− ∂r im 

(α) 

∂t 
∗ e −αt − r im, 0 (α) e −αt . (34) 
s in multicontinuum systems: When might time fractional equa- 

6/j.chaos.2017.04.028 

http://dx.doi.org/10.1016/j.chaos.2017.04.028


8 D. Bolster et al. / Chaos, Solitons and Fractals 0 0 0 (2017) 1–12 

ARTICLE IN PRESS 

JID: CHAOS [m5G; May 13, 2017;1:25 ] 

0 50 100
t

0.92

0.94

0.96

0.98

1

M
(t

)/
M

(0
)

k=0.1 t=10

0 50 100
t

0.8

0.9

1

M
(t

)/
M

(0
)

k=1 t=10

0 50 100
t

0.6

0.7

0.8

0.9

1

M
(t

)/
M

(0
)

k=10 t=10

0 50 100
t

0.6

0.7

0.8

0.9

1

M
(t

)/
M

(0
)

k=100 t=10

Fig. 5. Evolution of total mass of reactant A from numerical simulation of the bimolecular reaction system. Four different values of reaction rate k = 0 . 1 , 1, 10 and 100. 

The red circular dots correspond to the solution of the full multicontinuum set of Eqs. (22) and (23) , while the blue lines correspond to the solution of naive Eq. (30) . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Since concentration in immobile regions is initially zero, so too

is reaction r im, 0 = 0 . Multiplying by f ( α) and integrating yields 

∂C IM 

∂t 
= g(t) ∗ ∂C m 

∂t 
+ g(t) C m, 0 −

∫ 
f (α) 

∂r im 

(α) 

∂t 
∗ e −αt dα. (35)

Combining (31) and (32) it is clear that 

∂C m 

∂t 
+ 

∂C IM 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −r m 

− r IM 

(36)

where r IM 

= 

∫ 
f (α) r im 

(α) dα. Substituting in (35) 

∂C m 

∂t 
+ g(t) ∗ ∂C m 

∂t 
− D 

∂ 2 C m 

∂x 2 
= −r m 

− r IM 

− g(t) C m, 0 

+ 

∫ 
f (α) 

∂r im 

(α) 

∂t 
∗ e −αt dα. (37)

As before we can write an equation for the transport of the

immobile concentration by solving for C m 

in (35) and substituting

into (36) 

∂C IM 

∂t 
+ g(t) ∗ ∂C IM 

∂t 
− D 

∂ 2 C IM 

∂x 2 
= −g(t) ∗ r m 

− g(t) ∗ r IM 

+ g(t) C m, 0 

−
∫ 

f (α) 
∂r im 

(α) 

∂t 
∗ e −αt dα + D 

∂ 2 

∂x 2 

(∫ 
f (α) r im 

(α) ∗ e −αt dα
)
. 

(38)

Combining these last two equations the governing equation for

total concentration is 

∂C tot 

∂t 
+ g(t) ∗ ∂C tot 

∂t 
− D 

∂ 2 C tot 

∂x 2 
= −r m 

− r IM 

− g(t) ∗ r m 

− g(t) ∗ r IM 

+ D 

∂ 2 

∂x 2 

(∫ 
f (α) r im 

(α) ∗ e −αt dα
)
. (39)

While the structure of the equations presented for first-order

and bimolecular reactions might look different than this, it is

straightforward to rearrange those equations to recover something

resembling this one. The reason we choose to write the equa-

tion this way is that it does show that one can always write

an equation for reactive transport that resembles the conservative
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
ractional dispersion equation for conservative transport, namely a

ractional dispersion equation for total concentration, with a slew

f additional sources and sinks as seen from the right-hand side.

nless all of these terms on the right-hand side can be combined

nd written as an expression that exclusively depends on the to-

al concentration, then our objective of writing a fractional disper-

ion reaction equation that depends on only C tot cannot be met. For

he case of a linear first-order reaction, this is relatively straightfor-

ard as once we write the solution to (16) we immediately have a

imple linear relationship between mobile and immobile concen-

rations and thus for total concentrations also, meaning that all of

he terms on the right hand side can be written straightforwardly

n terms C tot . However, for the bimolecular reaction in (24) and in-

eed the more generic case in (32) the relationship is not as clean,

eaning that a straightforward expression for total concentration

n terms of just immobile concentration or mobile concentration

ay not be possible. 

Some particularly interesting features of the right-hand side

ource-and-sink terms stand out and are worthy of discussion: 

• One cannot just throw a generic reaction term r tot on the right

hand that has the same functional form as r m 

. While for a lin-

ear reaction it is straightforward to argue that r tot = r m 

+ r IM 

will preserve its functional form, it is likely the exception rather

than rule for complex coupled and nonlinear reactions. This, as

already noted, is directly analogous to upscaling of reactions in

incompletely mixed systems. 

• As had already been noted for the case of the first-order re-

action, the reaction on the right-hand side must also include

convolution with the memory function. Memory clearly also

influences the reaction process and any effective model that

does not account for this is likely incorrect. Unless the reac-

tion rate is proportional to the time derivative of concentration,

rather than yielding a fractional derivative, it results in some-

thing more closely resembling a fractional integral. Thus the

way that memory acts on transport and reaction manifests in

a different manner and must be accounted for in the reaction

terms, explaining why an ad hoc inclusion of a generic reaction
s in multicontinuum systems: When might time fractional equa- 
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term is likely to fail. This is consistent with the discussion of

[60] who obtain a time fractional dispersion equation by subor-

dinating a diffusion equation, but demonstrate that if one does

not take care with how one handles the reaction term, that un-

physical negative concentrations can be predicted. In our case,

having the memory function convolved with the reaction term

on the right-hand side is what ensures consistent conservation

of mass. Integrating (39) over all space we can write an equa-

tion for total mass 

∂M 

∂t 
+ g(t) ∗ ∂M 

∂t 
= −

∫ ∞ 

−∞ 

(r m 

+ r IM 

+ g(t) ∗ r m 

+ g(t) ∗ r IM 

) dx 

(40)

which ensures 

∂M 

∂t 
= −

∫ ∞ 

−∞ 

(r m 

+ r IM 

) dx ; (41) 

i.e. that the total change of mass in the system occurs because

of all the reactions that are happening in the mobile and immo-

bile regions of the domain. Were the convolution not included,

the incorrect amount of mass would be removed as was the

case for both of the specific reactive systems considered here. 

• While not immediately obvious, the last term on the right-hand

side of (39) is the term in the two specific reaction problems

that leads to the modification of the structure of the memory

function. This can be inferred by looking at (33) and recogniz-

ing that when r im 

( α) was written in terms of C im 

( α) it could be

brought to the left-hand side of the equation, lumped together

and then the term that is divided across gives rise to the tem-

pering of the exponential or similar modified effect. 

. Conclusions 

In this paper, we set out to show that one must be cautious

ven in proposing fractional reaction diffusion equations for sys-

ems where transport of a conserved scalar can be shown to be

overned by a fractional diffusion equation. Typically fractional

iffusion equations, or for that matter any anomalous transport

odel, arises due to complexity and heterogeneity at some small

unresolved) scales and so one has to be careful in simply assum-

ng that the influence on reaction is trivially upscaled. 

To this end we consider a simple physical system, where for

 conserved scalar one can formally derive a fractional dispersion

quation as the consistent effective equation for the evolution

f concentration. Leveraging two previous studies, we connect a

ulticontinuum mobile immobile model system and following

45] rigorously demonstrate that one can derive an effective single

ransport equation for the evolution of total concentration where

ll terms depend only on the total concentration. For a specific

istribution of exchange rates between the mobile and immo-

ile continua this equation can be written as a time fractional

ispersion equation. Next we considered the same setup, but

ith the addition of reactions. Two specific reaction types were

onsidered, namely a first-order decay reaction and bimolecular

inetic reaction. 

For the first-order reaction, following the same procedure in de-

iving the fractional dispersion equation for conservative transport,

e showed that an effective equation can be written for total con-

entration that only depends on total concentration. However, in

oing through the procedure a modified memory function arises

hat tempers the power law that gives rise to the fractional deriva-

ive with an exponential whose rate depends on the rate of reac-

ion, thus modifying the structure of the effective equation. Phys-

cally this tempering reflects that if a particle remains immobile

or too long it is more likely to react that to re-emerge into the

obile continuum. Additionally this memory function acts on the
Please cite this article as: D. Bolster et al., Upscaling chemical reaction

tions work? Chaos, Solitons and Fractals (2017), http://dx.doi.org/10.101
eaction term. If one were to naively write a reaction term without

his memory function, one would incorrectly predict the spatial

istribution of concentration and rather than obtain an exponen-

ial decay in total mass over time, mass would decay much more

lowly as a power law t −γ in time, where 0 < γ < 1 is the ex-

onent of the time fractional derivative. This was confirmed with

umerical simulations. It should be noted that the naive approach

oes not yield an unphysical equation, as was for example the con-

ern of [60] . Indeed it can be shown that it is the correct effective

quation, were one to say that a first order reaction happened only

n the mobile part of the domain, which for some systems of in-

erest might be the case (e.g. [80] ). However, it is not the correct

ffective equation for the conceptual system which we aimed to

epresent. 

For the case of the bimolecular reaction, going through the

ame procedure, we demonstrated that there is not a straightfor-

ard way of starting from the multicontinuum equations and de-

iving an effective equation for the evolution of total concentra-

ion in terms of only total concentration. In particular, the same

rocedure results in a new modified memory function, which for

ne reactant depends explicitly on the time history of the concen-

ration field of the other reactant, which occurs because of the

ightly coupled nature of this system. What happens to one re-

ctant depends heavily on what has happened not only to itself,

ut also to the other reactant; it itself in turn strongly affects the

ate of the other. While one can formally write this memory func-

ion, it is now nonstationary and dependent on space. This means

hat many of the required steps to obtain a final equation for to-

al concentration performed in the derivations for the conservative

nd first-order reaction systems simply do not work. Via numerical

imulations we demonstrated again that if one were to simply and

aively include a reaction term on the right-hand side of a frac-

ional dispersion equation this would result in erroneous predic-

ions of concentration and total amounts of mass, except for some

nique infinite reaction rate conditions highlighted in Appendix A . 

We conclude by performing the procedure of deriving an effec-

ive equation for total concentration on a completely generic reac-

ion system, where the form of the reactive term remains unspec-

fied. We show that while it is possible to always arrive at an ef-

ective equation that resembles a fractional dispersion equation, a

arge number of source-and-sink terms emerge that depend on the

pecifics of the reactions in the mobile and immobile parts of the

omain. Importantly, one of the features that stands out strongly

s that any effective equation must have the memory effects act

n transport and reaction terms, and not just the transport terms

lone. For the case of linear reactions, such as the first-order ones

onsidered here, it is relatively straightforward to combine these

nto terms that depend only on total reactions, but for more com-

lex coupled and nonlinear reactions this is less straightforward.

his problem essentially faces many of the same issues that have

een plagued volume averaging and upscaling studies of incom-

lete mixing effects on chemical reaction, where promising clo-

ure approaches exist, but are typically not exact and often carry

trong restrictions on regimes of applicability. Thus, we hope that

e have made it clear with this work that great caution is needed

n proposing fractional reaction dispersion equations, purely on the

rounds that conservative transport in a system displays fractional

ispersion behaviors. While we focused on one specific form of

ractional dispersion equation, our findings likely hold for most all

nomalous transport models. 
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Appendix A. Appendix: Why as k → ∞ does the naive approach

look more and more correct? 

Interestingly as k gets larger and larger the discrepancy be-

tween the full system and the naive approach becomes smaller.

Here we demonstrate that for the unique limit of k → ∞ they

do indeed yield the same results. Consider the irreversible reaction

A + B → C. The transport equations for species A and B are given

by 

∂C m,i 

∂t 
− D 

∂ 2 C m,i 

∂x 2 
= −

∫ 
f (α) α(C m,i − C im,i (α)) dα + r m 

i = A, B 

(A1)

∂C im,i (α) 

∂t 
= α(C m,i − C im,i (α)) + r im 

(α) ∀ α 0 ≤ α ≤ ∞ (A2)

and for the product C 

∂C m,C 

∂t 
− D 

∂ 2 C m,C 

∂x 2 
= −

∫ 
f (α) α(C m,C − C im,C (α)) dα − r m 

i = A, B (A3)

∂C im,C (α) 

∂t 
= α(C m,C − C im,C (α)) − r im 

(α) ∀ α 0 ≤ α ≤ ∞ 

(A4)

Taking the limit of infinite reaction rate means that nowhere in

the domain can the reactants coexist, which is equivalent to 

 m,A C m,B = 0 C im,A (α) C im,B (α) = 0 ∀ α. (A5)

Defining conservative components u A = C A + C C and u B = C B + C C 
then 

∂u m,i 

∂t 
− D 

∂ 2 u m,i 

∂x 2 
= −

∫ 
f (α) α(u m,i − u im,i (α)) dα i = A, B 

(A6)
Fig. A6. Numerical solutions for the bimolecular reaction system. Concentration profiles

colors correspond to concentrations of species A, while red to species B. The circular do

while the solid lines correspond to the solution of naive Eq. (30) . (For interpretation of th

of this article.) 
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∂u im,i (α) 

∂t 
= α(u m,i − u im,i (α)) ∀ α 0 ≤ α ≤ ∞ . (A7)

Now, since A and B cannot coexist it means that everywhere

nd anywhere in the domain either C A = 0 or C B = 0 . Therefore it

s always true that C C = min (u A , u B ) . For conserved quantities we

now we can write 

∂u tot,i 

∂t 
+ β

∂ γ u tot,i 

∂t γ
− D 

∂ 2 u tot,i 

∂x 2 
= 0 i = A, B (A8)

We also know that 

 C,tot = min (u A,m 

, u B,m 

) + 

∫ 
f (α) min (u A,im 

(α) , u B,im 

(α)) dα

(A9)

If we can show that the right hand side is the same as

in ( u A , tot u B , tot ) then this would be equivalent to showing that in

he limit of infinite reaction the naive approach works just fine. 

For our particular example problem, from symmetry arguments,

t is possible to show that u A (x ) = u B (−x ) (we deliberately include

o subscript for mobile or immobile as this refers to any u any-

here in our domain and multicontinuum). For our given initial

ondition at all times u A (−x ) ≥ u A (x ) for x ≤ 0 and u B (x ) ≥ u B (−x )

or x ≥ 0. Thus anywhere where u A , m 

is smaller than u B , m 

so too

 A , im 

( α) is smaller than u B , m 

( α), meaning 

in (u A,m 

, u B,m 

) + 

∫ 
f (α) min (u A,im 

(α) , u B,im 

(α)) dα

= min (u A,tot , u B,tot ) (A10)

To verify this result, we follow the same numerical methods

utlined in the main manuscript we conducted. Sample concen-

ration plots are shown in Fig. A.6 and the temporal evolution of

ass of reactants over time is shown in Fig. A.7 . Both show identi-

al agreement between the system where the full set of multicon-

inuum equations are solved and the fractional dispersion model,

roviding some validation of what we have presented in this ap-

endix. Note that this outcome is very specific to this set of ini-

ial conditions. It gives rise to the circumstances where these two
 at time t = 0 . 1 , 1, 10 and 100 are shown for reaction rate limit k → ∞ . Magenta 

ts correspond to the solution of the full multicontinuum set of Eqs. (22) and (23) , 

e references to color in this figure legend, the reader is referred to the web version 

s in multicontinuum systems: When might time fractional equa- 
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Fig. A7. Evolution of total mass of reactant A from numerical simulation of the bi- 

molecular reaction system for reaction rate limit k → ∞ . The red circular dots cor- 

respond to the solution of the full multicontinuum set of equations, while the blue 

lines correspond to the solution of naive fractional dispersion equation. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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odels produce identical results and it is not difficult to conceive

f a similar problem where the right set of conditions, such as the

ymmetry argument, do not hold; e.g. the inclusion of a drift in

he mobile region would break the symmetry. Thus the finding of

his appendix should only be considered legitimate for this very

pecific system. We only present it here in this appendix to aid in

nterpreting the results from Section 4 for the bimolecular reac-

ions in the main manuscript. 
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