
1. Preliminaries: uniform convergence

Recall the following definition.

Definition 1.1. A sequence (xn)n∈N ⊂ R is said to converge to L ∈ R if for each ε > 0,
there exists N ∈ N such that |xn − L| < ε whenever n ≥ N .

This definition is really the starting point for all of Calculus. It invests phrases like ‘as
∆x tends to zero’ with a precise meaning and therefore allows us to speak about things like
continuity, differentiation, and integration in a rigorously logical and not just intuitive fash-
ion. A fundamental property of real numbers is that of completeness. It can be formulated
in a number of ways (e.g. every set of real numbers that is bounded above has a least upper
bound), but the best (arguably) uses the following additional notion.

Definition 1.2. A sequence (xn)n∈N ⊂ R is said to be Cauchy if for each ε > 0, there exists
N ∈ N such that |xn − xm| < ε whenever n,m ≥ N .

Observe that a convergent sequence is necessarily Cauchy: if (xn) converges to L and ε > 0
is given, then we can choose N ∈ N such that |xn −L| < ε/2 whenever n ≥ N . Therefore if
two indices n,m ∈ N are both larger than N , we get

|xn − xm| = |(xn − L)− (xm − L)| ≤ |xn − L|+ |xm − L| <
ε

2
+
ε

2
= ε.

Hence (xn) is Cauchy. The completeness property of R is the converse assertion:

Completeness Axiom. Every Cauchy sequence of real numbers converges.

This property of R gives us a way of showing sequences converge without actually knowing
anything about the limiting.

Here we will need a notion of convergence for sequences of functions rather than real
numbers. To this end, let us fix a subset S ⊂ R. For any f : S → R, we define

‖f‖ = ‖f‖S := sup
x∈S
|f(x)|.

Of course it can happen that ‖f‖ = ∞. Consider for instance S = (0,∞), f(x) = 1/x. To
keep things more manageable, we restrict attention to the set

B(S) = {f : S → R, ‖f‖ <∞}
of bounded real-valued functions on S. Note that B(S) is a vector space over R. We leave
the reader to verify

Proposition 1.3. ‖·‖S is a norm on B(S). That is, for every f, g ∈ B(S) and every c ∈ R,
we have

• (positivity) ‖f‖ ≥ 0 with equality if and only if f(x) = 0 for every x ∈ S.
• (homogeneity) ‖cf‖ = |c| ‖f‖.
• (triangle inequality) ‖f + g‖ ≤ ‖f‖ + ‖g‖ .

In other words, ‖·‖S has essentially the same properties on B(S) that the absolute value
function has on R. In particular, it gives a way to measure the distance between functions
on S. That is, given f, g ∈ B(S), we can declare dist(f, g) = ‖f − g‖ to be the distance
between f and g. And whenever you have a notion of distance, there is a corresponding
notion of convergence.
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Definition 1.4. A sequence (fn)n∈N ∈ B(S) is said to converge uniformly to a function
g ∈ B(S) on S if for every ε > 0, there exists N ∈ N such that ‖fn − g‖ < ε whenever
n ≥ N .

In other words, (fn) converges uniformly to f if limn→∞ ‖fn − f‖ = 0. The qualifier ‘uni-
formly’ is used here because there are other notions of convergence for sequences of functions,
useful in other contexts, and they are fundamentally different than the one specified here.
One can also rewrite the definition of Cauchy sequence of real numbers to come up with a
definition of ‘uniformly Cauchy’ sequence of bounded functions. We leave doing this to the
reader.

Let us remark before continuing that if (fn) converges uniformly to f on S, then we have
the pointwise convergence

lim
n→∞

fn(t) = f(t) for every t ∈ S.

The converse, however, is not true. Fairly straightforward counterexamples show that one
can have fn(t)→ f(t) for every individual t ∈ S yet still not get that fn → f uniformly on
S.

There are three fundamental facts about uniform convergence. The first is that bounded
functions are complete with respect to uniform convergence.

Theorem 1.5. A uniformly Cauchy sequence (fn) ⊂ B(S) of functions is uniformly conver-
gent.

Proof. We first produce a candidate for the limit function g : S → R. Let ε > 0 be given, and
use the fact that (fn) is Cauchy to obtain N ∈ N such that n,m ≥ N implies ‖fn − fm‖ < ε.
Then for any fixed x ∈ S, we have as a consequence that

|fn(x)− fm(x)| ≤ ‖fn − fm‖ < ε

whenever n,m ≥ N . That is, (fn(x))n∈N is a Cauchy sequence of real numbers. It follows
then from completeness of R that (fn(x)) converges. We let g(x) = limn→N fn(x). Since we
can do this for each x ∈ S, we obtain a function g : S → R.

Next we show that g is bounded (i.e. g ∈ B(S)). Taking ε = 1, we again use the fact that
(fn) is uniformly Cauchy to obtain N ∈ N such that n,m ≥ N implies ‖fn − fm‖ < 1. In
particular, n ≥ N implies ‖fN − fn‖ < 1. Thus if M = ‖fN‖ <∞, we get

‖fn‖ = ‖(fn − fN) + fN‖ ≤ ‖fn − fN‖ + ‖fN‖ < 1 +M

for all n ≥ N . Thus, for any x ∈ S, we have

|g(x)| = | lim fn(x)| = lim |fn(x)| ≤ 1 +M,

because |fn(x)| ≤ ‖fn‖ < 1 +M for all n ≥ N . Thus ‖g‖ ≤ 1 +M <∞, which proves that
g is bounded.

Finally, we argue that fn converges uniformly to g. Let ε > 0 be given. Applying the
fact that (fn) is uniformly Cauchy one last time, we take N ∈ N such that n,m ≥ N
implies ‖fn − fm‖ < ε/2. Now if x ∈ S is any particular point, we have already shown that
limn→∞ fn(x) = g(x). So we can also find N ′ ∈ N such that |fn(x)− g(x)| < ε/2 whenever
n ≥ N ′. Therefore, if n ≥ N and m ≥ max{N,N ′}, we estimate

|g(x)−fn(x)| = |(g(x)−fm(x))+(fn(x)−fm(x))| ≤ |g(x)−fm(x)|+|fn(x)−fm(x)| < ε

2
+
ε

2
= ε.
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In fact, since N (as opposed to N ′) was chosen independent of x, we get

‖fn − g‖ = sup
x∈S
|g(x)− fn(x)| < ε.

whenever n ≥ N . This proves that (fn) converges uniformly to g. �

The second fundamental fact about uniform convergence is that it cooperates well with
continuity.

Theorem 1.6. Suppose that (fn) ⊂ B(S) is a sequence of continuous functions converging
uniformly to f : S → R. Then f is continuous.

To see that this theorem is special, note that it is false if we replace ‘continuous’ with
‘differentiable’ in the hypothesis and conclusion. Can you think of a counterexample?

Proof. Let x ∈ S and ε > 0 be given. Since fn → f uniformly, there exists N ∈ N such that
‖fn − f‖ < ε/3 whenever n ≥ N . Since fN is continuous at x, we also have δ > 0 such that
|fN(y)− fN(x)| < ε/3 whenever y ∈ S and |y − x| < δ. Thus

|g(y)− g(x)| = |(g(y)− fN(y)) + (fN(y)− fN(x)) + (fN(x)− g(x))|
≤ |g(y)− fN(y)|+ |fN(y)− fN(x)|+ |fN(x)− g(x)|

<
ε

3
+
ε

3
+
ε

3

for all y ∈ S such that |y − x| < δ. Hence g is continuous at x. �

Finally, we show that uniform convergence cooperates well with integration.

Theorem 1.7. Suppose that (fn) ⊂ B(S) is a sequence of continuous functions converging
uniformly to f : S → R. If [a, b] ⊂ S is a closed and bounded interval, then

lim
n→∞

∫ b

a

fn(t) dt =

∫ b

a

f(t) dt.

Proof. We have∣∣∣∣∫ b

a

fn(t) dt−
∫ b

a

f(t) dt

∣∣∣∣ ≤ ∫ b

a

|fn(t)− f(t)| dt ≤
∫ b

a

‖fn − f‖ dt = (b− a) ‖fn − f‖ .

Hence,

lim
n→∞

∣∣∣∣∫ b

a

fn(t) dt−
∫ b

a

f(t) dt

∣∣∣∣ ≤ (b− a) lim
n→∞

‖fn − f‖ = 0,

since fn → f uniformly on S. �

2. The existence and uniqueness theorem for first order ODEs

The fundamental fact about ordinary differential equations is that, under suitably nice
circumstances and subject to appropriate initial conditions, one gets unique solutions. Here
we will discuss this fact in the particular case of first order ODEs. The case of first order
systems of ODEs is quite similar and essentially contains all other possible cases.
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Let us set up the problem before stating any results. We begin with an open set U ⊂ R2

and a function F : U → R. Given any point (t0, y0) ∈ U we seek solutions to the initial
value problem

(1) y′(t) = F (t, y(t)), y(t0) = y0.

The domain of the function y is not so important here, so we allow ourselves to consider any
differentiable function y : I → R defined on an open interval I containing t0. If such a y
satisfies (1), then we refer to y : I → R as a solution of (1). Note that different solutions
can have different domains, but the domains of any two solutions must intersect in an open
interval containing t0.

Theorem 2.1 (Existence and Uniqueness Theorem). Suppose that F = F (t, y) is continuous
on U and furthermore continuously differentiable with respect to the second variable y. Then
for any (t0, y0) ∈ U there is a solution y : I → R of the initial value problem (1). This
solution is unique in the following sense: if ỹ : Ĩ → R is another solution, then ỹ(t) = y(t)
for all t ∈ I ∩ Ĩ.

Proof. Since U is open and (t0, y0) ∈ U , there exists a closed rectangle

R = [t0 − a, t0 + a]× [y0 − b, y0 + b] ⊂ U.

A continuous function on such a rectangle will be bounded, so we have constants A,B > 0
such that

|F (t, y)| ≤ A,

∣∣∣∣∂F∂y (t, y)

∣∣∣∣ ≤ B for all (t, y) ∈ R.

In particular, by the mean value theorem, we have for all (t, y1), (t, y2) ∈ R

|F (t, y1)− F (t, y2)| =
∣∣∣∣∂F∂y (t, c)(y1 − y2)

∣∣∣∣ ≤ B|y1 − y2|

where c is a number between y1 and y2.

Lemma 2.2. Suppose ε ≤ b is a positive number no larger than b
A

. Let I = (t0 − ε, t0 + ε)
and y : I → [y0 − b, y0 + b] is a continuous function. Then the function ỹ : I → R given by

ỹ(t) = y0 +

∫ t

t0

F (s, y(s)) ds

is well-defined and satisfies ỹ(t) ∈ [y0 − b, y0 + b] for all t ∈ I.

Proof. The hypothesis on y implies that (t, y(t)) ∈ R for all t ∈ I. This, and continuity of
y and F , imply that the right side of the equation defining ỹ makes sense for all t ∈ I. We
have moreover for such t that

|ỹ(t)− y0| =
∣∣∣∣∫ t

t0

F (s, y(s)) ds

∣∣∣∣ ≤ A|t− t0| ≤ Aε ≤ Aε ≤ b,

where the last inequality comes from the hypothesis on ε. �

Continuing to let I = (t0− ε, t0 + ε), with ε > 0 as in the lemma, we invoke the conclusion
of the lemma to define a sequence of functions yn : I → R, n ∈ N inductively as follows:

y0(t) ≡ y0, yn+1(t) = y0 +

∫ t

t0

F (s, yn(s)) ds.
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We will show that (yn) converges uniformly to a solution of (1). The key step in doing so is
our next lemma. Note that ‖·‖ means ‖·‖I here.

Lemma 2.3. Suppose that ε < 1/2B. Then for all n ≥ 1,

‖yn+1 − yn‖ ≤
1

2
‖yn − yn−1‖ .

In particular,

‖yn+1 − yn‖ ≤
1

2n
‖y1 − y0‖ .

Proof. For any n ≥ 1 and t ∈ I, we have

|yn+1(t)− yn(t)| =

∣∣∣∣∫ t

t0

(F (s, yn(s))− F (s, yn−1(s))) ds

∣∣∣∣ ≤ B

∣∣∣∣∫ t

t0

|yn(s)− yn−1(s)| ds
∣∣∣∣

≤ B|t− t0| ‖yn − yn−1‖ | < Bε ‖yn − yn−1‖ ≤
1

2
‖yn − yn−1‖

Since t ∈ I on the left side was arbitrary, the first conclusion of the lemma follows. The
second conclusion is obtained by iterating the first:

‖yn+1 − yn‖ ≤
1

2
‖yn − yn−1‖ ≤

1

4
‖yn−1 − yn−2‖ ≤ · · · ≤

1

2n
‖y1 − y0‖ .

�

From now on we assume that ε ≤ min{a, b/A, 1/2B} satisfies the hypotheses of both of
the above lemmas. We demonstrate convergence of the sequence (yn) be rewriting the nth
term as a telescoping sum:

yn(t) = y0 +
n∑

j=1

yj(t)− yj−1(t).

Hence, the limit of the sequence (if it exists) may be written as a telescoping series

y(t) = lim
n→∞

yn(t) = y0 +
∞∑

j=1

yj(t)− yj−1(t).

Note here that by the previous lemma, the jth term in this series satisfies

|yj(t)− yj−1(t)| ≤ ‖yj − yj−1‖ ≤
C

2j

for C = ‖y1 − y0‖. Since
∑∞

j=1
C
2j converges, it therefore follows from the Weierstrass M -test

that (yn) converges uniformly to some function y : I → R. Uniform convergence implies
that y is continuous, since all of the yn are continuous. We have moreover that

Lemma 2.4. For any t ∈ I,

lim
n→∞

∫ t

t0

F (s, yn(s)) ds =

∫ t

t0

F (s, y(s)) ds
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Proof. Given t ∈ I, we estimate as in the preceding lemma∣∣∣∣∫ t

t0

(F (s, yn(s))− F (s, y(s))) ds

∣∣∣∣ ≤ B|t− t0| ‖yn − y‖ .

Uniform convergence of yn to y means exactly that limn→∞ ‖yn − y‖ = 0. Hence the right
side tends to zero as n→∞, and the lemma is proved. �

Now we claim that y : I → R is a solution of (1). First of all,

y(t0) = y0 +

∫ t0

t0

F (s, y(s)) ds = y0,

so y satisfies the right initial condition. We further have from the previous lemma that

y(t) = lim yn(t) = y0 + lim
n→∞

∫ t

t0

F (s, yn−1(s)) ds = y0 +

∫ t

t0

F (s, y(s) ds.

Applying the fundamental theorem of calculus to the integral on the right side, we therefore
obtain

y′(t) = 0 + F (t, y(t)) = F (t, y(t))

for all t ∈ I. This proves our claim and concludes the existence portion of the proof.
Finally, we turn to uniqueness. Suppose that ỹ : Ĩ → R is another solution of (1). First

we show that y and ỹ agree near t0.

Lemma 2.5. There exists an open interval J ⊂ I ∩ Ĩ containing t0 such that ỹ(t) = y(t) for
all t ∈ J .

Proof. By continuity of ỹ, there is an open interval J ⊂ Ĩ ∩ I containing t0 such that
|ỹ(t) − y0| < b for all t ∈ J . That is, ỹ(t) ∈ [y0 − b, y0 + b]. Also, by integrating both sides
of ỹ′ = F (t, ỹ), we obtain

ỹ(t) = t0 +

∫ t

t0

F (s, ỹ(s)) ds

for all t ∈ J . Thus we may argue as in the proof of Lemma 2.3 that

|ỹ(t)− y(t)| =
∣∣∣∣∫ t

t0

(F (s, ỹ(s))− F (s, y(s))) ds

∣∣∣∣ ≤ 1

2
‖ỹ − y‖ .

Since t ∈ J is arbitrary, this implies that ‖ỹ − y‖ ≤ 1
2
‖ỹ − y‖ , which can only happen if

‖ỹ − y‖ = 0—i.e. if ỹ ≡ y on J . �

To conclude the proof of uniqueness in Theorem 2.1, we let J ⊂ I ∩ Ĩ be the largest open
interval containing t0 on which y and ỹ agree. By the previous lemma, we know at least
that J is not empty. We assume, in order to reach a contradiction, that J 6= I ∩ Ĩ. Under
this assumption, we have that one of the two endpoints t1 of J lies in I ∩ Ĩ. For the sake of
definiteness, we assume that t1 is the righthand (i.e. upper) endpoint of J .

By continuity of y and ỹ, we have

y1 := y(t1) = lim
t→t−1

y(t) = lim
t→t−1

ỹ(t) = ỹ(t1)

Hence y : I → R and ỹ : Ĩ → R are also both solutions of (1) subject to the initial condition
y(t1) = y1. By Lemma 2.5, it follows that y ≡ ỹ on an open interval J1 ⊂ I ∩ Ĩ containing
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t1. Thus J ∪ J1 is an open interval strictly larger than J on which ỹ ≡ y, contradicting the
assumption that J is the largest interval of agreement about t0. We conclude that y ≡ ỹ
everywhere on I ∩ Ĩ. �

In closing, let us observe that the uniqueness part of Theorem 2.1 ensures us that there is
a solution y : Imax → R for which the interval Imax is as large as possible. To see that this
is so, let

Imax =
⋃
{J ⊂ R : J is an open interval about t0 on which (1) admits a solution}

be the union of all solution intervals. Then Imax is an open interval about t0 (why?), and
we can define our solution y : Imax → R at any point t ∈ Imax by setting y(t) = ỹ(t) where
ỹ : J → R is a solution whose domain J contains t. Since solutions agree on the intersection
of their domains, it will not matter which solution ỹ we use to define y(t). We will have
moreover that y ≡ ỹ on all of J , so that in particular y′ = F (t, y) holds at t. That is, y
satisfies (1) on all of Imax. We have just shown

Theorem 2.6 (Existence of solutions with maximal domain). Under the hypotheses of The-
orem 2.1, there exists a solution y : Imax → R of (1) whose domain Imax contains the
domains of all other solutions ỹ : I → R of (1).

An important feature of the solution y : Imax → R is that it persists until its graph ‘exits’
the domain of existence U for the righthand side F (t, y) of (1). This can be stated more
precisely in terms of ‘compact sets’. A subset K ⊂ Rn is called compact if it is closed and
bounded. So for instance, an interval I ⊂ R is compact if and only if I = [a, b] where
a, b ∈ R.

Theorem 2.7. Let y : Imax → R be the solution of (1) with maximal domain Imax. If K ⊂ U
is any compact set, then there is a compact interval IK ⊂ Imax such that (t, y(t)) /∈ K for
any t /∈ IK.

The conclusion of this theorem is often summarized by saying that the graph of y :
Imax → R is a curve that is ‘properly embedded’ in U . The proof of Theorem 2.7 depends
on a refinement of the existence and uniqueness theorem. The gist of the refinement is that
solutions to (1) vary continuously with the initial condition. In particular, the intervals
on which these solutions are defined may be taken to vary continuously with the initial
condition.

Theorem 2.8 (Existence and uniqueness with stability). Under the hypotheses of Theorem
2.1, let K ⊂ U be a compact subset. Then there exists ε > 0 and a continuous function
φ : K × (−ε, ε)→ R such that for any (t0, y0) ∈ K the function y : (t0− ε, t0 + ε)→ R given
by y(t) := φ(t0, y0, t− t0) is the unique solution of (1).

This theorem follows from a slightly more careful version of the proof of existence used for
Theorem 2.1. We omit the details here. For purposes of proving Theorem 2.7, the important
part of the stability theorem is that it gives a positive lower bound ε on the ‘lifespan’ of any
solution that begins in K.
Proof of Theorem 2.7. Suppose that the theorem is false for some compact set K ⊂ U .
Write Imax = (a, b) (note that either or both of a and b could be infinite). Let ε > 0 be
the constant associated to K in the Stability Theorem. Then taking the closed interval
J = [a+ ε, b− ε] ⊂ Imax, we may choose a point t1 ∈ Imax − J such that (t1, y1) ∈ K, where

7



y1 := y(t1). Thus y is a solution of y′ = f(t, y) subject to the initial condition y(t1) = y1. The
stability theorem guarantees us that there is another solution ỹ : (t1 − ε, t1 + ε)→ R of the
same initial value problem. By uniqueness, we therefore have ỹ ≡ y on Imax ∩ (t0− ε, t0 + ε).
By setting,

ŷ(t) =

{
y(t) if t ∈ Imax

ỹ(t) if |t− t1| < ε,

we obtain that ŷ is a solves (1) on Imax∪(t1−ε, t1+ε). Since this last interval is not contained
in Imax, we have contradicted the fact that Imax is the maximal domain of existence for the
solution of (1). So the theorem holds. �

3. Asymptotic Behavior of Solutions to Autonomous 1st Order Equations

In this section we consider solutions of the initial value problem

(2) y′ = f(y), y(t0) = y0

where f : R→ R is a C1 function. Differential equations like the one here, in which the right
side does not depend explicitly on t, are called autonomous. Such ODEs are both common
in applications and important in theory1

The ODE in (2) is separable and therefore in principle solvable by integration. In prac-
tice, however, the integration can be unmanageable and will only give an implicit and fairly
unenlightening formula for the solution. Here we take a more qualitative approach to ana-
lyzing the problem, and in particular, understanding what happens to the solution as t tends
toward the ends of the maximal domain of existence. This is, in pedestrian terms, somewhat
akin to plugging information about today’s weather into the equations of fluid mechanics
to try and infer whether one ought to plan picnics in the year 10,000. In this light, it is
somewhat remarkable that we will be able to say anything sensible at all.

If f(y0) = 0 then we call y0 an equilibrium point of the ODE. In this case, one checks
easily that y : R → R given by y(t) ≡ y0 is the solution of (2). In particular, the maximal
domain of existence is all of R, and we have limt→±∞ y(t) = y0. If f(y0) 6= 0, then things
are certainly more complicated. For definiteness’ sake, let us suppose from now on that
f(y0) > 0, and consider the solution y : I → R of (2) with maximal domain of existence
I = (a, b).

Lemma 3.1. y′(t) > 0 for all t ∈ I.

Proof. If the assertion is false, then there exists t1 ∈ I such that f(y(t1)) = y′(t1) ≤ 0. Since
f(y(t0)) > 0, the intermediate value theorem tells us there exists t2 between t0 and t1 such
that f(y(t2)) = 0. But then y(t2) = z(t2) where z(t) ≡ y(t2) is a constant solution. So by
uniqueness of solutions to initial value problems, we see that y(t) = z(t) for all t ∈ I. In
particular 0 < f(y(t0)) = f(y(t2)) = 0, which is a contradiction. So the assertion is true. �

Lemma 3.2. limt→b y(t) exists (and is possibly ∞).

Proof. By the previous lemma y is an increasing function. Letting L = supt∈I y(t), we claim
limt→b y(t) = L. We prove the claim only in the case L = ∞, leaving the case L < ∞ to
you. Given M ∈ R, we know there exists T ∈ I such that y(T ) > M . So if T < t < b, we

1In somewhat the same way we reduced solving higher order ODEs to solving first order systems, one can
always reduce a non-autonomous ODE to a first order autonomous system.
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see that y(t) ≥ y(T ) > M , because y is increasing. Since M is arbitrary, we conclude that
limt→b y(t) =∞. �

Lemma 3.3. If L = limt→b y(t) <∞, then b =∞ and f(L) = 0.

Proof. Let L = limt→b y(t), and for any M > t0 consider the compact set K := [t0,M ] ×
[y0, L]. Then by Theorem 2.7, there exists T ∈ I such that (t, y(t)) /∈ K for all t > T . Since
(t0, y0) ∈ K, it follows that t0 < T < b. So if T < t < b, we have y(t) ∈ [y0,M ]. It follows
therefore that t > M . Thus b > t > M for any M ∈ R, which means that b =∞.

Now since f and y are continuous, we have limt→∞ f(y(t)) = f(limt→∞ y(t)) = f(L). So
given ε > 0, we have T ∈ R such that t > T implies |f(y(t)) − f(L)| < ε/2. In fact, since
L ≥ f(y(t)), we have 0 ≤ f(L)− f(y(t)) < ε/2.

So if we choose any t > T , the mean value theorem gives us s ∈ (t, t+ 1) such that

f(y(s)) =
f(y(t+ 1))− f(y(t))

(t+ 1)− t
<
f(L)− (L− ε/2)

1
= ε/2.

That is, there exists s > T such that 0 < f(y(s)) < ε. Thus,

|f(L)| = |f(L)− f(s) + f(s)| ≤ |f(L)− f(s)|+ |f(s)| < ε/2 + ε/2 = ε.

�

Let us combine the assertions above into a single statement.

Theorem 3.4. Suppose that f(y0) > 0 and that y : (a, b) → R is the solution of (2) with
maximal domain of existence I. Then y is strictly increasing on all of (a, b), and there are
two possibilities for the asymptotic behavior of y(t) as t increases. Either

• limt→b y(t) =∞; or
• b =∞ and limt→∞ y(t) = L where L is an equilibrium point of the ODE.

We leave it to the reader to puzzle out the statement of this theorem in the case f(y0) < 0
and to draw the appropriate conclusions about the asymptotic behavior of the global solution
y : I → R as t decreases toward the left endpoint of the domain I. In essence, Theorem
3.4 is telling us that solutions to first order autonomous ODEs will either drift off to infinity
or settle down and become asymptotically constant. If the reader finds this unsurprising,
then he or she should try to imagine what the analogous assertion should be for solutions
of autonomous systems of 2 or 3 ODEs (Hint: don’t even try when there are 3 or more
equations involved.)
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